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Abstract

Absolute concentration robustness (ACR) is a condition wherein a species in
a chemical kinetic system possesses the same value for any positive steady state
the network may admit regardless of initial conditions. Thus far, results on ACR
center on chemical kinetic systems with deficiency one. In this contribution, we
use the idea of dynamic equivalence of chemical reaction networks to derive novel
results that guarantee ACR for some classes of power law kinetic systems with
deficiency zero. Furthermore, using network decomposition, we identify ACR in
higher deficiency networks (i.e. deficiency ≥ 2) by considering the presence of a
low deficiency subnetwork with ACR. Network decomposition also enabled us to
recognize and define a weaker form of concentration robustness than ACR, which
we named as ‘balanced concentration robustness’. Finally, we discuss and emphasize
our view of ACR as a primarily kinetic character rather than a condition that arises
from structural sources.

1 Introduction

A network is said to exhibit robustness if it maintains its function despite changes in

environmental or structural conditions [20, 21]. As it is required for homeostasis and
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adaptive responses to environmental disruptions, robustness becomes fundamental and

ubiquitous in many biological processes [3, 4, 20, 25]. A class of robust behavior known

as “concentration robustness” concerns the invariance of some quantity involving the

concentrations of the different species in a network for any steady state [7].

Of particular interest is the concentration robustness property called absolute con-

centration robustness (ACR), which was first introduced by Shinar and Feinberg in their

influential paper published in Science [25]. A system possesses this feature if it admits

at least one positive steady state and the concentration of a particular species in the

system has the same value in every positive steady state set by parameters. The work of

Shinar and Feinberg centered on a mathematical theorem that specifies a large class of

mass action systems that are absolute concentration robust. Interestingly, this theorem

provides sufficient conditions that are apparently structural in nature.

Specifically, they stated their by means of a structural index called the deficiency

(denoted by δ) of a network, which measures the amount of ‘linear independence’ among

the reactions of the network [26]. The theorem is stated as follows: Consider a mass

action system that admits a positive steady state. Suppose that (i) the deficiency of the

network is one, and (ii) there are nonterminal complexes which differ only in the species

X. Then the system has ACR in species X.

In our previous work [14], we showed that this result easily extends to kinetic systems

more general than mass action systems, namely power law kinetic systems with reactant-

determined interactions (denoted by “PL-RDK”). For PL-RDK systems, the kinetic order

vectors of reactions with the same reactant complexes are identical. The Shinar-Feinberg

Theorem on ACR for PL-RDK systems retains the deficiency one condition but replaces

the last criterion by considering the kinetic order differences of the species. Our result

specifies that under the same deficiency one assumption, and the criterion that there are

nonterminal complexes whose kinetic order of its species differ only in X, the PL-RDK

system that admits a positive equilibrium exhibits ACR in X.

In this contribution, we explore ACR as a dynamical property that is conserved under

dynamic equivalence. Two different chemical reaction networks with the same set of

kinetics are dynamically equivalent if they generate the same set of ordinary differential

equations. This approach has led us to derive novel results on ACR for deficiency zero

PL-RDK systems and for a class of power law kinetic systems that are non-PL-RDK
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(denoted as “PL-NDK”).

In addition to dynamic equivalence, this contribution applies useful techniques in

network decomposition to establish ACR. This is particularly relevant in detecting ACR

in systems where the underlying chemical reaction networks have higher deficiency (i.e.

δ ≥ 2). The concept of independent decompositions [11] has enabled us to identify ACR

in larger networks through the presence of a low deficiency (δ ≤ 1) subnetwork with ACR

as a “building block.” The key argument used is a result of Feinberg (Remark 5.4, [11])

that relates independent decomposition with the set of positive equilibria of a system.

In an analogous approach, incidence independent decompositions of larger networks

with low deficiency subnetwork exhibiting ACR are also investigated. This effort has led

us to identify another type of concentration robustness that is weaker than ACR. We call

this property as balanced concentration robustness (BCR). A system displays BCR in a

species X if it has complex balanced steady states and the value of X is the same for

any set of complex balanced steady states the system may admit. Using a theorem that

relates incidence independent decompositions with the set of complex balanced equilibria

of a system (Theorem 5), this work generates a new result that guarantees the presence

of BCR for larger networks.

Finally, this work provides a discussion that emphasizes the primarily kinetic property

of ACR. This perspective is a shift from our usual view that ACR, as a system property,

is induced by “structural sources”.

The rest of the paper is structured as follows. Section 2 reviews and assembles funda-

mental ideas and results in chemical reaction network theory (CRNT) that are relevant for

later sections. Section 3 presents the ACR theorem for deficiency zero PL-RDK systems

and for a class of PL-NDK systems. In Section 4, we employ decomposition theory to

identify large classes of PLK systems, including such with higher deficiency, that possess

ACR or BCR. Section 5 discusses our view that ACR is a primarily kinetic property of

a chemical kinetic system. Section 6 summarizes our results and outlines perspectives

for future work. Lastly, the discussion in Appendix provides the adaptation of the proof

presented in [14] for deficiency zero PL-RDK networks.
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2 Fundamentals of chemical reaction network theory

We review some basic notions involving chemical reaction networks. The reader may refer

to [12,29] for more details.

Notation: We denote the real numbers by R, the non-negative real numbers by R≥0,

and the positive real numbers by R>0. Suppose I is a finite index set. By RI , we mean

the usual vector space of real-valued functions with domain I . For x ∈ RI , the ith

coordinate of x is denoted by xi, where i ∈ I . The sets RI
≥0 and RI

>0 are called the

non-negative and positive orthants of RI , respectively. Addition, subtraction, and scalar

multiplication in RI are defined in the usual way. If x ∈ RI
>0 and y ∈ RI , we define

xy ∈ R>0 by xy =
∏

i∈I xyii . Finally, for integers a and b, let a, b = {j ∈ Z|a ≤ j ≤ b}.

