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Abstract

This paper implements the use of existing decompositions in literature to analyze
equilibria properties of chemical reaction networks endowed with classes of kinet-
ics including power-law, poly-PL (i.e., nonnegative linear combination of power-law
functions) and quotients of poly-PL functions. In particular, we develop a program
where reactions of a network are assigned to subnetworks and determine the inde-
pendence of the resulting decomposition. Independent decompositions are useful in
the sense that with this property, the intersection of the sets of equilibria of the
corresponding subsystems is equal to the set of equilibria of the whole system.

1 Introduction

A chemical reaction network (CRN) is composed of reactions which can be seen as in-

teractions among species existing within the system. A CRN endowed with a chemical

kinetics is called a chemical kinetic system. This system has a corresponding set of ordi-

nary differential equations, which describes its dynamics over time. On the other hand,

Biochemical Systems Theory (BST) is a mathematical and computational approach used
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to analyze systems. It was proposed by M. Savageau in the late 1960’s. He identified

that power-law representation is a valid description of processes in biochemistry. The

representation is both general and simple, which turned out to be rich enough to capture

typical nonlinearities [22].

Hernandez et al. [11] introduced the Multistationarity Algorithm, a general computa-

tional method to determine if a CRN endowed with power-law kinetics has capacity for

multistationarity, i.e., whether the system can admit multiple equilibria for particular set

of rate constants. This was an extension of the work of H. Ji and M. Feinberg [14], which

considers mass actions systems that are actually power-law systems too.

Evolutionary game theory (EGT) considers how groups change their strategy over time

based on payoff functions [20]. Veloz et al. illustrated how to model the EGT systems

using reaction networks [21]. The applications of EGT is evident in chemistry [15, 17],

which were beyond its biological origins. Poly-PL kinetic systems are CRNs endowed

with non-negative linear combinations of power-law functions. Poly-PL functions appears

in games in EGT. Magpantay et al. [16] then introduced a Multistationarity Algorithm

for poly-PL kinetic systems by transforming such systems to power-law systems and then

applying the method of Hernandez et al. This method accommodates a larger class of

kinetic systems containing the power-laws.

Poly-PL quotient kinetics [10] are rational kinetics that include the Hill-type kinetics

which has importance in enzymology, and more generally in biochemistry. In a nutshell,

one can convert poly-PL quotient kinetics to poly-PL kinetics and then to power-law

[10]. Hence, we emphasize the importance of power-law kinetics (a generalization of mass

action) in solving problems of equilibria properties such as multistationarity in kinetic

systems.

M. Feinberg established the essential relationship between independent decomposi-

tions and the set of positive equilibria of a network in 1987, which we call the Fein-

berg Decomposition Theorem (FDT) [4]. Moreover, a corresponding relationship between

incidence-independent, weakly reversible decompositions and complex-balanced equilibria

of a weakly reversible network was provided by Fariñas et al. [3].

This work integrates results of decomposition theory and multistationarity algorithms

for systems, which are either power-law, poly-PL, or poly-PL quotient with underlying

CRN having independent (known) decompositions. We also provide a general computer
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program which is flexible for identifying whether the CRN has independent and incidence-

independent decomposition by assigning subnetwork number to each reaction.

The paper is organized as follows: Section 2 provides the fundamentals of chemical

reaction networks and chemical kinetic systems. It also presents relevant results from

decomposition theory of CRNs and deficiency theorems. Section 3 provides further dis-

cussion on some known decompositions in literature. Section 4 gives steps in dealing with

multistationarity of power-law, poly-PL, or poly-PL quotient kinetic systems with inde-

pendent decompositions. Summary and outlook constitute Section 5. Finally, Appendix

B provides a program that determines whether the a particular decomposition of a CRN

is independent or incidence-independent.

2 Preliminaries

We recall some fundamental notions about chemical reaction networks and chemical

kinetic systems [2,5]. In addition, we also present important results on the decomposition

theory, which was introduced by Feinberg in [4].

2.1 Fundamentals of chemical reaction networks

Definition 2.1. A chemical reaction network (CRN) N = (S ,C ,R) of nonempty

finite sets S , C ⊆ RS
≥0, and R ⊂ C × C , of m species, n complexes, and r reactions,

respectively, such that

i. (Ci, Ci) /∈ R for each Ci ∈ C , and

ii. for each Ci ∈ C , there exists Cj ∈ C such that (Ci, Cj) ∈ R or (Cj, Ci) ∈ R.

We can view C as a subset of Rm
≥0. The ordered pair (Ci, Cj) corresponds to the

familiar notation Ci → Cj.

Definition 2.2. The molecularity matrix, denoted by Y , is an m×n matrix such that

Yij is the stoichiometric coefficient of species Xi in complex Cj. The incidence matrix,

denoted by Ia, is an n× r matrix such that

(Ia)ij =


−1 if Ci is in the reactant complex of reaction Rj,

1 if Ci is in the product complex of reaction Rj,

0 otherwise.

The stoichiometric matrix, denoted by N , is the m× r matrix given by N = Y Ia.
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We denote the standard basis for RI by
{
ωi ∈ RI | i ∈ I

}
.

Definition 2.3. Let N = (S ,C ,R) be a CRN. The incidence map Ia : RR → RC is

the linear map such that for each reaction r : Ci → Cj ∈ R, the basis vector ωr to the

vector ωCj
− ωCi

∈ C .

Definition 2.4. The reaction vectors for a given reaction network (S ,C ,R) are the

elements of the set {Cj − Ci ∈ Rm| (Ci, Cj) ∈ R} .

Definition 2.5. The stoichiometric subspace of a reaction network (S ,C ,R), de-

noted by S, is the linear subspace of Rm given by S = span {Cj − Ci ∈ Rm| (Ci, Cj) ∈ R} .

The rank of the network, denoted by s, is given by s = dimS. The set (x+ S) ∩ Rm
≥0 is

said to be a stoichiometric compatibility class of x ∈ Rm
≥0.

