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Abstract 

lncRNA affects the expression of nearby protein-coding genes and interfaces with related 

RNA binding proteins to exert functions. It is necessary to develop new computational models, 

which can reduce the cost and time of the biological experiments and select the most promising 

lncRNA-protein pairs for experimental validation. In this work, we propose a novel model 

called LPI-RNMF to identify the lncRNA-protein interaction (LPI) by using a new regularized 

nonnegative matrix factorization (RNMF) algorithm. First, LPI-RNMF extracts integrated 

lncRNA and protein similarity matrixes by sequences-based normalized Smith-Waterman 

score and known lncRNA-protein association matrix-based Gaussian interaction profile kernel, 

respectively. Then, a new regularized nonnegative matrix factorization algorithm is proposed 

and utilized to predict potential interactions. We conduct 5-fold cross-validation experiments 

on the benchmark data set, the AUC value is 0.9102 and AUPR value is 0.7245. In addition, 

leave-one-out cross-validation (LOOCV) is implemented and the AUC value is 0.9210. The 

comparison results are significantly higher than other methods mentioned. Moreover, case 

studies and implementing a test on a novel data set also demonstrate the stable performance of 

our method. These experimental results suggest that LPI-RNMF is a useful tool in predicting 

unknown lncRNA-protein interactions. 
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1 Introduction 

Non-coding RNA (ncRNA) was considered as transcriptional noise until within the 

development of biological research, more and more evidence showed up ncRNA is important 

functional expression in the genome [1,2]. Long ncRNAs (lncRNAs) (> 200 bp) account for 

the largest proportion in the human transcriptome and have gained wide attention in recent 

decades [3–5]. 

Accumulating evidence has shown that lncRNA plays a key role in various biological 

processes, including epigenetic regulation, gene transcriptional regulation, chromatin 

modification, protein transport, trafficking, cell differentiation and cellular apoptosis, and so on 

[6–10]. Furthermore, lncRNAs remain important in the regulations of many human complex 

diseases such as various types of cancer [1,11–13]. There are some databases of lncRNA 

associated with diseases such as the LncRNADisease [14] and the Lnc2Cancer [15]. 

Generally, lncRNA affects the expression of nearby protein-coding genes and interfaces 

with related RNA binding proteins to exert functions [16–19]. It is an important way to reveal 

functions and enrich the annotations of lncRNA by predicting the lncRNA-protein interactions 

(LPIs). Now, more and more lncRNAs have been discovered but the functionality of most 

lncRNAs remains unknown [20,21]. Computational approaches could reduce significantly the 

cost and time of the biological experiments, we can select the most promising lncRNA-protein 

pairs for experimental verification [22,23]. At present, various computational models have been 

widely proposed to solve the biological problems such as miRNA-disease [23,24], drug-target 

[25,26], lncRNA-protein [27,28], microbe-disease associations [29] and protein-protein 

interaction predictions [30]. But there are only a few computational approaches for predicting 

LPIs. 

Overall, there are two types of computational methods for predicting LPIs: machine 

learning-based models and network-based models [18,19,27,31]. Machine learning-based 

models construct supervised classification prediction models by fusing the features of sequence, 

structure, and physicochemical property. The work is usually formulated as the binary 

classification. For example, in 2011, Bellucci et al. [32] designed catRAPID method based on 

the secondary structure, hydrogen and van der Waals of sequences. Muppirala et al. [33] 
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presented RPISeq method, in the same year, which adopted Random Forest (RF) and Support 

Vector Machine (SVM) classifiers using only sequence information. Two years later Lu et al. 

[34] proposed lncPro method by using matrix multiplication and encoding sequence 

information into numeric vector. Later, Wang et al. [35] presented an extended naive-Bayes-

classifier. In 2015, Suresh et al. [36] presented a model (RPI-Pred) using sequence and 

structural information, which was based on the SVM classifier. In 2019, Wekesa et al. [37] 

proposed PLRPIM method by combining shallow machine learning and deep learning methods 

for plant LPIs. 

