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Abstract

An alternative interpretation of vertex–degree–based topological indices is pro-
posed. Based on it, a class of novel graph invariants is considered, of which the
simplest is the Sombor index SO, defined via the term

√
deg(u)2 + deg(v)2. Basic

properties of SO are established.

1 Introduction

In this paper we are concerned with simple graphs, that is graphs without directed,

weighted or multiple edges, and without self loops. Let G be such a graph with n vertices

and m edges. Its vertex set is V(G) = {v1, v2, . . . , vn} and its edge set E(G). The degree

(= number of first neighbors) of the vertex vi is denoted by deg(vi). If the vertices vi and

vj are adjacent, then the edge connecting them is labeled by eij.

In the mathematical and chemical literature, several dozens of vertex–degree–based

graph invariants (usually referred to as “topological indices”) have been introduced and

extensively studied [4, 6]. Their general formula is

TI = TI(G) =
∑

eij∈E(G)

F
(

deg(vi), deg(vj)
)

(1)

where F (x, y) is some function with the property F (x, y) = F (y, x).

A not necessarily complete list of these topological indices is given in Table 1; for

details see [4, 6] and the references cited therein.
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F (x, y) name
x + y first Zagreb index
xy second Zagreb index
(x + y)2 first hyper-Zagreb index
(xy)2 second hyper-Zagreb index
x−3 + y−3 modified first Zagreb index
|x− y| Albertson index
(x/y + y/x)/2 extended index
(x− y)2 sigma index
1/
√
xy Randić index√

xy reciprocal Randić index
1/
√
x + y sum-connectivity index√

x + y reciprocal sum-connectivity index
2/(x + y) harmonic index√

(x + y − 2)/(xy) atom-bond-connectivity (ABC) index
[xy/(x + y − 2)]3 augmented Zagreb index
x2 + y2 forgotten index
x−2 + y−2 inverse degree
2
√
xy/(x + y) geometric-arithmetic index

(x + y)/(2
√
xy) arithmetic-geometric index

xy/(x + y) inverse sum indeg index
x + y + xy first Gourava index
(x + y)xy second Gourava index
(x + y + xy)2 first hyper-Gourava index
[(x + y)xy]2 second hyper-Gourava index
1/
√
x + y + xy sum-connectivity Gourava index√

(x + y)xy product-connectivity Gourava index

Table 1. The main vertex–degree–based topological indices of the form (1).

Note that because of the identity [3]∑
eij∈E(G)

[
deg(vi)

α + deg(vj)
α
]

=
∑

vi∈V(G)

deg(vi)
α+1

the first Zagreb, modified first Zagreb, forgotten, and inverse degree indices are equal to∑
vi∈V(G)

deg(vi)
2 ,

∑
vi∈V(G)

1

deg(vi)2
,

∑
vi∈V(G)

deg(vi)
3 ,

∑
vi∈V(G)

1

deg(vi)

respectively.

To each of the indices listed in Table 1, it is possible to associate a “reduced” index,

replacing x and y by x−1 and y−1. For formal reasons, we do not mention indices based

on vertex degrees of the graph and of its complement (Dakshayani, Lanzhou indices and

similar [4]).

In this paper we present a novel approach to the vertex–degree–based topological

indices of (molecular) graphs.
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2 An alternative interpretation of Eq. (1)

The term
∑

eij∈E(G) in Eq. (1) is traditionally interpreted as summation over all pairs of

adjacent vertices of the graph G. Equally plausible would be to consider it as summation

over all edges of the graph G. If so, then the contribution of an edge eij would depend

on the pair (x, y) where x = deg(vi) and y = deg(vj). In what follows, we shall always

assume that x ≤ y.

Definition 1. The ordered pair (x, y), where x = deg(vi), y = deg(vj), x ≤ y, is the

degree-coordinate (or d-coordinate) of the edge eij ∈ E(G). For brevity, this edge will be

referred to as an (x, y)-edge. In the (2-dimensional) coordinate system, it pertains to a

point called the degree-point (or d-point) of the edge eij.

Definition 2. The point with coordinates (y, x) is the dual-degree-point (or dd-point )

of the edge eij.

Definition 3. The distance between the d-point (x, y) and the origin of the coordinate

system is the degree-radius (or d-radius) of the edge eij, denoted by r(x, y).

Based on elementary geometry (using Euclidean metrics), we have

r(x, y) =
√

x2 + y2 . (2)

From Eq. (2), we immediately see that a d-point and and the corresponding dd-point

have equal degree-radii. For the geometric interpretation of degree–based topological

indices, the following property would be of great value.

Property 4. Two degree-points have equal degree-radii if and only if they coincide, i.e.,

if and only if both have the same degree-coordinates.

Unfortunately, Property 4 is not generally valid. The smallest counterexample is

provided by the points with coordinates (1, 7) and (5, 5), both with radius r =
√

50.

Fortunately, however, Property 4 holds for all molecular graphs (in which deg(v) ≤ 4),

and can thus be used in chemical applications.

It is remarkable that the function F (x, y) =
√

x2 + y2 has not been used is the

theory of vertex–degree–based topological indices, cf. Table 1. The above considerations

motivate us to introduce a new such index. defined as

SO = SO(G) =
∑

eij∈E(G)

√
deg(vi)2 + deg(vj)2 (3)
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which we propose to be named Sombor index .∗

In the subsequent section we establish some basic properties of the Sombor index.