Definition 2.6. Two vectors x, x∗ ∈ Rm are stoichiometrically compatible if x− x∗

is an element of the stoichiometric subspace S.

We can view complexes as vertices and reactions as edges. With this, CRNs can be

seen as graphs. At this point, if we are talking about geometric properties, vertices are

complexes and edges are reactions. If there is a path between two vertices Ci and Cj,

then they are said to be connected. If there is a directed path from vertex Ci to vertex

Cj and vice versa, then they are said to be strongly connected. If any two vertices

of a subgraph are (strongly) connected, then the subgraph is said to be a (strongly)

connected component. The (strong) linkage classes of a CRN are the (strong)

connected components of the graph. The maximal strongly connected subgraphs where

there are no edges from a complex in the subgraph to a complex outside the subgraph

is said to be the terminal strong linkage classes. We denote the number of linkage

classes and the number of strong linkage classes by l and sl, respectively. A CRN is said

to be weakly reversible if sl = l.

Definition 2.7. For a CRN, the deficiency is given by δ = n − l − s where n is the

number of complexes, l is the number of linkage classes, and s is the dimension of the

stoichiometric subspace S.
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Example 2.8. Consider the CRN with the following reactions.

R1 : X1 → 0

R2 : X2 → X3

R3 : X3 → X4

R4 : 0→ X2

R5 : X1 +X2 → X1

The molecularity, incidence, and stoichiometric matrices are given in the following equa-

tion.

N = Y Ia

=


1 0 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0



−1 0 0 0 1
1 0 0 −1 0
0 −1 0 1 0
0 1 −1 0 0
0 0 1 0 0
0 0 0 0 −1



=


−1 0 0 0 0
0 −1 0 1 −1
0 1 −1 0 0
0 0 1 0 0


In addition, the number of complexes is n = 6 and there is only one linkage class,

i.e., l = 1. Also, the rank of the network is s = 4. Thus, the deficiency of the CRN is

δ = n− l − s = 6− 1− 4 = 1.

2.2 Fundamentals of chemical kinetic systems

Definition 2.9. A kinetics K for a reaction network (S ,C ,R) is an assignment to each

reaction r : y → y′ ∈ R of a rate function Kr : ΩK → R≥0 such that Rm
>0 ⊆ ΩK ⊆ Rm

≥0,

c ∧ d ∈ ΩK if c, d ∈ ΩK, and Kr (c) ≥ 0 for each c ∈ ΩK. Furthermore, it satisfies the

positivity property: supp y ⊂ supp c if and only if Kr(c) > 0. The system (S ,C ,R, K)

is called a chemical kinetic system.

Definition 2.10. The species formation rate function (SFRF) of a chemical kinetic

system is given by f (x) = NK(x) =
∑

Ci→Cj∈R

KCi→Cj
(x) (Cj − Ci).

The ordinary differential equation (ODE) or dynamical system of a chemical kinetics

system is
dx

dt
= f (x). An equilibrium or steady state is a zero of f .

-581-



Definition 2.11. The set of positive equilibria of a CKS (S ,C ,R, K) is given by

E+ (S ,C ,R, K) = {x ∈ Rm
>0|f (x) = 0} .

A CRN is said to admit multiple (positive) equilibria if there exist positive rate

constants such that the ODE system admits more than one stoichiometrically compatible

equilibria.

Analogously, the set of complex balanced equilibria [13] is given by

Z+ (N , K) = {x ∈ Rm
>0|Ia ·K (x) = 0} ⊆ E+ (N , K) .

A positive vector c ∈ Rm is complex balanced if K (c) is contained in Ker Ia, and a

chemical kinetic system is complex balanced if it has a complex balanced equilibrium.

2.2.1 Power–law kinetic systems

Definition 2.12. A kinetics K is a power-law kinetics (PLK) if Ki (x) = kix
Fi for

i = 1, ..., r where ki ∈ R>0 and Fij ∈ R. The power-law kinetics is defined by an r ×m

matrix F , called the kinetic order matrix and a vector k ∈ Rr, called the rate vector.

If the kinetic order matrix is the transpose of the molecularity matrix, then the system

becomes the well-known mass action kinetics (MAK).

Definition 2.13. A PLK system has reactant-determined kinetics (of type PL-RDK)

if for any two reactions i, j with identical reactant complexes, the corresponding rows of

kinetic orders in F are identical, i.e., Fik = Fjk for k = 1, 2, ...,m. A PLK system has

non-reactant-determined kinetics (of type PL-NDK) if there exist two reactions with

the same reactant complexes whose corresponding rows in F are not identical.

Example 2.14. Consider the CRN N in Example 2.8.

R1 : X1 → 0

R2 : X2 → X3

R3 : X3 → X4

R4 : 0→ X2

R5 : X1 +X2 → X1
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We endow the CRN with the following kinetics.

K (X) =


k1X1

−0.2

k2X2
1.3

k3X3
0.5

k4V
k5X1

−0.1X2
2.7


(N , K) is a power-law kinetic system. In particular, it is a PL-RDK system.

2.2.2 Poly-PL kinetic systems

Definition 2.15. A kinetics K : Rm
>0 → Rr is a poly-PL kinetics if

Ki(x) = ki
(
ai,1x

Fi,1 + . . .+ ai,jx
Fi,j
)

where 1 ≤ i ≤ r with ki > 0, Fi,j, ai,j ∈ Rm and 1 ≤ j ≤ hi (where hi is the number

of terms for the i-th reaction). It is defined by r × m matrices Fi,k = [Fij], called the

kinetic order matrices, vectors k = [ki] called the rate vector and ai,j ∈ Rr
>0 called

the poly-rate vectors.

From the definition, poly-PL kinetics (PYK) consists of non-negative linear combina-

tions of power-law functions. In particular, power-law kinetics can be seen as “mono-PL

kinetics with coefficient 1”. For more details of the poly-PL kinetics, one may refer

to [16,20].