Nowadays, the network-based method has been a widely used tool for predicting potential 

LPIs. It is primarily based on the fusion of known interactions and heterogeneous data to 

construct network. Usually, it is considered as a semi-supervised task and more suitable for 

predicting unobserved LPIs. For example, in 2015, Yang et al. [38] adopted the Hetesim 

algorithm to evaluate relevance between proteins and lncRNAs. Li et al. [39] presented the 

LPIHN method using a random walk with restart in the heterogeneous network, in the same 

year. Ge et al. [40] presented LPBNI method based on the lncRNA-protein bipartite network. 

In 2017, in order to boost the predictable performance, Zheng et al. [41] fused multiple protein 

similarity networks. In 2018, Zhang et al. [19] designed a sequence-based feature projection 

ensemble learning method for predicting. Hu et al. [42] designed an eigenvalue transformation-

based prediction model. They also proposed an integration model using the neighborhood 

regularized logistic matrix factorization and the random walk algorithm for predicting [43]. 

Recently, Shen et al. proposed LPI-KTASLP model using multivariate information fusion [44]. 

However, there are some computational models have limitations: (1) Machine learning-

based methods are affected by the imbalance of negative and positive samples, and rely heavily 

on the negative samples that are difficult to obtain. Moreover, they are usually unable to retain 

the topological information of the known LPI bilayer network. (2) Some network-based models 

utilize various lncRNA and protein information for multivariate information fusion, but these 

methods cannot work if some kinds of information are unavailable for some lncRNAs or 

proteins [19]. Beyond that, LPI-ETSLP and IRWNRLPI used theoretical parameters that may 

not apply to new data [21]. (3) The constructions of some methods are based on multivariate 

information fusion or multiple algorithms, which may be time-consuming. 
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The matrix factorization method is a useful tool and has been widely used in the 

recommended system [45–47]. To boost the predictable performance, we transform the 

identification problem of LPIs into a recommended task and propose a regularized nonnegative 

matrix factorization algorithm called LPI-RNMF to predict the potential lncRNA-protein 

associations. LPI-RNMF integrates the lncRNA similarity matrix, protein similarity matrix, and 

known lncRNA-protein association matrix. It uses a semi-supervised learning strategy to 

discover unknown associations and does not need negative samples. In the calculation process, 

it uses less prior feature information and model parameters, thus saving time and getting robust 

performance. The experimental results show that LPI-RNMF achieves superior performance 

compared with the state-of-the-art methods and is a promising method in the predicting of 

unknown LPIs. 

2 Methods 

2.1 Method overview 

To infer the potential lncRNA-protein associations, we propose a new model called LPI-RNMF. 

The model consists of two steps (Fig. 1). In the first step, we got the integrated lncRNA 

similarity matrix 𝑆𝑙 and protein similarity matrix 𝑆𝑝 by fully exploiting sequence similarity 

and Gaussian interaction profile (GIP) kernel similarity, respectively. Then, we propose a novel 

regularized nonnegative matrix factorization algorithm to discover the potential lncRNA-

protein associations. 

2.2 Similarity measures 

Let 𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑚}  and 𝐿 = {𝐿1, 𝐿2, … 𝐿𝑛}  denote the sets of proteins and lncRNAs, 

where 𝑚 and 𝑛 denote the numbers of proteins and lncRNAs, respectively. To facilitate the 

description of the method and lncRNA-protein associations, we introduced the matrix 

𝐴 𝜖 𝑅𝑛×𝑚 as an adjacency matrix of lncRNA-protein associations, where  𝐴𝑖𝑗 = 1 if lncRNA 

𝑙𝑖 has a known association with protein 𝑝𝑗, otherwise 𝐴𝑖𝑗 = 0. Set 𝐴(𝑙𝑖) = (𝑙𝑖1, 𝑙𝑖2, … , 𝑙𝑖𝑚) 

denotes the 𝑖th row of the adjacency matrix 𝐴, which represents the interaction profile of the 

lncRNA 𝑙𝑖. And 𝐴(𝑝𝑗) = (𝑝1𝑗, 𝑝2𝑗, … , 𝑝𝑛𝑗) denotes the 𝑗th column of the adjacency matrix 
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𝐴, which represents the interaction profile of the protein 𝑝𝑗. 

 

Figure 1. The overall workflow of LPI-RNMF 

2.2.1 lncRNA similarity measures 

The basic assumption that similar lncRNAs (proteins) share similar interaction or 

noninteraction pattern with proteins (lncRNAs) is widely used in the related studies [18,27]. 