A chemical reaction network (CRN) is a system of interdependent chemical reactions.

Each reaction is represented as an ordered pair of vectors, called complexes, of chemical

species.

Definition 1. A chemical reaction network (CRN) N is a triple (S ,C ,R) of three

finite sets: (1) a set S = {X1, X2, . . . , Xm} of species, (2) a set C ⊂ RS
≥0 of complexes,

consisting of nonnegative linear combinations of the species such that
⋃
y∈C supp y = S ,

and (3) a set R = {R1, R2, . . . , Rr} ⊂ C × C of reactions such that (y, y) /∈ R for any

y ∈ C , and for each y ∈ C , there exists y′ ∈ C such that either (y, y′) ∈ R or (y′, y) ∈ R.

We denote the number of species with m, the number of complexes with n and the number

of reactions with r.

We use the convention that an element Rj = (yj, y
′
j) ∈ R is denoted by Rj : yj → y′j.

In this reaction, we say that yj is the reactant complex and y′j is the product complex.

Connected components of a CRN are called linkage classes, strongly connected com-

ponents are called strong linkage classes, and strongly connected components without

outgoing arrows are called terminal strong linkage classes. We denote the number

of linkage classes with `, that of the strong linkage classes with s`, and that of terminal

strong linkage classes with t. A CRN is weakly reversible if every linkage class is a

strong linkage class. A complex is called terminal if it belongs to a terminal strong

linkage class; otherwise, the complex is called nonterminal.

With each reaction y → y′, we associate a reaction vector obtained by subtracting
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the reactant complex y from the product complex y′. The stoichiometric subspace S

of a CRN is the linear subspace of RS defined by S := span {y′ − y ∈ RS |y → y′ ∈ R}.

The rank of the CRN is defined as s := dimS. The deficiency of a CRN, denoted by δ,

is the integer defined by δ = n− `− s.

We recall four maps relevant in the study of CRNs: map of complexes, incidence map,

stoichiometric map and Laplacian map.

Definition 2. Let N = (S ,C ,R) be a CRN. The map of complexes Y : RC → RS
≥0

maps the basis vector ωy to the complex y ∈ C . The incidence map Ia : RR → RC is

the linear map defined by mapping for each reaction Rj : yj → y′j ∈ R, the basis vector

ωj to the vector ωy′j − ωyj ∈ C . The stoichiometric map N : RR → RS is defined as

N = Y ◦Ia. For each k ∈ RR
>0 , the linear transformation Ak : RC → RC called Laplacian

map is the mapping defined by Akx :=
∑

y→y′∈R

ky→y′xy(ωy′ − ωy), where xy refers to the

yth component of x ∈ RC relative to the standard basis.

By kinetics of a CRN, we mean the assignment of a rate function to each reaction in

the CRN. We shall denote a kinetics for a network N by K. The pair (N , K) denotes the

chemical kinetic system. Specifically, this paper tackles its results in the context of power

law kinetic systems. Here, power law kinetics is defined by an r ×m matrix F = [Fij],

called the kinetic order matrix, and vector k ∈ RR
>0, called the rate vector.

Definition 3. A kinetics K : RS
>0 → RR is a power law kinetics (PLK) if

Ki(x) = kix
Fi,· for all i ∈ 1, r.

with ki ∈ R>0 and Fij ∈ R. A PLK system has reactant-determined kinetics (of

type PL-RDK) if for any two reactions Ri, Rj ∈ R with identical reactant complexes,

the corresponding rows of kinetic orders in F are identical, i.e. Fih = Fjh for h ∈ 1,m.

Otherwise, a PLK system has non-reactant-determined kinetics (of type PL-NDK).

An example of PL-RDK is the well-known mass action kinetics (MAK), where

Kj(x) = kjx
Y.,j for all reactions Rj : yj → y′j ∈ R with kj ∈ R>0, which are called rate

constants. The vector Y.,j contains the stoichiometric coefficients of a reactant complex

yj ∈ C .
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Definition 4. The species formation rate function of a chemical kinetic system is

the vector field

f(c) = NK(c) =
∑

yj→y′j∈R

Kj(c)(y
′
j − yj), where c ∈ RS

≥0.

The equation dc/dt = f(c(t)) is the ODE or dynamical system of the chemical kinetic

system. A positive equilibrium or steady state c∗ is an element of RS
>0 for which

f(c∗) = 0. The set of positive equilibria of a chemical kinetic system is denoted by

E+(N , K).

Two distinct CRNs with the same set of kinetics may give rise to identical set of

ordinary differential equations. Such systems are said to be dynamically equivalent.

This idea had been tackled as early as 1970s. For instance, Horn and Jackson [18] studied

dynamical equivalence (which they termed as macro-equivalence) for a class of weakly re-

versible MAK systems. An extensive study of the dynamical equivalence of MAK systems

was done by Craciun and Pantea [6], with a supplementary note from Szederkényi [27].

The idea of dynamic equivalence is useful in understanding the qualitative behavior

of chemical kinetic systems. If a kinetic system is found to be dynamically equivalent

to another system that possesses desirable features about its dynamics (e.g., existence of

positive steady state, capacity for multiple steady states, etc.) or network structure (e.g.,

weak reversibility, low deficiency, small number of linkage classes, mass conservation, etc.),

then the dynamical property of the desirable system applies for the system that does not

have the nice features. In this regard, the work of Craciun et al. [5], for instance, becomes

helpful since it aims to find reaction networks (which they called kinetic realizations)

inducing a given system of polynomial differential equations with as many good properties

as possible.