2.2.3 STAR–MSC transformation

The S-invariant termwise addition of reactions via maximal stoichiometric coef-

ficients (STAR-MSC) method is based on the idea of using the maximal stoichiometric

coefficient (MSC) among the complexes in the CRN to construct reactions whose reac-

tant complexes and product complexes are different from existing ones. We translate the

reactants and products uniformly to create h− 1 replicas of the original network. Hence,

its transform N ∗ becomes the union of the replicas and the original CRN [16].

All vectors x = (x1, . . . , xm) are positive. Let M = 1 + max{yi|y ∈ C }, where the

second summand is the maximal stoichiometric coefficient, which is a positive integer.

For every positive integer z, let z be identified with the vector (z, z, . . . , z) in Rm. For

each complex y ∈ C , form the (h− 1) complexes y +M, y + 2M, . . . , y + (h− 1)M.
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2.3 Two deficiency theorems

We now state the Deficiency Zero and Deficiency One Theorems primarily from the works

of Feinberg [4–6]. These theorems are useful in determining properties of equilibria of

systems with underlying CRNs of deficiency zero or one. As we may observe, the structural

property of weak or non-weak reversibility of a CRN plays an important role in such

equilibria properties of the corresponding kinetic system.

Theorem 2.16. (Deficiency Zero Theorem) For any CRN of deficiency zero, the following

statements hold:

i. If the network is not weakly reversible, then for arbitrary kinetics, the differential

equations for the corresponding reaction system cannot admit a positive equilibrium.

ii. If the network is not weakly reversible, then for arbitrary kinetics, the differential

equations for the corresponding reaction system cannot admit a cyclic composition

trajectory containing a positive composition.

iii. If the network is weakly reversible, then for any mass action kinetics (regardless

of the positive values the rate constants take), the differential equations have these

properties:

There exists within each positive stoichiometric compatibility class precisely one equi-

librium; that equilibrium is asymptotically stable; and there cannot exist a nontrivial

cyclic composition trajectory along which all species concentrations are positive.

Theorem 2.17. (Deficiency One Theorem) Consider a mass action system. Let δ be the

deficiency of the network and let δθ be the deficiency of the θth linkage class, each contain-

ing just one terminal strong linkage class. Suppose that both of the following conditions

hold:

i. δθ ≤ 1 for each linkage class and

ii. the sum of the deficiencies of all the individual linkage classes equals the deficiency

of the whole network.

Then, no matter what positive values the rate constants take, the corresponding differen-

tial equations can admit no more than one equilibrium within a positive stoichiometric

compatibility class. If the network is weakly reversible, the differential equations for the

system admit precisely one equilibrium in each positive stoichiometric compatibility class.
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Figure 1. Examples of CRNs of deficiency zero

Example 2.18. The CRN in Figure 1 (a) has deficiency zero and is weakly reversible.

Endowed with mass action kinetics and regardless of the positive values the rate constant

take, there exists within each positive stoichiometric class precisely one equilibrium. On

the other hand, the CRN in Figure 1 (b) has deficiency zero and is not weakly reversible.

Hence, endowed with any kinetics, the corresponding differential equations cannot admit

a positive equilibrium.

2.4 Review of decomposition theory

Definition 2.19. A decomposition of N is a set of subnetworks {N1,N2, ...,Nk} of

N induced by a partition {R1,R2, ...,Rk} of its reaction set R.

We denote a decomposition by N = N1 ∪N2 ∪ ... ∪Nk since N is a union of the

subnetworks in the sense of [8]. It also follows immediately that, for the corresponding

stoichiometric subspaces, S = S1 + S2 + ...+ Sk.

The following important concept of independent decomposition was introduced by

Feinberg in [4].

Definition 2.20. A network decomposition N = N1 ∪N2 ∪ ... ∪Nk is independent if

its stoichiometric subspace is a direct sum of the subnetwork stoichiometric subspaces.

It was shown that for an independent decomposition, δ ≤ δ1 + δ2...+ δk [7].

Definition 2.21. A decomposition of CRN N is incidence-independent if the inci-

dence map Ia of N is the direct sum of the incidence maps of the subnetworks. It is

bi-independent if it is both independent and incidence-independent.
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We can also show incidence-independence by satisfying the equation

n− l =
∑

(ni − li),

where ni is the number of complexes and li is the number of linkage classes, in each

subnetwork i.

In [3], it was shown that for any incidence-independent decomposition,

δ ≥ δ1 + δ2...+ δk.

Example 2.22. Consider a specific case of a generalization of a subnetwork of a CRN of

a global carbon cycle model by Schmitz [7, 12, 18]. Let N = N1 ∪N2 where N1 and N2

are given as follows.

Figure 2. Subnetworks in Example 2.22

We can easy see from Table 2.1 that the dimension of the stoichiometric subspace

of the whole network equals that of the sum of the respective stoichiometric subspaces of

the subnetworks, i.e., s = 5 = 3 + 2 = s1 + s2. Thus, the corresponding decomposition

is independent. In addition, n − l = 5 = 3 + 2 = (n1 − l1) + (n2 − l2). Hence, the

corresponding decomposition is incidence-independent. Therefore, the decomposition is

bi-independent.

Table 2.1. Network Numbers for Example 2.22

N N1 N2

n 7 4 3
l 2 1 1
s 5 3 2
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Feinberg established the following basic relation between an independent decomposi-

tion and the set of positive equilibria of a kinetics on the network:

Theorem 2.23. (Feinberg Decomposition Theorem [4]) Let P (R) = {R1,R2, ...,Rk} be

a partition of a CRN N and let K be a kinetics on N . If N = N1 ∪N2 ∪ ... ∪Nk is

the network decomposition of P (R) and E+ (Ni, Ki) =
{
x ∈ RS

>0|NiKi(x) = 0
}

then

E+ (N1, K1) ∩ E+ (N2, K2) ∩ ... ∩ E+ (Nk, Kk) ⊆ E+ (N , K) .