The GIP kernel similarity has been widely applied to bioinformatics and related fields [29,31]. 

In this work, for a given lncRNA 𝑙𝑖, we first extract the 𝐴(𝑙𝑖) to represent the interaction 

profile of lncRNA 𝑙𝑖  from the training adjacency matrix 𝐴 . Subsequently, we use the 

following equation to calculate the GIP kernel similarity between the lncRNA 𝑙𝑖 and  𝑙𝑞: 

                                               𝐾𝐿(𝑙𝑖, 𝑙𝑞) = 𝑒𝑥𝑝(−𝜎𝑙||𝐴(𝑙𝑖) − 𝐴(𝑙𝑞)||2)                                          (1) 

                                                           𝜎𝑙   = 𝜎𝑙
′/ (

1

𝑛
∑ ||𝐴(𝑙𝑘)||2

𝑛

𝑘=1

)                                                    (2) 

where 𝜎𝑙 represents the normalized interaction profile kernel bandwidth, 𝜎𝑙
′ is a parameter 
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and set 𝜎𝑙
′ = 1 in the experiments. Matrix 𝐾𝐿 denotes the lncRNA GIP kernel similarity 

matrix. Practically, we will recalculate the GIP kernel similarity based on the training samples 

every time during the LOOCV or 5-fold cross-validation. 

Next, we calculate the normalized Smith-Waterman (SW) score [48,49] for measuring the 

sequence similarities between lncRNA pairs. The sequence similarity between lncRNA 𝑙𝑖 and 

 𝑙𝑞 can be calculated as follows: 

                                                𝑆𝐿(𝑙𝑖, 𝑙𝑞) =
𝑆𝑊 (𝑆𝑙𝑖

, 𝑆 𝑙𝑞
)

√𝑆𝑊(𝑆𝑙𝑖
, 𝑆 𝑙𝑖

)𝑆𝑊 (𝑆𝑙𝑞
, 𝑆 𝑙𝑞

)

                                          (3) 

where 𝑆𝑊 (𝑆𝑙𝑖
, 𝑆 𝑙𝑞

) denotes the normalized SW score of lncRNA 𝑙𝑖 and  𝑙𝑞. 𝑆𝑙𝑖
 and 𝑆 𝑙𝑞

 

represent the sequence information of lncRNA 𝑙𝑖 and  𝑙𝑞, respectively. Matrix 𝑆𝐿 denotes 

the lncRNA sequence similarity matrix. 

2.2.2 Protein similarity measures 

We calculate the similarity of proteins in the same way as the lncRNA. The GIP kernel 

similarity of protein 𝑝𝑗 and 𝑝𝑡 can be calculated as follows: 

                                            𝐾𝑃(𝑝𝑗 , 𝑝𝑡) = 𝑒𝑥𝑝(−𝜎𝑝||𝐴(𝑝𝑗) − 𝐴(𝑝𝑡)||2)                                        (4) 

                                                            𝜎𝑝 = 𝜎𝑝
′ / (

1

𝑚
∑ ||𝐴(𝑝𝑘)||2

𝑚

𝑘=1

)                                                  (5) 

where 𝜎𝑝 represents the normalized interaction profile kernel bandwidth, 𝜎𝑝
′  is a parameter 

and set 𝜎𝑝
′ = 1 in the experiment. Matrix 𝐾𝑃 denotes the protein GIP similarity matrix. 

In the same manner, the sequence similarity between protein 𝑝𝑗 and 𝑝𝑡 can be measured 

by the normalized SW score as follows: 

                                            𝑆𝑃(𝑝𝑗 , 𝑝𝑡) =
𝑆𝑊 (𝑆𝑝𝑗

, 𝑆𝑝𝑡
)

√𝑆𝑊 (𝑆𝑝𝑗
, 𝑆 𝑝𝑗

) 𝑆𝑊(𝑆𝑝𝑡
, 𝑆 𝑝𝑡

)

                                        (6) 

where 𝑆𝑊 (𝑆𝑝𝑗
, 𝑆𝑝𝑡

) denotes the normalized SW score of protein 𝑝𝑗 and 𝑝𝑡. 𝑆𝑝𝑗
 and 𝑆𝑝𝑡

 

represent the sequence information of protein 𝑝𝑗 and 𝑝𝑡, respectively. Matrix 𝑆𝑃 denotes the 

protein sequence similarity matrix. 
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2.2.3 Integrating similarity 

Note that the GIP kernel similarity is measured by the association information and interaction 

profile, providing an extensible prediction framework by complementing sequence similarity. 