Arceo et al. [2] identified two large sets of kinetic systems, namely the complex

factorizable (CF) kinetics and its complement, the non-complex factorizable (NF)

kinetics. Complex factorizable kinetics generalize the key structural property of MAK

that the species formation rate function decomposes as dx/dt = Y ◦ Ak ◦ Ψk, where Y

is the map of complexes, Ak is the Laplacian map, and Ψk : RS
≥0 → RC

≥0 such that

Ia ◦ K(x) = Ak ◦ Ψk(x) for all x ∈ RS
≥0. In the set of power law kinetics, the complex-

factorizable kinetic systems are precisely the PL-RDK systems.

The complex formation rate function is the analogue of the species formation rate
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function for complexes.

Definition 5. The complex formation rate function g : RS
>0 → RC of a chemical

kinetic system is the given by

g(c) = IaK(c) =
∑

yj→y′j∈R

Kj(c)(ωy′j − ωyj),

where Ia is the incidence map.

Horn and Jackson [18] introduced the notion of complex balancing in chemical kinetics.

A system is complex balanced at a composition c ∈ RS
>0 if for each complex, formation and

degradation are at equilibrium, i.e. when g(c) = 0. A chemical kinetic system (N , K) is

called complex balanced if it has a complex balanced steady state. The set of positive

complex balanced steady states of the system is denoted by Z+(N , K). We recall the

following well-known results related to existence of complex balanced equilibria:

Proposition 1 (Theorem 2B, Horn [17]). If a chemical kinetic system has a complex

balanced equilibrium, then the underlying CRN is weakly reversible.

Proposition 2 (Corollary 4.8, Feinberg [10]). If a chemical kinetic system has deficiency

0, then its steady states are all complex balanced.

Finally, we recall some ideas about ACR in PL-RDK system.

Definition 6. A PL-RDK system (N , K) has absolute concentration robustness

(ACR) in a species X ∈ S if there exists c∗ ∈ E+(N , K) and for every other c∗∗ ∈

E+(N , K), we have c∗∗X = c∗X .

Shinar and Feinberg [25] established simple sufficient conditions for an MAK system

to exhibit ACR. In [14], it was shown that this result can be extended to deficiency one

PL-RDK systems. The extension of the Shinar-Feinberg Theorem on ACR for PL-RDK

systems is stated below.

Theorem 1 (Shinar-Feinberg Theorem on ACR for PL-RDK systems, [14]). Let (N , K)

be a deficiency one PL-RDK system which admits a positive equilibrium. If y, y′ ∈ C

are nonterminal complexes whose kinetic order vectors differ only in species X, then the

system has ACR in X.
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To illustrate, we recall from [14] the following deficiency-one PL-RDK system rep-

resentation for a power law approximation of the pre-industrial carbon cycle model of

Anderies et al. [1]. We provide the CRN and its corresponding kinetic order matrix:

A1 + 2A2
R1→ 2A1 + A2

A1 + A2
R2→ 2A2

A2

R3

�
R4

A3

, F =


A1 A2 A3

R1 p1 q1 0
R2 p2 q2 0
R3 0 1 0
R4 0 0 1

, (2.1)

where p1 = p2 = −68 and q1 = 0.58, and q2 = 0.91. The uniqueness of a positive

steady state (in a stoichiometric compatibility class) of the system can guaranteed by the

Deficiency one algorithm for power-law systems [13] or the Multistationarity Algorithm

for PLK systems of Hernandez et al. [16]. The conditions of the Shinar-Feinberg Theorem

on ACR for PL-RDK systems are satisfied by a PL-RDK system where the kinetic order

vectors of the nonterminal vertices A1 + 2A2 and A1 + A2 differ only in A2. Hence, it

exhibits ACR in A2.

3 ACR in deficiency zero PL-RDK and minimally

PL-NDK systems

For convenience, we introduce the following terminology to refer to a pair of reactions

whose reactants’ kinetic order vectors differ only in one species.

Definition 7. A pair of reactions in a PLK system is called a Shinar-Feinberg pair

(or SF-pair) in a species X if their kinetic order vectors differ only in X. A subnetwork

of the PLK system is of SF-type if it contains an SF-pair in X.

We present an ACR theorem for deficiency zero PL-RDK systems and for a class of

deficiency zero PL-NDK systems. We denote the later as “minimally PL-NDK” because

in terms of their NDK properties, they take minimal values: a single NDK node, two

complex factorizable subsets (or CF-subsets) and in the special case of binary nodes, a

single reaction in each CF-subset. For both PLK systems, the key property for ACR

in a species X is the presence of an SF-reaction pair. We use the CF-RM+ method

introduced in [23] to show its dynamic equivalence with an appropriate deficiency one

PL-RDK system.
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Definition 8. A PL-NDK system is minimally PL-NDK if it contains a single NDK

node which has two CF-subsets, at least one of which contains only one reaction. Such

a node is called a minimal NDK node. If both CF-subsets have only one reaction, we

call the node a binary NDK node.

The CF-RM+ method transforms a PL-NDK system to a dynamically equivalent

PL-RDK system. The procedure is as follows: At each NDK node, except for a CF-

subset with a maximal number of reactions, the reactions in a CF-subset are replaced by

adding the same reactant multiple to reactant and product complexes, such that the new

reactants and products do not coincide with any existing complexes. Suppose (N , K)

is a PL-NDK system that is transformed into a PL-RDK system (N ∗, K∗) via CF-RM+

algorithm. The two key properties of N and N ∗ are the invariance of the stoichiometric

subspaces and the kinetic order matrices. Details of the algorithm can be found in [23].

Theorem 2. Let (N , K) be a deficiency zero PL-RDK or minimally PL-NDK system

with a positive equilibrium. If the system is of SF-type in a species X, then it has ACR

in X.

Proof. We begin with the PL-NDK case. Let y → y′ be single reaction in the hypothesized

CF-subset of the minimal NDK node. Applying CF-RM+ method to transform (N , K),

we obtain as a transform of N the network N ∗ with S ∗ = S , C ∗ = C ∪{y+ay, y′+ay}

where a is an appropriate integral multiple of y and R∗ = R ∪ {y + ay → y′ + ay}.