If the network decomposition is independent, then equality holds.

Analogously, Farinas et al. introduced their results for incidence-independent decom-

positions and complex balanced equilibria [3]:

Theorem 2.24. (Theorem 4 [3]) Let N = (S ,C ,R) be a a CRN and Ni = (Si,Ci,Ri)

for i = 1, 2, ..., k be the subnetworks of a decomposition. Let K be any kinetics, and

Z+(N , K) and Z+(Ni, Ki) be the sets of complex balanced equilibria of N and Ni, re-

spectively. Then

i. Z+ (N1, K1) ∩ Z+ (N2, K2) ∩ ... ∩ Z+ (Nk, Kk) ⊆ Z+ (N , K).

If the decomposition is incidence independent, then

ii. Z+ (N , K) = Z+ (N1, K1) ∩ Z+ (N2, K2) ∩ ... ∩ Z+ (Nk, Kk), and

iii. Z+ (N , K) 6= ∅ implies Z+ (Ni, Ki) 6= ∅ for each i = 1, ..., k.

We will discuss some applications of the Feinberg Decomposition Theory for CRNs

along with deficiency theorems in Section 4.

3 Some important decompositions of CRNs in liter-

ature

We now consider some various decompositions available in literature.

Linkage class decomposition partitions a network into its linkage classes. It is a basic

decomposition of a CRN. It is special in the sense that corresponding partition of the

reaction set also induces a partition on the set of complexes.
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Example 3.1. Consider the following CRN.

R1 : 0→ X1 +X2

R2 : X1 +X2 → X1

R3 : X2 → X2 +X3

There are two linkage classes as depicted in Figure 3 that induce the linkage class decom-

position of the CRN.

Figure 3. Linkage classes in Example 3.1

Definition 3.2. [3] A decomposition N = N1 ∪N2 ∪ ... ∪Nk with Ni = (Si,Ci,Ri) is

a C -decomposition if for each pair of distinct i and j, Ci and Cj are disjoint.

In [3], it was shown that C -decompositions form a subset of incidence-independent

decompositions.

Before we formally discuss another set of decompositions, we review some concepts

and properties underlying the multistationarity algorithms in the context of decomposition

theory [11,14].

Definition 3.3. A subset O of R is said to be an orientation if for every reaction

y → y′ ∈ R, either y → y′ ∈ O or y′ → y ∈ O, but not both.

For an orientation O, we define a linear map LO : RO → S such that

LO(α) =
∑

y→y′∈O

αy→y′ (y′ − y).

Each orientation O defines a partition of N into O and its complement O ′, which

generates the following decomposition:

Definition 3.4. For an orientation O on N , the O-decomposition of N consists of

the subnetworks NO and NO′, i.e., N = NO ∪NO′.

-588-



We now review the important concept of “equivalence classes” from [14]. Let
{
vl
}d
l=1

be a basis for KerLO . If for y → y′ ∈ O, vly→y′ = 0 for all 1 ≤ l ≤ d then the reaction

y → y′ belongs to the zeroth equivalence class P0. For y → y′, y → y′ ∈ O\P0, if there

exists α 6= 0 such that vly→y′ = αvly→y′ for all 1 ≤ l ≤ d, then the two reactions are in the

same equivalence class denoted by Pi, i 6= 0.

The central concept of “fundamental classes” is actually the basis of the Higher Defi-

ciency Algorithm of Ji and Feinberg and the Multistationarity Algorithm by Hernandez

et al. The reactions y → y′ and y → y′ in R belong to the same fundamental class if

at least one of the following is satisfied [14].

i. y → y′ and y → y′ are the same reaction.

ii. y → y′ and y → y′ are reversible pair.

iii. Either y → y′ or y′ → y, and either y → y′ or y′ → y are in the same equivalence

class on O.

It is worth mentioning that he orientation O is partitioned into equivalence classes

while the reaction set R is partitioned into fundamental classes.

Definition 3.5. The fundamental decomposition or F -decomposition of N is the

decomposition generated by the partition of R into fundamental classes.

Theorem 3.6. [12] Let NO be the subnetwork of N defined by the orientation O being

a subset of R. Then the following holds:

i. The P-decomposition of NO is independent if and only if the F -decomposition of

N is independent.

ii. The P-decomposition of NO is incidence-independent if and only if the F -decompo-

sition of N is incidence-independent.

iii. The P-decomposition of NO is bi-independent if and only if the F -decomposition

of N is bi-independent.

Example 3.7. Consider the network given in Example 3.1. We can verify that KerLO

is trivial, i.e., with the zero vector alone as element. The fundamental (network) decom-

position yields the only subnetwork as the network itself.
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4 Analysis for various kinetic systems

In this section, we employed steps for the computation of analysis of equilibria properties

of kinetic systems using established results integrated with the program that we developed

in Appendix B. Basically, if the given has poly-PL kinetics, then one may transform it to

power-law [16].

The initial part of the program uses the work given in [19]. We also mention that

we created a program in [9] for particular fundamental decomposition. On the other

hand, our current work is flexible in the sense that it does not consider the fundamental

decomposition alone. The following is the standard procedure for the program.

PROCEDURE analysis

INPUT1: reaction set and assignment of each reaction to a subnetwork

OUTPUT1: subnetworks defined by partitioning the reaction set

OUTPUT2: determine if the network is independent or not

4.1 Analysis for power–law kinetic systems

We make use of the following steps:

1. Use a known decomposition (e.g., decompositions from Section 3) and determine if

the CRN is independent under this decomposition.

2. If the CRN has an independent decomposition, then choose among the obtained

subnetworks of the original network under the decomposition.

3. Check the properties of the subnetwork using deficiency theorems or multistation-

arity algorithm.