Enlightened by some studies [29,31], we obtain integrated lncRNA similarity matrix 𝑆𝑙 and 

an integrated protein similarity matrix 𝑆𝑝 as follows: 

                                              𝑆𝑙(𝑙𝑖, 𝑙𝑞) =
𝐾𝐿(𝑙𝑖, 𝑙𝑞) + 𝑆𝐿(𝑙𝑖, 𝑙𝑞)

2
                                                        (7) 

                                           𝑆𝑝(𝑝𝑗, 𝑝𝑡) =
𝐾𝑃(𝑝𝑗, 𝑝𝑡) + 𝑆𝑃(𝑝𝑗, 𝑝𝑡)

2
                                                    (8) 

Specifically, the integrated similarity matrix is calculated as a mean matrix of the sequence 

similarity matrix and GIP kernel similarity matrix. 

2.3 Regularized nonnegative matrix factorization algorithm 

2.3.1 Standard NMF 

Nonnegative matrix factorization (NMF) is a popular technique for multivariate analysis of 

nonnegative data and widely used for feature learning and data faithful representation in the 

field of bioinformatics and computer vision [50,51]. The goal of NMF is to seek a 

decomposition of one nonnegative matrix 𝑌  and obtain two nonnegative matrices whose 

product will be the best approximation of 𝑌 . The problem of lncRNA-protein association 

prediction can be transformed into the NMF problem: 

                                                               𝑚𝑖𝑛
𝑊,𝐻

∥ 𝑌 − 𝑊𝐻𝛵 ∥𝐹
2                                                                 (9)       

𝑠. 𝑡.   𝑊 ≥ 0, 𝐻 ≥ 0    

where || ∙ ||𝐹 is Frobenius norm of the matrix,  𝑌 is the lncRNA-protein adjacency matrix, 

𝑌 ≥ 0 and  𝑌𝜖𝑅𝑛×𝑚. 𝑊 and 𝐻 are nonnegative matrices and 𝑊𝜖𝑅𝑛×𝑘, 𝐻𝜖𝑅𝑚×𝑘. Lee et al. 

[52] proposed an updating algorithm to solve this optimization problem. 

2.3.2 RNMF 

Collaborative Matrix Factorization (CMF) has been applied in the field of bioinformatics 

[53,54]. According to the basic hypothesis, proteins with similar functions will tend to be 

involved in similar lncRNAs and vice versa, which is consistent with the observations of 

biological experiments [19,27]. So, similar proteins will be more likely to share similar 
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interaction or noninteraction pattern with lncRNAs. Inspired by the former research [55], to 

integrate more effective information, the regularization terms are incorporated into the LPI-

RNMF framework to guide the nonnegative matrix factorization process and measure the low-

dimensional representation of lncRNA-protein adjacency matrix. A novel objective function 

was designed and the optimization problem can be formularized as follows: 

𝑚𝑖𝑛
𝑊,𝐻

∥ 𝑌 − 𝑊𝐻𝛵 ∥𝐹
2 + 𝛼(∥ 𝑆𝑙 − 𝑊𝑊𝛵 ∥𝐹

2 +∥ 𝑆𝑝 − 𝐻𝐻𝛵 ∥𝐹
2 +∥ 𝑆𝑝 − 𝑊𝛵𝑊 ∥𝐹

2 ) 

                                                        𝑠. 𝑡.   𝑊 ≥ 0, 𝐻 ≥ 0                                                                      (10) 

where 𝑆𝑙  and 𝑆𝑝  are integrated similarity matrixes defined above, 𝛼 is the regularization 

coefficient for adjusting the contribution of lncRNA and protein similarity information. In the 

experiment, 𝑘 was set to the number of proteins on account of regularization terms. In the 

objective function, the first part is a standard NMF for searching the latent low-dimensional 

information matrices. In the second part, the effect of the first two regularization items is to 

minimize the squared error between 𝑆𝑙  ( 𝑆𝑝 ) and 𝑊𝑊𝛵 ( 𝐻𝐻𝛵 ), and the last proposed 

regularization item is based on the basic hypothesis that similar proteins will be more likely to 

share similar interaction or noninteraction pattern with lncRNAs to integrate more effective 

information. 