Since we assume that the network has a complex balanced equilibrium, by Proposition

1, it is weakly reversible, and hence each linkage class is weakly reversible. Since each

reaction in the linkage class of the NDK node is in a cycle, the CF-RM+ creates only

one additional linkage class, namely {y + ay → y′ + ay}. Hence, the deficiency of N ∗ is

δ∗ = (n + 2) − (` + 1) − s = δ + 1 = 1. The kinetic order matrix remains the same, so

the transform N ∗ is still of SF-type in X. As a dynamically equivalent PL-RDK system,

N ∗ has a positive equilibrium and hence, fulfill the assumptions of the extension of the

Shinar-Feinberg ACR Theorem for PL-RDK system (Theorem 1). Thus, N ∗ has ACR

in X.

In the PL-RDK case, we can apply the CF-RM+ method to any reaction and also

obtain an appropriate dynamically equivalent deficiency one system as in the minimally

PL-NDK case. �
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An adaptation of the direct proof in [14] to the deficiency zero PL-RDK system is

provided in the Appendix. However, the argument yields only a restricted result.

Corollary 1. Let (N , K) be a deficiency zero, minimally PL-NDK system with a complex

balanced equilibrium. Suppose the reactant of the NDK node is monospecies, i.e. it is of

the form nX for some positive integer n and species X. Then (N , K) has ACR in X.

Proof. Since the node is monospecies, the kinetic order vectors of its branching reactions

have non-zero values only in X. Since it is an NDK, those non-zero values must be

different. Hence, a reaction from one CF-subset and one from the other form an SF-pair,

and the claim follows from the previous proposition. �

Example 1. For the PLK system in (2.1), we consider the following dynamically equiv-

alent deficiency zero PL-RDK system with associated kinetic order matrix F :

A1 + 2A2

R1

�
R2

2A1 + A2

A2

R3

�
R4

A3

F =


A1 A2 A3

R1 p1 q1 0
R2 p2 q2 0
R3 0 1 0
R4 0 0 1

, (3.1)

where p1 = p2 = −68 and q1 = 0.58, and q2 = 0.91. Since {R1, R2} is an SF-pair in A2,

it follows from Theorem 2 that there is ACR in A2.

Example 2. The Shinar-Feinberg theorem on ACR for MAK systems [25] provided the-

oretical support to empirically observed concentration robustness in isocitrate dehydroge-

nase kinase-phosphatase-isocitrate dehydrogenase (IDHKP-IDH) glyoxylate bypass con-

trol system. Using the technique of network translation of Johnston [19], the MAK system

of IDHKP-IDH glyoxylate bypass control system has the following dynamically equivalent

weakly reversible deficiency zero PL-RDK system.

EIp + I + E EIpI + E

EIp + Ip + E2EIp

R1

R2

R3

R4

R5

R6
F =



EIp I EIpI Ip E

R1 1 1 0 0 0
R2 0 0 1 0 0
R3 0 0 1 0 0
R4 0 0 0 1 1
R5 1 0 0 0 0
R6 1 0 0 0 0

 (3.2)

The reaction pair {R1, R5} forms an SF-pair in I and hence, it follows from Theorem 2

that the system has ACR in species I, which agrees with the result in [25].
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Remark 1. Under mass action kinetics, any deficiency zero and conservative (i.e. the

orthogonal complement of its stoichiometric subspace meets RS
>0) CRN cannot exhibit

ACR [26]. These properties that thwart ACR for MAK systems do not extend to power

law kinetics as shown in Examples 1 and 2. These two deficiency zero and conservative

PL-RDK systems display ACR.

Example 3. A deficiency zero subnetwork of Schmitz’s pre-industrial carbon cycle model

[24] studied in Fortun et al. [15] is shown below. Its kinetic order matrix F is also provided.

M1

M2

M3

M4

M5

M6

R1

R2

R3

R4
R8

R6R5

R7

F =



M1 M2 M3 M4 M5 M6

R1 0 0 0 0 1 0
R2 0.36 0 0 0 0 0
R3 0 0 0 0 1 0
R4 0 0 0 0 0 1
R5 0 9.4 0 0 0 0
R6 0 0 0 1 0 0
R7 0 0 1 0 0 0
R8 1 0 0 0 0 0


. (3.3)

The existence of a positive steady state of the system is established using the Deficiency

Zero theorem for PL-NDK systems (Theorem 2, [15]). With δ = 0, any positive steady

state of the system must be complex balanced (Proposition 2). The reaction pair {R2, R8}

form an SF-pair in M1. Since the reactant complex M1 of the single binary NDK node is

monospecies, it follows from Corollary 1 that it has ACR in M1.

Example 4. Consider the following network with species set {X1, X2, X3, X4} and power

law kinetics given by the kinetic order matrix F .

X2 +X3

X1 +X3

X1 +X2X1

R1 R2

R5R4

R3

F =



X1 X2 X3

R1 1 0 0
R2 0.5 0 0.5
R3 −1 0.5 0
R4 0.5 0 0
R5 0 1 1

. (3.4)

X1 is the only NDK node, and it is binary. The reaction pairs {R1, R4} and {R2, R4} are

SF pairs in X1 and X3, respectively. The stoichiometric matrix N of the network is given

by:

N =


R1 R2 R3 R4 R5

X1 0 0 0 −1 1
X2 0 1 −1 1 0
X3 1 −1 0 1 −1

.
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Since the rows of N are linearly independent, s = 3, and hence there is only one stoichio-

metric class. The deficiency δ = 4− 1− 3 = 0. The ODE system is the following:

dX1

dt
= k5X2X3 − k4X0.5

1

dX2

dt
= k2X

0.5
1 X0.5

3 + k4X
0.5
1 − k3X−11 X0.5

2

dX3

dt
= k1X1 + k4X

0.5
1 − k2X0.5

1 X0.5
3 − k5X2X3

Once again, by Theorem 2 of [15], there exist rate constants such that the system has a

positive steady state. In particular, for the rate vector k = (1, 1, 2, 1, 1), the system has

the steady state (1, 1, 1). Hence, the system has ACR in X1 and X3. In general, for rate

vectors satisfying the equations k1 = k2 and k3 = (k1 +k4)(
k5
k4

)0.5, the equilibrium is given

by (1, k4
k5
, 1). That this equilibrium is complex balanced is due to δ = 0 and Proposition

2.