Example 4.1. Consider the following CRN of Anderies et al.’s carbon cycle model in the

pre-industrial state [1, 7].

R1 : A1 + 2A2 → 2A1 + A2

R2 : A1 + A2 → 2A2

R3 : A2 → A3

R4 : A3 → A2

Let us check the independence of the linkage class decomposition using the program.
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model.id = ’anderies ’;

model.name = ’anderies ’;

model.species = struct(’id’, {’A1’ ’A2’ ’A3 ’});

model.reaction (1) = struct(’id’, ’A1+2A2 ->2A1+A2’, ’reactant ’, struct(’

species ’, {’A1 ’ ’A2 ’}, ’stoichiometry ’, {1 2}), ’product ’, struct(’

species ’, {’A1 ’ ’A2 ’}, ’stoichiometry ’, {2 1}), ’reversible ’, false ,

’subnetwork ’, 1);

model.reaction (2) = struct(’id’, ’A1+A2 ->2A2’, ’reactant ’, struct(’

species ’, {’A1 ’ ’A2 ’}, ’stoichiometry ’, {1 1}), ’product ’, struct(’

species ’, {’A2 ’}, ’stoichiometry ’, {2}), ’reversible ’, false , ’

subnetwork ’, 2);

model.reaction (3) = struct(’id’, ’A2<->A3’, ’reactant ’, struct(’species

’, {’A2 ’}, ’stoichiometry ’, {1}), ’product ’, struct(’species ’, {’A3

’}, ’stoichiometry ’, {1}), ’reversible ’, true , ’subnetwork ’, 3);

INDEPENDENT(model)

Then the following output is obtained.

CONCLUSION1: The decomposition is NOT INDEPENDENT.

CONCLUSION2: The decomposition is INCIDENCE -INDEPENDENT.

CONCLUSION3: The decomposition is NOT BI-INDEPENDENT.

Since the linkage class decomposition is not independent, we try the fundamental de-
composition on the other hand.

model.id = ’anderies ’;

model.name = ’anderies ’;

model.species = struct(’id’, {’A1’ ’A2’ ’A3 ’});

model.reaction (1) = struct(’id’, ’A1+2A2 ->2A1+A2’, ’reactant ’, struct(’

species ’, {’A1 ’ ’A2 ’}, ’stoichiometry ’, {1 2}), ’product ’, struct(’

species ’, {’A1 ’ ’A2 ’}, ’stoichiometry ’, {2 1}), ’reversible ’, false ,

’subnetwork ’, 1);

model.reaction (2) = struct(’id’, ’A1+A2 ->2A2’, ’reactant ’, struct(’

species ’, {’A1 ’ ’A2 ’}, ’stoichiometry ’, {1 1}), ’product ’, struct(’

species ’, {’A2 ’}, ’stoichiometry ’, {2}), ’reversible ’, false , ’

subnetwork ’, 1);

model.reaction (3) = struct(’id’, ’A2<->A3’, ’reactant ’, struct(’species

’, {’A2 ’}, ’stoichiometry ’, {1}), ’product ’, struct(’species ’, {’A3

’}, ’stoichiometry ’, {1}), ’reversible ’, true , ’subnetwork ’, 2);

INDEPENDENT(model)

Then the following output is obtained.

CONCLUSION1: The decomposition is INDEPENDENT.

CONCLUSION2: The decomposition is INCIDENCE -INDEPENDENT.

CONCLUSION3: The decomposition is BI-INDEPENDENT.

One may analyze the CRN using the fundamental decomposition.

Let us endow the network with mass action kinetics. Under the decomposition, we have

the following subnetworks: {R1, R2} and {R3, R4}. We choose the subnetwork {R3, R4}.

Note that it has deficiency zero. In addition, the network is reversible and hence, weakly

reversible. By the third item in the Deficiency Zero Theorem (DZT), the subnetwork with

mass action kinetics does not have the capacity for multistationarity. Finally, by the

Feinberg Decomposition Theorem, the whole CRN with mass action kinetics does not have

the capacity for multistationarity, too. We refer to the DZT for full information of the
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properties.

Figure 4. A comparison of a graph for the dynamics of each of the network (above)
and the subnetwork {R3, R4} (below)

In particular, we consider a set of ODEs for the network for illustration.

A1
′ = 0.5A1A2

2 − 0.5A1A2

A2
′ = 0.5A1A2 − 0.5A1A2

2 − 9A2 + 3A3

A3
′ = 9A2 − 3A3

In addition, for the subnetwork {R3, R4}, we have the following:

A2
′ = −9A2 + 3A3

A3
′ = 9A2 − 3A3
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We refer to Figure 4 and verify that (A1, A2, A3) = (2, 1, 3) is an equilibrium for the

network and (A2, A3) = (1, 3) is an equilibrium for the chosen subnetwork (without species

A1).

Example 4.2. Consider the power-law kinetic system in Example 2.14.

R1 : X1 → 0
R2 : X2 → X3

R3 : X3 → X4

R4 : 0→ X2

R5 : X1 +X2 → X1

k1X1
−0.2

k2X2
1.3

k3X3
0.5

k4V
k5X1

−0.1X2
2.7

We can verify from our MATLAB program that the following fundamental decomposition

is independent:

{{R1, R2, R3} , {R4, R5}} .

We choose the smaller subnetwork {R4, R5} with defciency zero. From the Deficiency Zero

Theorem, the differential equations for the system cannot admit a positive equilibrium. By

the Feinberg Decomposition Theorem, the whole system also has no capacity to admit a

positive equilibrium.

4.2 Analysis for poly-PL kinetic systems

We provide the following steps:

1. Use a known decomposition (e.g., decompositions from Section 3) and determine if

the CRN is independent under this decomposition.

2. If the CRN has an independent decomposition, then choose among the obtained

subnetworks of the original network under the decomposition.

3. Transform the subnetwork endowed with poly-PL to power-law kinetics using the

STAR-MSC method.