To adjust the smoothness of 𝑊  and 𝐻  and prevent over-fitting, the Tikhonov (𝐿2 ) 

regularization terms [45,56] are incorporated into the LPI-RNMF framework for lncRNA-

protein association prediction: 

𝑚𝑖𝑛
𝑊,𝐻

∥ 𝑌 − 𝑊𝐻𝛵 ∥𝐹
2 + 𝛼(∥ 𝑆𝑙 − 𝑊𝑊𝛵 ∥𝐹

2 +∥ 𝑆𝑝 − 𝐻𝐻𝛵 ∥𝐹
2 +∥ 𝑆𝑝 − 𝑊𝛵𝑊 ∥𝐹

2 )

+ 𝛽(∥ 𝑊 ∥𝐹
2 +∥ 𝐻 ∥𝐹

2 ) 

                                                    𝑠. 𝑡.   𝑊 ≥ 0, 𝐻 ≥ 0                                                                          (11) 

where 𝛽 is also the regularization coefficient used to adjust the Tikhonov regularization term. 

In the objective function, the third part is used to prevent over-fitting. To simplify the complex 

problem and promote the robust performance of the model, we introduced the same parameter 

for the same regularization term. 
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2.3.3 Optimization 

In this work, the Lagrange multipliers method is applied to the optimization problem Eq. (11). 

First, according to the Frobenius norm and trace property of matrix, two kinds of regularization 

terms can be transformed into: 

𝑅1 =∥ 𝑆𝑙 − 𝑊𝑊𝛵 ∥𝐹
2 +∥ 𝑆𝑝 − 𝐻𝐻𝛵 ∥𝐹

2 +∥ 𝑆𝑝 − 𝑊𝛵𝑊 ∥𝐹
2  

= 𝑇𝑟(𝑆𝑙𝑆𝑙
𝛵) − 2𝑇𝑟(𝑆𝑙𝑊𝑊𝛵) + 𝑇𝑟(𝑊𝑊𝛵𝑊𝑊𝛵)    

                                   +𝑇𝑟(𝑆𝑝𝑆𝑝
𝛵) − 2𝑇𝑟(𝑆𝑝𝐻𝐻𝛵) + 𝑇𝑟(𝐻𝐻𝛵𝐻𝐻𝛵)                                    

                                          +𝑇𝑟(𝑆𝑝𝑆𝑝
𝛵) − 2𝑇𝑟(𝑆𝑝𝑊𝛵𝑊) + 𝑇𝑟(𝑊𝛵𝑊𝑊𝛵𝑊)                           (12) 

                                 𝑅2 =∥ 𝑊 ∥𝐹
2 +∥ 𝐻 ∥𝐹

2 = 𝑇𝑟(𝑊𝑊𝛵) + 𝑇𝑟(𝐻𝐻𝛵)                                         (13) 

where 𝑇𝑟(∙) denotes the trace of matrix. 

We set Φ = [𝜑𝑖𝑘] and  Ψ = [𝜓𝑗𝑘]  are the Lagrange multipliers of the constrains 𝑤𝑖𝑘 ≥ 0 

and ℎ𝑗𝑘 ≥ 0, respectively. Then, we define the Lagrange function 𝐿𝑓 as follows: 

                      𝐿𝑓 = 𝑇𝑟(𝑌𝑌𝛵) − 2𝑇𝑟(𝑌𝐻𝑊𝛵) + 𝑇𝑟(𝑊𝐻𝛵𝐻𝑊𝛵) + 𝛼𝑅1 + 𝛽𝑅2                         

+ 𝑇𝑟(Φ𝑊𝛵) + 𝑇𝑟(Ψ𝐻𝛵)                                                                                        (14) 

After using the Karush-Kuhn-Tucker (KKT) conditions [57], we can obtain the following 

updating rules: 