4 Decomposition theory and ACR

In this section, we use decomposition theory to identify large classes of PLK systems,

including such with higher deficiency, i.e. δ ≥ 2. These results suggest that ACR is

essentially a “local” property of a low deficiency subnetwork, which serves as a “building

block.” We first review the required concepts and results from decomposition theory and

then formulate the new results on ACR.

4.1 A review of decomposition theory

We refer to [8] for more details on the concepts and results in decomposition theory.

Definition 9. Let N = (S ,C ,R) be a CRN. A covering of N is a collection of subsets

{R1,R2, . . . ,Rp} whose union is R. A covering is called a decomposition of N if the

sets Ri form a partition of R.

Clearly, each Ri defines a subnetwork Ni of N , namely Ci consisting of all complexes

occurring in Ri and Si consisting of all the species occurring in Ci.

Proposition 3 (Prop. 3., [8]). If {R1,R2, . . . ,Rp} is a network covering, then

(i) S = S1 + S2 + · · ·+ Sp;

(ii) s ≤ s1 + s2 + · · ·+ sp, where s = dimS and si = dimSi for i ∈ 1, p.
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Feinberg [11] identified the important subclass of independent decomposition:

Definition 10. A decomposition is independent if S is the direct sum of the subnet-

works’ stoichiometric subspaces Si or equivalently, s = s1 + s2 + · · ·+ sp.

Fortun et al. [15] derived a basic property of independent decompositions:

Proposition 4 (Lemma 1, [15]). If N = N1 ∪N2 ∪ · · · ∪Np is an independent decom-

position, then δ ≤ δ1 + δ2 + · · ·+ δp, where δi represents the deficiency of the subnetwork

Ni.

Feinberg [11] established the following relationship between the positive equilibria of

the “parent network” and those of the subnetworks of an independent decomposition.

Theorem 3 (Rem. 5.4, [11]). Let (N , K) be a chemical kinetic system with partition

{R1,R2, . . . ,Rp}. If N = N1 ∪N2 ∪ · · · ∪Np is the network decomposition generated by

the partition and E+(Ni, Ki) = {x ∈ RS
>0|NiKi(x) = 0}, then

(i)
⋂
i∈1,p

E+(Ni, Ki) ⊆ E+(N , K)

(ii) If the network decomposition is independent, then equality holds.

Farinas et al. [8] introduced the concept of an incidence independent decomposition,

which naturally complements the independence property. The starting point is the fol-

lowing basic observation:

Proposition 5 (Prop. 6, [8]). If {Ri} is a network covering, then

(i) Im Ia = Im Ia,1 + Im Ia,2 + · · ·+ Im Ia,p, where Ia,i denotes the incidence map of the

subnetwork Ni.

(ii) n−` ≤ (n1−`1)+(n2−`2)+· · ·+(np−`p), where n−` = dim Ia and ni−`i = dim Ia,i

for i ∈ 1, p.

The analogous concept to independent decomposition is the following:

Definition 11. A decomposition {N1,N2, . . . ,Np} of a CRN is incidence independent

if and only if the image of the incidence map Ia of N is the direct sum of the images of

the incidence maps of the subnetworks.
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It follows from this definition that n − ` =
∑

(ni − `i). The linkage classes form

the primary example of an incidence independent decomposition, since n =
∑
ni and

` =
∑
`i. In fact, the linkage class decompositions belong to the important subclass of

C -decompositions discussed Definition 12.

The following result is the analogue of Proposition 4 for incidence independent decom-

position.

Proposition 6 (Prop. 7, [8]). Let N = N1 ∪N2 ∪ · · · ∪Np be an incidence independent

decomposition. Then δ ≥ δ1 + δ2 + · · ·+ δp.

A decomposition is bi-independent if it is both independent and incidence inde-

pendent. Independent linkage class decomposition is the best known example of bi-

independent decomposition.

Proposition 7 (Prop. 9, [8]). A decomposition N = N1 ∪N2 ∪ · · · ∪Np is independent

or incidence independent and

p∑
i=1

δi = δ if and only if N = N1 ∪ N2 ∪ · · · ∪ Np is

bi-independent.

C -decompositions form an important class of incidence independent decompositions:

Definition 12. A decomposition N = N1 ∪N2 ∪ · · · ∪Np with Ni = (Si,Ci,Ri) is a

C -decomposition if Ci ∩ Cj = ∅ for i 6= j.

A C -decomposition partitions not only the set of reactions but also the set of com-

plexes. The primary examples of C -decomposition are the linkage classes. Linkage classes,

in fact, essentially determine the structure of a C -decomposition.

Theorem 4 (Structure Theorem for C -decomposition, Th. 1 [8]). Let L1,L2, . . . ,L`

be the linkage classes of a network N . A decomposition N = N1 ∪N ∪ · · · ∪Np is a

C -decomposition if and only if each Ni is the union of linkage classes and each linkage

class is contained in only one Ni.

The following result shows the relationship between the set of incidence independent

decompositions and the set of complex balanced equilibria of any kinetic system. It is the

precise analogue of Theorem 3.