4. Check the properties of the subnetwork using deficiency theorems or multistation-

arity algorithm.
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Example 4.3. Consider the following CRN (with poly-PL kinetics):

R1 : A1 → A1 + A2 (k1
[
A1A2 + 3A2

1

]
)

R2 : A1 + A2 → A1 + 2A2 (k2
[
A0.5

1 A2 + A2
2

]
)

R3 : A3 → A4 (k3
[
A2

3 + A0.3
4

]
)

R4 : A4 → A3 (k4
[
A−0.13 + A−34

]
)

R5 : A4 → A3 + A4 (k5
[
5A0.4

3 A4 + 2A2
3

]
)

R6 : A3 + A4 → A4 (k6
[
A3A

0.2
2 + 2A2

4

]
)

Let us check the independence of the linkage class decomposition using the program.

model.id = ’sample ’;

model.name = ’sample ’;

model.species = struct(’id’, {’A1’, ’A2’, ’A3’ ’A4 ’});

model.reaction (1) = struct(’id’, ’A1->A1+A2’, ’reactant ’, struct(’

species ’, {’A1 ’}, ’stoichiometry ’, {1}), ’product ’, struct(’species ’,

{’A1’ ’A2 ’}, ’stoichiometry ’, {1 1}), ’reversible ’, false , ’

subnetwork ’, 1);

model.reaction (2) = struct(’id’, ’A1+A2->A1+2A2’, ’reactant ’, struct(’

species ’, {’A1 ’ ’A2 ’}, ’stoichiometry ’, {1 1}), ’product ’, struct(’

species ’, {’A1 ’ ’A2 ’}, ’stoichiometry ’, {1 2}), ’reversible ’, false ,

’subnetwork ’, 1);

model.reaction (3) = struct(’id’, ’A3<->A4’, ’reactant ’, struct(’species

’, {’A3 ’}, ’stoichiometry ’, {1}), ’product ’, struct(’species ’, {’A4

’}, ’stoichiometry ’, {1}), ’reversible ’, true , ’subnetwork ’, 2);

model.reaction (4) = struct(’id’, ’A4<->A3+A4’, ’reactant ’, struct(’

species ’, {’A4 ’}, ’stoichiometry ’, {1}), ’product ’, struct(’species ’,

{’A3’ ’A4 ’}, ’stoichiometry ’, {1 1}), ’reversible ’, true , ’

subnetwork ’, 2);

INDEPENDENT(model)

Then the following output is obtained.

CONCLUSION1: The decomposition is INDEPENDENT.

CONCLUSION2: The decomposition is INCIDENCE -INDEPENDENT.

CONCLUSION3: The decomposition is BI-INDEPENDENT.

We analyze using the network using the linkage class decomposition. Under the decom-

position, we have the following subnetworks: {R1, R2} and {R3, R4, R5, R6}. We choose

the subnetwork {R1, R2}. Hence, we consider the following:

R1 : A1 → A1 + A2 (k1
[
A1A2 + 3A2

1

]
)

R2 : A1 + A2 → A1 + 2A2 (k2
[
A0.5

1 A2 + A2
2

]
)

We use the STAR-MSC transformation to convert the poly-PL (sub)system given above to

power-law. Hence we have the following transformed network together with the matrix used

to determine positive dependency in the multistationarity algorithm (MSA) for poly-PL
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kinetic systems [16]:

R1 : A1 → A1 + A2

R2 : A1 + A2 → A1 + 2A2

R3 : 3A1 + 2A2 → 3A1 + 3A2

R4 : 3A1 + 3A2 → 3A1 + 4A2


−1
1
0
0


Therefore, the subsystem with underlying subnetwork does not have the capacity for mul-

tistationarity. By the Feinberg Decomposition Theorem, the whole system does not also

have the capacity for multistationarity.

4.3 Analysis for poly-PL quotients kinetic systems

In [10], quotients of poly-PL functions were considered as kinetics. In these class of kinet-

ics, each reaction of a CRN is assigned to a rational function where both the numerator

and the denominator are poly-PL in form. In particular, equilibria properties of Hill-type

kinetic systems were considered. The following is an example of a CRN endowed with

quotients of poly-PL functions.

Example 4.4. We consider an example in [10], which was based on [16]. Consider the

following CRN:

R1 : 5X + Y → X + 3Y

R2 : X + 3Y → 5X + Y

but endowed with the following kinetics:

K (X, Y ) =

 k1
α1X + α2Y + α3XY + α4X

2

X

k2
β1X + β2Y + β3XY + β4X

2

X2Y

 .
Transformation of a poly-PL quotient kinetics was employed in [10] to a poly-PL

kinetics. To integrate the methods of [10,12,16] with the program, we consider Figure 5.

5 Summary and outlook

We summarize our results and provide some direction for future research.

1. We illustrated how known decompositions can be used to infer properties of equi-

libria of a kinetic system from its subsystem(s) with underlying reaction network.
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Figure 5. An integrated method in Section 4.3

2. We provided some steps that one can follow to analyze properties of equilibria of

power-law and poly-PL kinetic systems.

3. We created a program that gives independence properties of CRNs given a particular

assignment of numbers to reactions that corresponds to a decomposition.

4. One can consider more types of decompositions which can be integrated in the

methods.
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A Nomenclature

A.1 List of abbreviations

Abbreviation Meaning

CKS chemical kinetic system
CRN chemical reaction network
HDA higher deficiency algorithm
MSA multistationarity algorithm
PLK power-law kinetics
PL-NDK power-law non-reactant-determined kinetics
PL-RDK power-law reactant-determined kinetics
SFRF species formation rate function

A.2 List of important symbols

Meaning Symbol

deficiency δ
dimension of the stoichiometric subspace s
incidence map Ia
molecularity matrix Y
number of complexes n
number of linkage classes l
orientation O
stoichiometric matrix N
stoichiometric subspace S
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B The program

We provide a MATLAB program that determines the independence of a particular de-

composition of a CRN by assigning a number from 1 to k to each reaction, where k is

the number of subnetworks. We use the preliminary steps of the program of Soranzo and

Altafini [19]. We should install the free software ERNEST in our MATLAB environment.