                                             𝑤𝑖𝑘 = 𝑤𝑖𝑘

(𝑌𝐻 + 2𝛼(𝑆𝑙𝑊 + 𝑊𝑆𝑝))
𝑖𝑘

(𝑊𝐻𝛵𝐻 + 𝛽𝑊 + 4𝛼𝑊𝑊𝛵𝑊)𝑖𝑘
                                     (15) 

                                             ℎ𝑗𝑘 = ℎ𝑗𝑘

(𝑌𝛵𝑊 + 2𝛼𝑆𝑝𝐻)
𝑗𝑘

(𝐻𝑊𝛵𝑊 + 𝛽𝐻 + 2𝛼𝐻𝐻𝛵𝐻)𝑗𝑘
                                         (16) 

The matrices 𝑊 and 𝐻 are updated alternately based on the Eq. (15) and Eq. (16) until 

convergence. Eventually, we will obtain the predicted lncRNA-protein adjacency matrix 𝑌∗ =

𝑊𝐻𝛵 and prioritize the protein-related lncRNAs (lncRNA-related proteins) based on the 

predictive values in the matrix 𝑌∗ . 𝑌𝑖𝑗
∗  is the score measuring how likely lncRNA 𝑙𝑖  is 

associated with protein 𝑝𝑗. 
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3 Results 

3.1 Datasets 

To further evaluate the performance of LPI-RNMF, the summary of two publicly lncRNA-

protein data sets used in the experiment is tabulated in Table 1. The first data set was a widely-

used data set and collected by Zhang et al. [18]. It is used as a benchmark data set. The LPI data 

were downloaded from the NPInter v2.0 [58] database which is one of the most comprehensive 

databases of interactions between other biomolecules and ncRNAs. In the experiment, the 

lncRNA sequences were downloaded from the NONCODE [59] database which is an integrated 

knowledge database about ncRNAs. In addition, the protein sequences were downloaded from 

the SUPERFAMILY 2.0 [60] database which stores millions of protein sequences. The second 

data set was collected by Zheng et al. [41], it is used as a novel data set in the experiment. We 

implement a test on the novel data set to demonstrate the reliable and effective prediction 

performance of the method proposed by us. 

 

Table 1. Summary of two data sets in the experiment. 

Data sets lncRNAs Proteins Associations 

Benchmark data set 990 27 4158 

Novel data set 1050 84 4467 

3.2 Evaluation metrics 

To assess the effectiveness of LPI-RNMF and other computational models, in the same 

experimental conditions, we implemented leave-one-out cross-validation (LOOCV) and 5-fold 

cross-validation (5-CV) schemes. In the 5-CV framework, the experiment was repeated for 20 

times for every model since random sample division may cause the potential experimental bias. 

Sensitivity and 1-specificity were obtained and plotted the receiver-operating characteristics 

(ROC) curves to intuitively assess the performance. Moreover, we also calculated the areas 

under the ROC curve (AUC) to evaluate the performance of different methods. The AUC value 

of 0.5 means random performance and the AUC value of 1 indicates perfect prediction. The 

ratio between the known lncRNA-protein associations and the unobserved ones has a serious 

imbalance in the data set. The precision-recall (PR) curve [61] is more suitable than the ROC 
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curve when different classes are imbalanced. Therefore, we also used the PR curve and AUPR 

to measure the performance. In the LOOCV framework, the corresponding AUC values were 

also calculated to intuitively assess the performance. 

Beyond that, we also used several widely used evaluation metrics, including accuracy 

(ACC), sensitivity (SEN), precision (PRE), and 𝐹1 𝑠𝑐𝑜𝑟𝑒, expressed as follows: 

                                                  𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                         (17) 

                                                             𝑆𝐸𝑁 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                     (18) 

                                                             𝑃𝑅𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                     (19) 

                                                 𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
                                                      (20) 

where TP, FP, TN, and FN represent the number of true positives, false positives, true negatives, 

and false negatives, respectively. In the lncRNA-protein association data set, the unknown 

lncRNA-protein associations are considered negative samples, while the known associations 

are called positive samples. 

Average performances of all evaluation metrics were obtained during the experiment. The 

performance of the model will be better along with the value of the metric becomes larger. 