Theorem 5 (Theorem 4, [8]). Let N = (S ,C ,R) be a CRN and Ni = (Si,Ci,Ri) for

i ∈ 1, p be the subnetworks of a decomposition. Let K be any kinetics, and Z+(N , K) and

Z+(Ni, Ki) be the set of complex balanced equilibria of N and Ni, respectively. Then
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(i)
⋂
i∈1,p

Z+(Ni, Ki) ⊆ Z+(N , K)

If the decomposition is incidence independent, then

(ii) Z+(N , K) =
⋂
i∈1,p

Z+(Ni, Ki)

(iii) Z+(N , K) 6= ∅ implies Z+(Ni, Ki) 6= ∅ for each i ∈ 1, p.

4.2 ACR in PLK systems with a positive equilibrium

We can now demonstrate ACR in classes of PL-NDK and higher deficiency PLK systems.

Proposition 8. Let (N , K) be a PLK system with a positive equilibrium and an inde-

pendent decomposition N = N1∪N2∪· · ·∪Np. If there is an Ni with (Ni, Ki) of SF-type

in X ∈ S such that

(i) δi = 0 and is PL-RDK or minimally PL-NDK, or

(ii) δi = 1 and is PL-RDK

Then (N , K) has ACR in X.

Proof. Since E+(N , K) 6= ∅ and the decomposition is independent, E+(N, Ki) 6= ∅ for

each i ∈ 1, p. We denote the PL-RDK or minimally subnetwork with NACR and associated

kinetics KACR. The subnetwork NACR fulfills the conditions for Theorem 1 or Theorem

2 and hence, it has ACR in X for all equilibria in E+(NACR, KACR). Since the latter set

contains E+(N , K), the PLK system (N , K) has ACR in X. �

To ensure that higher deficiency network occur, we have the next result:

Corollary 2. If the decomposition in the previous proposition is bi-independent and at

least one more subnetwork Nj has δj > 1, then the network N has higher deficiency.

Proof. For a bi-independent decomposition, we have δ = δ1 + δ2 + · · ·+ δp. �

4.3 BCR for classes of PLK systems with complex balanced
equilibrium

Incidence independent decompositions of CRNs are more common than independent ones.

For instance, all linkage class decompositions are incidence independent, but few are in-

dependent. This motivates the introduction of a weaker form of concentration robustness

than ACR:
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Definition 13. A complex balanced chemical kinetic system (N , K) has balanced con-

centration robustness (BCR) in a species X ∈ S if X has the same value for all

c ∈ Z+(N , K).

Clearly, a system that has ACR in a species implies that it also exhibits BCR for that

species. A class of systems for which the converse holds (justifying the notation) is given

by the following definition.

Definition 14. A complex balanced system is absolutely complex balanced (ACB)

if Z+(N , K) = E+(N , K).

Examples of absolutely complex balanced systems are deficiency zero networks with pos-

itive equilibrium (for any kinetics) and complex balanced mass action systems (for any

deficiency).

We have an analogous result of Proposition 8 for complex balanced systems and BCR:

Proposition 9. Let (N , K) be a PLK system with a complex balanced equilibrium and

an incidence independent decomposition N = N1 ∪N2 ∪ · · · ∪Np. If there is an Ni with

(Ni, Ki) of SF-type in X ∈ S such that

(i) δi = 0 and is PL-RDK or minimally PL-NDK, or

(ii) δi = 1 and is PL-RDK

Then (N , K) has BCR in X.

Proof. Since Z+(N , K) 6= ∅ and the decomposition is independent, Theorem 5 guarantees

that Z+(N, Ki) 6= ∅ for each i ∈ 1, p. Denote the PL-RDK or minimally subnetwork with

NACR and associated kinetics KACR. This subnetwork satisfies the conditions for Theorem

1 or Theorem 2 and hence, it has ACR in X for all equilibria in E+(NACR, KACR). Since

the latter set contains Z+(N , K), the PLK system (N , K) has BCR in X. �

5 Discussion: the primarily kinetic character of ACR

In this section, we describe the evolution of the assessment of ACR as a system property

– from the emphasis on its “structural sources” in the original papers of Shinar and

Feinberg [25,26] to our current view of its primarily kinetic character.
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Shinar and Feinberg entitled their groundbreaking paper [25] Structural sources of ro-

bustness in biochemical reaction networks in which “structural” referred to the hypotheses

(i) of the network’s deficiency being equal to one, and (ii) of the presence of two reactant

complexes which differed only in a species X. The kinetic assumptions were the use of

MAK and the existence of a positive equilibrium. In a further paper [26], they empha-

sized these structural aspects by speaking of “design principles” for networks in order to

achieve robustness.

The extension of the Shinar-Feinberg ACR Theorem for PL-RDK systems (Theorem

1), maintained the first structural property but transformed the second to the kinetic

property of a pair of reactions whose kinetic order vectors differed only in the coordinate

for species X. In the special case of MAK systems, the kinetic order values coincide

with the stoichiometric coefficients of the reactant complexes, thus “hiding” its kinetic

character. Nevertheless, even in this extension, some structural aspects should be noted,

as expressed in the following proposition:

Proposition 10. Let {R,R′} be an SF-pair in the species X of a PLK system (N , K)

and y, y′ their reactant complexes. Then

(i) For any species Y 6= X, Y ∈ supp y if and only if Y ∈ supp y′.

(ii) X ∈ supp y ∪ supp y′.

(iii) If the stoichiometric coefficients of complexes in N are only 0 or 1, then y and y′

differ only in X.

In this paper, we highlighted the importance of the invariance of ACR under dynamic

equivalence by identifying deficiency zero PLK systems through the use of the CF-RM+

method. In our view, the usefulness of this invariance property further emphasizes the

primarily kinetic character of ACR. A comparison with the property of a system of having

a complex balanced equilibrium yields the complementary insight that the latter is often

lost under dynamic equivalence, so that one could say, that the existence of a complex

balanced equilibrium is a primarily structural property.

With low deficiency subnetworks as “building blocks”, results on decomposition help

overcome the structural restriction initially suggested by the deficiency one requirement.