The script was named INDEPENDENT.m.

function [ret] = INDEPENDENT(model)

species = {model.species.id};

n = numel(species); % number of species

reactions = {model.reaction.id};

subnetworks = {model.reaction.subnetwork };

subnetworks2 = [model.reaction.subnetwork ];

subnetworks3 = unique(subnetworks2);

subn = numel(subnetworks3);

reactant_complexes = []; % matrix of reactant complexes (species x irrev

. reactions)

product_complexes = []; % matrix of product complexes (species x irrev.

reactions)

S = []; % stoichiometric matrix (species x irrev. reactions)

sum = 0;

sum2 = 0;

StoichMatrixForm = [];

sr_edges = cell(0, 4);

[Lia ,Locb] = ismember(subnetworks2 , subnetworks3);

IdentifyLocb = Locb;

IdentifyUniqLocb = unique(IdentifyLocb (~ isnan(IdentifyLocb)));

histIdentifyLocb=histc(IdentifyLocb ,IdentifyUniqLocb);

UniqueReactionRow = IdentifyUniqLocb(histIdentifyLocb >=1);

[URsizeRow ,URsizeCol] = size(( UniqueReactionRow).’);

for k=1: URsizeRow

record=find(ismember(IdentifyLocb ,UniqueReactionRow(k)));

[URsizeRecordRow ,URsizeRecordCol] = size(record);

fprintf(’SUBNETWORK %d has the following reaction(s):’,

UniqueReactionRow(k))

fprintf(’\n’)

for i=1: URsizeRecordCol

disp(model.reaction(record(i)).id);

if isfield(model.reaction(record(i)), ’modifier ’) && ~isempty(model.

reaction(record(i)).modifier)

warning([’Reaction ’ num2str(record(i)) ’ contains modifiers ,

which will be ignored. Specify all species in a reaction as

reactants or products .’])

end

reactant_complexes (:, end+1) = zeros(n, 1);

for j = 1: numel(model.reaction(record(i)).reactant)

reactant_complexes(find(strcmp(model.reaction(record(i)).

reactant(j).species , species), 1), end) = model.reaction(

record(i)).reactant(j).stoichiometry;

end

product_complexes (:, end +1) = zeros(n, 1);
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for j = 1: numel(model.reaction(record(i)).product)

product_complexes(find(strcmp(model.reaction(record(i)).product(

j).species , species), 1), end) = model.reaction(record(i)).

product(j).stoichiometry;

end

S(:, end + 1) = product_complexes (:, end) - reactant_complexes (:,

end);

if model.reaction(record(i)).reversible

reactant_complexes (:, end+1) = product_complexes (:, end);

product_complexes (:, end +1) = reactant_complexes (:, end -1);

S(:, end + 1) = -S(:, end);

end

if numel(model.reaction(record(i)).reactant) > 0 && numel(model.

reaction(record(i)).product) > 0

label = [num2str(model.reaction(record(i)).reactant (1).

stoichiometry) ’ ’ model.reaction(record(i)).reactant (1).

species ];

for j = 2: numel(model.reaction(record(i)).reactant)

label = [label ’ + ’ num2str(model.reaction(record(i)).

reactant(j).stoichiometry) ’ ’ model.reaction(record(i)).

reactant(j).species ];

end

for j = 1: numel(model.reaction(record(i)).reactant)

sr_edges(end+1, :) = {model.reaction(record(i)).reactant(j).

species , reactions{record(i)}, label , model.reaction(

record(i)).reactant(j).stoichiometry };

end

label = [num2str(model.reaction(record(i)).product (1).

stoichiometry) ’ ’ model.reaction(record(i)).product (1).

species ];

for j = 2: numel(model.reaction(record(i)).product)

label = [label ’ + ’ num2str(model.reaction(record(i)).

product(j).stoichiometry) ’ ’ model.reaction(record(i)).

product(j).species ];

end

for j = 1: numel(model.reaction(record(i)).product)

sr_edges(end+1, :) = {model.reaction(record(i)).product(j).

species , reactions{record(i)}, label , model.reaction(

record(i)).product(j).stoichiometry };

end

end

clear label

[Y, ind , ind2] = unique ([ reactant_complexes product_complexes]’, ’rows ’)

; % ind2(i) is the index in Y of the reactant complex in reaction i,

ind(i + r) is the index in Y of the product complex in reaction i

Y = Y’; % complexes matrix (species x complexes)

m = size(Y, 2); % number of complexes

reacts_to = false(m, m); % matrix (complexes x complexes) for the

reacts_to relation: reacts_to(i, j) = true iff i->j

r = size(reactant_complexes , 2); % number of irrev. reactions

reacts_in = zeros(m, r); % matrix (complexes x irrev. reactions) for the

reacts_in relation: (reacts_in(i, r) = -1 && reacts_in(j, r) = 1)

iff i->j
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for i = 1:r

reacts_to(ind2(i), ind2(i + r)) = true;

reacts_in(ind2(i), i) = -1;

reacts_in(ind2(i + r), i) = 1;% incidence

end

is_reversible = isequal(reacts_to , reacts_to ’); %test for reversibility

complexes_ugraph_cc = connected_components(umultigraph(reacts_to |

reacts_to ’)); % linkage classes

l = max(complexes_ugraph_cc); % number of linkage classes

if is_reversible

complexes_graph_scc = complexes_ugraph_cc;

else

complexes_graph_scc = strongly_connected_components(multigraph(

reacts_to)); % strong -linkage classes

end

n_slc = max(complexes_graph_scc); % number of strong -linkage classes

is_weakly_reversible = n_slc == l; % the reaction network is weakly

reversible if and only if each linkage class is a strong -linkage

class

s = rank(S); % reaction network rank

rr = numel(reactions); % number of reactions (counting reversible

reactions as one)

end

fprintf(’The stoichiometric subspace of SUBNETWORK %d is:’,

UniqueReactionRow(k))