3 Mathematical properties of the Sombor index

From the definition of the Sombor index, Eq. (3), we straightforwardly obtain:

Theorem 1. Let Kn be the complete graph of order n, and Kn its complement, the

edgeless graph. Then for any graph G of order n,

SO(Kn) ≤ SO(G) ≤ SO(Kn) .

Equality holds if and only if G ∼= Kn or G ∼= Kn. Recall that SO(Kn) = 0 and SO(Kn) =

n(n− 1)2/
√

2.

Theorem 2. Let Pn be the path of order n. Then for any connected graph G of order n,

SO(Pn) ≤ SO(G) ≤ SO(Kn) .

Equality holds if and only if G ∼= Pn or G ∼= Kn. Recall that SO(P2) =
√

2 whereas

SO(Pn) = 2
√

5 + 2(n− 3)
√

2 for n ≥ 3.

Proof. The upper bound in Theorem 2 follows from Theorem 1.

In order to deduce the lower bound, first note that by deleting an edge from the graph

G, its SO-index necessarily decreases. Therefore, the connected graph with minimum SO

must be a tree.

The cases n = 2 and n = 3 are trivial. Therefore, we assume that n ≥ 4.

By direct checking it is easy to verify that among edges that can occur in trees, the

(1, 2)-edge has minimal degree-radius r(1, 2) =
√

5, and the next-minimal is r(2, 2) =

2
√

2.

The path Pn possesses two (1, 2)- and n−3 (2, 2)-edges. The tree Qn possessing three

(1, 2)-edges and as many as possible (2, 2)-edges, must also posses three (2, 3)-edges, for

which r(2, 3) =
√

13. Because

3r(1, 2) + 3r(2, 3) + (n− 7)r(2, 2) > 2r(1, 2) + (n− 3)r(2, 2)

it follows that SO(Qn) > SO(Pn) holds. By an analogous argument, trees possessing

more than three (1, 2)-edges also have greater SO-value than Pn. The SO-indices of trees

with a single (1, 2)-edge or without such edges evidently exceed SO(Pn).
∗The ideas outlined in this paper emerged in Sombor, in the Summer of 2020, mainly during the time

that the author was spending on chemodialysis.
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Theorem 3. Let Sn be the star of order n. Then for any tree T of order n,

SO(Pn) ≤ SO(T ) ≤ SO(Sn) .

Equality holds if and only if T ∼= Pn or T ∼= Sn. Recall that SO(Sn) = (n−1)
√
n2−2n+2.

Proof. The lower bound in Theorem 3 follows from Theorem 2.

In order to deduce the upper bound, observe that the degree-coordinate (x, y) of any

edge of an n-vertex tree satisfies x + y ≤ n. Therefore, the greatest values of r(x, y) will

be achieved if x + y = n.

By an easy calculation, it can be verified that

r(1, n− 1) > r(2, n− 2) > · · · > r(bn/2c, dn/2e) .

All edges of the star Sn are of (1, n− 1) type. Thus, all edges of the star have maximal

possible degree-radii. Therefore, the star has maximal SO-value.

4 Applications

Considering the edges of a graph as points in the two-dimensional coordinate system, we

can establish distances between them.

1◦ The distance between a d-point (x, y) and its dual (y, x) is equal to√
(x− y)2 + (y − x)2 =

√
2 |x− y|

which implies that the respective Sombor index is just the Albertson index [2]

Alb(G) =
∑

eij∈E(G)

∣∣ deg(vi)− deg(vj)
∣∣

multiplied by
√

2. Thus, the earlier much studied Albertson index, used for quantifying

graph irregularity [1, 5], can now be interpreted as the sum of the distances between the

d- and dd-points of the underlying graph.

2◦ The d-point of an isolated edge has coordinates (1, 1). The distances between the

degree-points of a graph and of isolated edges leads to

SOred = SOred(G) =
∑

eij∈E(G)

√(
deg(vi)− 1

)2
+
(

deg(vj)− 1
)2

(4)

which is just the reduced version of the Sombor index.
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3◦ For a graph with n vertices and m edges, the average vertex degree is 2m/n. The

respective d-point has coordinates (2m/n, 2m/n). The distances between the degree-

points of a graph and of this average point leads to

SOavr = SOavr(G) =
∑

eij∈E(G)

√(
deg(vi)−

2m

n

)2

+

(
deg(vj)−

2m

n

)2

(5)

This degree-based graph invariant is equal to zero for regular graphs and is positive-valued

for non-regular graphs. Thus, the average Sombor index, Eq. (5), may be considered as

a measure of graph irregularity [1, 5].

The reduced Sombor index, Eq. (4), and the average Sombor index, Eq. (5), are two

new structure-descriptors whose properties await to be examined.

4◦ Assuming that Property 4 is satisfied (which is the case with all molecular graphs),

the edges of the graph G can be, in a consistent manner, ordered by increasing degree-

radii. This makes it possible to compare two graphs with equal n and m (that is, two

isomeric molecular graphs) edge-by-edge. In particular, if for i = 1, 2, . . . ,m, the d-radius

of the i-th edge of a graph G is greater than or equal to the respective d-radius of another

(isomeric) graph G∗, then G degree-dominates G∗. If the i-th d-radii of G and G∗ are

equal for all i = 1, 2, . . . ,m, then G and G∗ are degree-equivalent . Degree domination is

a sufficient, but not necessary condition for the relation SO(G) ≥ SO(G∗). If the graphs

G and G∗ are degree-equivalent, then, of course, SO(G) = SO(G∗).
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