Nevertheless, one should not forget that that special case is the starting point of the

broader identification of ACR in PLK systems.
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To conclude our discussion of this topic, we introduce the concept of a Birch system.

Definition 15. A Birch system is a kinetic system with only one positive equilibrium

(in the whole species space).

Being a Birch system is a purely kinetic property. The name is derived from Birch’s

Theorem for weakly reversible deficiency zero MAK systems. If the system is open (i.e.,

non-mass conserving), there is only one stoichiometric class and the positive (in this case,

complex balanced) equilibrium is unique in species space.

Example 5. The independent realization or any open (or non-mass conserving) subnet-

work realization of a regular S-system.

The following (straightforward) proposition makes the connection between Birch sys-

tems and ACR explicit, revealing in our view its primarily kinetic character further:

Proposition 11. A chemical kinetic system is a Birch system if and only if it has ACR

in every species.

6 Summary and outlook

In conclusion, we summarize our results and outline some perspectives for further research.

1. We used the idea that ACR is a condition that is invariant under dynamic equiv-

alence of CRNs to formulate new results that indicate ACR in deficiency zero PL-

RDK system and minimally PL-NDK systems. The key concept needed in deriving

these results involved the CF-RM+ transformation of a system into a dynamically

equivalent PLK system that fulfills the assumptions of the Shinar-Feinberg ACR

Theorem for PL-RDK systems (Theorem 1). Examples were also provided to illus-

trate these results.

2. Using independent decomposition, we presented a result that identifies ACR in

higher deficiency networks. This result indicated that ACR is a “local” property

of a low deficiency subnetwork that serves as a “building block” of a larger ACR-

possessing network.

3. In a similar approach, we used incidence independent decomposition to investigate

the dynamics of larger networks with low deficiency subnetworks that ACR in a
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species. This led us to identify a weaker concentration robustness than ACR, which

we called ‘balanced concentration robustness’ (BCR). Our result suggests that if a

PLK system has complex balanced equilibrium, incidence independent decomposi-

tion, and a subnetwork that has ACR for a species, then the system has BCR for

that species.

4. In previous literature, much attention is given to the view that ACR is a property

that is conferred from structural sources. Here, however, we provided a discussion

that emphasized the primarily kinetic character of ACR.

5. As future prospect, we plan to work on computational approaches and tools for

identification of ACR and BCR using the results presented in this paper.

6. The results presented in this paper may also be expanded to systems that are bigger

than power law kinetic systems such as poly-PL systems, introduced in [28].
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of kinetic differential equations, Math. Biosci. Eng. 17 (2020) 862–892.

[6] G. Craciun, C. Pantea, Identifiability of chemical reaction networks, J. Math. Chem.

44 (2008) 244–259.

[7] J. P. Dexter, T. Dasgupta, J. Gunawardena, Invariants reveal multiple forms of

robustness in bifunctional enzyme systems, Integr. Biol. 7 (2015) 883–894.

[8] H. Farinas, E. Mendoza, A. Lao, Chemical reaction network decompositions and

realizations of S-systems, submitted.

-687-



[9] M. Feinberg, Complex balancing in general kinetic systems, Arch. Ration. Mech.

Anal. 49 (1972) 187–194.

[10] M. Feinberg, Lectures on Chemical Reaction Networks , Notes of lectures given at the

Mathematics Research Center of the University of Wisconsin, 1979.

[11] M. Feinberg, Chemical reaction network structure and the stability of complex

isothermal reactors I: The deficiency zero and deficiency one theorems, Chem. Eng.

Sci. 42 (1987) 2229–2268.

[12] M. Feinberg, Foundations of Chemical Reaction Network Theory, Springer, 2019.

[13] N. Fortun, A. Lao, L. Razon, E. Mendoza, A deficiency-one algorithm for a power-law

kinetics with reactant-determined interactions, J. Math. Chem. 56 (2018) 2929–2962.

[14] N. Fortun, A. Lao, L. Razon, E. Mendoza, Robustness in power-law kinetic systems

with reactant-determined interactions, accepted.

[15] N. Fortun, E. Mendoza, L. Razon, A. Lao, A deficiency zero theorem for a class

of power law kinetic systems with non-reactant determined interactions, MATCH

Commun. Math. Comput. Chem. 81 (2019) 621–638.

[16] B. Hernandez, E. Mendoza, A. de los Reyes V, A computational approach to multi-

stationarity of power-law kinetic systems J. Math. Chem. 58 (2019) 56–87.

[17] F. Horn, Necessary and sufficient conditions for complex balancing in chemical ki-

netics, Arch. Ration. Mech. Anal. 49 (1972) 173–186.

[18] F. Horn, R. Jackson, General mass action kinetics, Arch. Ration. Mech. Anal. 47

(1972) 187–194.

[19] M. Johnston, Translated chemical reaction networks, Bull. Math. Biol. 76 (2014)

1081–1116.

[20] H. Kitano, Biological robustness, Nat. Rev. Genet. 5 (2004) 826–837.

[21] H. Kitano, Towards a theory of biological robustness, Mol. Syst. Biol. 3 (2007) 1–7.

[22] S. Müller, G. Regensburger, Generalized mass action systems: Complex balancing

equilibria and sign vectors of the stoichiometric and kinetic-order subspaces, SIAM

J. Appl. Math. 72 (2012) 1926–1947.

[23] A. Nazareno, R. P. Eclarin, E. Mendoza, A. Lao, Linear conjugacy of chemical kinetic

systems, Math. Biosci. Eng. 16 (2019) 8322–8355.

-688-



[24] R. Schmitz, The Earth’s carbon cycle: Chemical engineering course material, Chem.

Engin. Edu. 36 (2002) 296–309.

[25] G. Shinar, M. Feinberg, Structural sources of robustness in biochemical reaction

networks, Science 327 (2010) 1389–1391.