S

fprintf(’The rank of SUBNETWORK %d is:’, UniqueReactionRow(k))

s = rank(S)

fprintf(’The value of (n-l) for the SUBNETWORK %d is:’,

UniqueReactionRow(k))

diff=m-l

S = [];

reactant_complexes = [];

product_complexes = [];

sum = sum + s;

sum2 = sum2 + diff;

end

fprintf(’The SUM of the RANKS of the SUBNETWORKS is:’)

fprintf(’\n’)

sum

fprintf(’The SUM of the values of of (n-l) of the SUBNETWORKS is:’)

fprintf(’\n’)

sum2

S=[];

-601-



for i = 1: numel(reactions)

if isfield(model.reaction(i), ’modifier ’) && ~isempty(model.reaction

(i).modifier)

warning([’Reaction ’ num2str(i) ’ contains modifiers , which will

be ignored. Specify all species in a reaction as reactants

or products .’])

end

reactant_complexes (:, end+1) = zeros(n, 1);

for j = 1: numel(model.reaction(i).reactant)

reactant_complexes(find(strcmp(model.reaction(i).reactant(j).

species , species), 1), end) = model.reaction(i).reactant(j).

stoichiometry;

end

product_complexes (:, end +1) = zeros(n, 1);

for j = 1: numel(model.reaction(i).product)

product_complexes(find(strcmp(model.reaction(i).product(j).

species , species), 1), end) = model.reaction(i).product(j).

stoichiometry;

end

S(:, end + 1) = product_complexes (:, end) - reactant_complexes (:,

end);

if model.reaction(i).reversible

reactant_complexes (:, end+1) = product_complexes (:, end);

product_complexes (:, end +1) = reactant_complexes (:, end -1);

S(:, end + 1) = -S(:, end);

end

if numel(model.reaction(i).reactant) > 0 && numel(model.reaction(i).

product) > 0

label = [num2str(model.reaction(i).reactant (1).stoichiometry) ’

’ model.reaction(i).reactant (1).species ];

for j = 2: numel(model.reaction(i).reactant)

label = [label ’ + ’ num2str(model.reaction(i).reactant(j).

stoichiometry) ’ ’ model.reaction(i).reactant(j).species

];

end

for j = 1: numel(model.reaction(i).reactant)

sr_edges(end+1, :) = {model.reaction(i).reactant(j).species ,

reactions{i}, label , model.reaction(i).reactant(j).

stoichiometry };

end

label = [num2str(model.reaction(i).product (1).stoichiometry) ’ ’

model.reaction(i).product (1).species ];

for j = 2: numel(model.reaction(i).product)

label = [label ’ + ’ num2str(model.reaction(i).product(j).

stoichiometry) ’ ’ model.reaction(i).product(j).species ];

end

for j = 1: numel(model.reaction(i).product)

sr_edges(end+1, :) = {model.reaction(i).product(j).species ,

reactions{i}, label , model.reaction(i).product(j).

stoichiometry };

end

end

end

fprintf(’The stoichiometric subspace of the WHOLE NETWORK is:’)
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S

fprintf(’The rank of the WHOLE NETWORK is:’)

fprintf(’\n’)

s=rank(S)

clear label

[Y, ind , ind2] = unique ([ reactant_complexes product_complexes]’, ’rows ’)

; % ind2(i) is the index in Y of the reactant complex in reaction i,

ind(i + r) is the index in Y of the product complex in reaction i

Y = Y’; % complexes matrix (species x complexes)

m = size(Y, 2); % number of complexes

reacts_to = false(m, m); % matrix (complexes x complexes) for the

reacts_to relation: reacts_to(i, j) = true iff i->j

r = size(reactant_complexes , 2); % number of irrev. reactions

reacts_in = zeros(m, r); % matrix (complexes x irrev. reactions) for the

reacts_in relation: (reacts_in(i, r) = -1 && reacts_in(j, r) = 1)

iff i->j

for i = 1:r

reacts_to(ind2(i), ind2(i + r)) = true;

reacts_in(ind2(i), i) = -1;

reacts_in(ind2(i+r), i) = 1;% incidence

end

is_reversible = isequal(reacts_to , reacts_to ’); %test for reversibility

complexes_ugraph_cc = connected_components(umultigraph(reacts_to |

reacts_to ’)); % linkage classes

l = max(complexes_ugraph_cc); % number of linkage classes

if is_reversible

complexes_graph_scc = complexes_ugraph_cc;

else

complexes_graph_scc = strongly_connected_components(multigraph(

reacts_to)); % strong -linkage classes

end

n_slc = max(complexes_graph_scc); % number of strong -linkage classes

is_weakly_reversible = n_slc == l; % the reaction network is weakly

reversible if and only if each linkage class is a strong -linkage

class

s = rank(S); % reaction network rank

fprintf(’The value of (n-l) for the WHOLE NETWORK is:’)

diff=m-l

if sum==s

fprintf(’CONCLUSION1: The decomposition is INDEPENDENT .’)

else

fprintf(’CONCLUSION1: The decomposition is NOT INDEPENDENT .’)

end

fprintf(’\n’)

if sum2==diff

fprintf(’CONCLUSION2: The decomposition is INCIDENCE -INDEPENDENT .’)

else

fprintf(’CONCLUSION2: The decomposition is NOT INCIDENCE -INDEPENDENT

.’)

end
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fprintf(’\n’)

if sum==s & sum2==diff

fprintf(’CONCLUSION3: The decomposition is BI -INDEPENDENT .’)

else

fprintf(’CONCLUSION3: The decomposition is NOT BI -INDEPENDENT .’)

end

fprintf(’\n’)

clear all
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