[26] G. Shinar, M. Feinberg, Design principles for robust biochemical reaction networks:

what works, what cannot work, and what might almost work, Math. Biosci. 231

(2011) 39–48.
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A Appendix: ACR in a deficiency zero PL-RDK sys-

tems

We provide an adaptation of the direct proof [14] of Theorem 1 to the deficiency zero

case. Unlike Theorem 2, however, this result leads only to a restricted result: SF-pairs

belong to the same linkage class.

Theorem 6. Let N be deficiency zero PL-RDK system that has a positive equilibrium.

If a pair of reactions in a linkage class forms an SF-pair in species X, then the system

has ACR in X.

The following result is crucial in proving the Theorem 6.

Proposition 12 (Prop. 4.1, [10]). Let N = (S ,C ,R) be a CRN with terminal strong

linkage classes C 1,C 2, . . . ,C t. Let k ∈ RR
>0 and Ak its associated Laplacian. Then Ker Ak

has a basis b1, b2, . . . , bt such that supp bi = C i for all i ∈ 1, t.

Feinberg [10] provided a geometric interpretation of deficiency: δ = dim(Ker Y ∩
Im Ia). From this fact and Proposition 12, the following result follows.

Proposition 13 (Cor. 4.12, [10]). Let N = (S ,C ,R) be a CRN with deficiency δ and

t terminal strong linkage classes. If every linkage class of the CRN is a terminal strong

linkage class, then for each k ∈ RR
>0, dim(Ker Y Ak) = δ + t.
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Throughout the proof, the vector log x ∈ RI ,where x ∈ RI
>0, is given by (log x)i =

log xi, for all i ∈ I . If x, y ∈ RI , the standard scalar product x · y ∈ R is defined by

x · y =
∑

i∈I xiyi.

Proof of Theorem 6

Let c∗ is a positive steady state of the PL-RDK system. That is, there exists k ∈ RR
>0

such that ∑
y→y′∈R

ky→y′(c
∗)ỹ(y′ − y) = 0. (A.1)

Here, we write ỹ for Ỹ·,y, where Ỹ is the m×n matrix defined by Müller and Regensburger

in [22] and is constructed as follows: For each reactant complex, the associated column

of Ỹ is the transpose of the kinetic order matrix row of the complex’s reaction, otherwise

(i.e., for non-reactant complexes), the column is 0. In other words, ỹ = Ỹ·,y refers to the

kinetic order vector of the reactant complex y.

For each y → y′ ∈ R, define the positive number κy→y′ by

κy→y′ := ky→y′(c
∗)ỹ. (A.2)

Thus, we obtain ∑
y→y′∈R

κy→y′(y
′ − y) = 0. (A.3)

Suppose that c∗∗ is also a positive equilibrium of the system. Hence,∑
y→y′∈R

ky→y′(c
∗∗)ỹ(y′ − y) = 0. (A.4)

Define

µ := log c∗∗ − log c∗. (A.5)

With κ ∈ RR
>0 given by Equation (A.2) and µ given by Equation (A.5), it follows from

Equation (A.4) that ∑
y→y′∈R

κy→y′e
ỹ·µ(y′ − y) = 0. (A.6)

Let 1C ∈ RC such that

1C =
∑
y∈C

ωy.

Observe that Equations (A.3) and (A.6) can be respectively written as

Y Aκ1
C = 0, and Y Aκ

(∑
y∈C

eỹ·µωy

)
= 0.

Equivalently,

1C ∈ Ker Y Aκ, and (A.7)
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∑
y∈C

eỹ·µωy ∈ Ker Y Aκ. (A.8)

Therefore, c∗ and c∗∗ are positive equilibria of the PL-RDK system (N , K) if and only if

(A.7) and (A.8) hold.

Since the network is deficiency zero, by Proposition 2, its steady states are all complex

balanced. It follows from Proposition 1 that the underlying network is necessarily weakly

reversible. Consequently, every linkage class of the CRN is a terminal strong linkage class.

Moreover, since δ = 0, it follows from Proposition 13 that

dim(Ker Y Aκ) = t. (A.9)

Note that Ker Aκ ⊆ Ker Y Aκ. But because of Equation (A.9), we have Ker Aκ =

Ker Y Aκ.

Let {b1, b2, . . . , bt} ⊂ RC
≥0 be a basis for Ker Aκ as in Proposition 12. Because

Ker Aκ = Ker Y Aκ and 1C ∈ Ker Y Aκ, it must be that

1C ∈ span {b1, b2, . . . , bt}. (A.10)

We consider a new basis for Ker Y Aκ that includes 1C . Consider removing the vector

in {b1, b2, . . . , bt} whose support are precisely those reactant complexes, y and y′, with

interactions differing only in one species. For convenience, assume that this vector is b1.

Hence, {1C , b2, . . . , bt} forms a basis for Ker Y Aκ.

Since
∑
y∈C

eỹ·µωy ∈ Ker Y Aκ, there exist λ1, λ2, . . . , λt such that

∑
y∈C

eỹ·µωy = λ11
C +

t∑
i=2

λib
i. (A.11)

Observe that each vector bi, i = 2, . . . , t, has its support entirely on terminal complexes

except for the complexes y and y′. This observation, along with Equation (A.11), implies

that for reactant complexes y ∈ C and y′ ∈ C , we have

ỹ · µ = ỹ′ · µ. (A.12)

Or equivalently, we have

(ỹ − ỹ′) · (log c∗∗ − log c∗) = 0. (A.13)

Now, since y, y′ ∈ C are reactant complexes whose interactions differ only in species X,

we have

ỹ − ỹ′ = mX

for some nonzero m ∈ R. Thus, Equation (A.13) reduces to m(log c∗X − log c∗∗X ) = 0. It

follows that c∗X = c∗∗X . That is, the system has ACR in species X. �
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