 

Figure 2. (A) The relationship between AUC value of the LPI-RNMF and parameter 𝛼 . (B) The 

relationship between AUC value of the LPI-RNMF and parameter 𝛽. 

3.3 Model setting 

The values of 𝛼 and 𝛽  are important parameters of LPI-RNMF, and their different scale 

values will influence the prediction performance. To explore the properties of the proposed 

method, we applied the grid search method and some comparison experiments to find the best 
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model parameters. In order to explore the influences of 𝛼 and 𝛽, we plotted the figures as 

shown in Fig. 2. From the figure, the prediction performance of LPI-RNMF is greatly enhanced 

when 𝛼 increases from 0 to 0.05, indicating the second part of objective function provides 

very effective information (see Fig. 2A), and the performance keeps a decreasing trend as the 

value of 𝛼 increases from 0.05 to 0.45. The trend of 𝛽 is similar with the parameter 𝛼 (see 

Fig. 2B). Finally, the parameter values of 𝛼 and 𝛽 were set 0.05 and 4 for the model to obtain 

optimal and stable prediction performance. 

The proposed optimization function is convergence which is demonstrated through the 

experiments. Fig. 3A shows the convergence curve on the benchmark data set. From the figure, 

we can see that the objective function value decreases as the iterations. 

3.4 Comparison with benchmark prediction methods 

To evaluate the performance of LPI-RNMF, we compared it with five benchmark 

computational methods, including LPI-FKLKRR [48], LPBNI [40], LPIHN [39], collaborative 

filtering (CF) and random walk with restart (RWR) [18]. In this paper, we reproduced these 

computational models under the same experimental conditions on the same benchmark data set, 

and conducted 5-CV framework for comparison. The comparison results have been shown in 

Fig. 3B, Fig. 3C and Fig. 4, and all details are presented in Table 2. Fig. 3B is the ROC curves 

of different methods under 5-CV. From the figure, the AUC values of other comparative 

methods are the following: LPI-FKLKRR (AUC: 0.9045), RWR (AUC: 0.8309), CF (AUC: 

0.7683), LPBNI (AUC: 0.8564) and LPIHN (AUC: 0.8442). Our method achieves average 

AUC value (0.9102), which is higher than other methods under the same condition. Fig. 3C is 

the PR curves of different methods under 5-fold cross-validation. We can observe that our 

method obtains the highest average AUPR value (0.7245), indicating that our method is more 

reliable. In addition, we also obtain other values of the evaluation metrics, including ACC, SEN, 

PRE and 𝐹1 score, which are presented in Table 2. From Fig. 4, we can observe that LPI-RNMF 

is superior to other methods under the same experimental conditions. In general, these can 

suggest that LPI-RNMF is a promising tool in predicting unknown LPIs. 

In addition, we reproduced these computational methods on the benchmark data set under 

the LOOCV framework. The corresponding AUC values and ROC curves were calculated in a 
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similar way with 5-fold cross-validation. As shown in Fig. 3D, the AUC value of LPI-RNMF 

is 0.9210, which is significantly better than that of RWR (0.8577), CF (0.7927), LPBNI (0.8823) 

and LPIHN (0.8800). To sum up, the experimental results demonstrate the prediction 

performance of LPI-RNMF is reliable and effective. 

 

Figure 3. (A) Convergence behavior of objection function on the benchmark data set. (B) The ROC 

curves of different methods for LPI prediction under 5-fold cross-validation. (C) The PR curves of 

different methods for LPI prediction under 5-fold cross-validation. (D)The ROC curves of different 

methods for LPI prediction under LOOCV. 

 

Table 2. The comparison results of different methods via 20 runs of 5-CV on benchmark dataset. 

 AUC AUPR SEN PRE ACC 𝑭𝟏 score 

LPI-RNMF 0.9102 0.7245 0.6259 0.6754 0.8943 0.6482 

LPI-FKLKRR 0.9045 0.6912 0.6174 0.6544 0.8893 0.6344 

RWR 0.8309 0.5724 0.5641 0.5505 0.8597 0.5557 

CF 0.7683 0.4958 0.4928 0.4870 0.8376 0.4860 

LPBNI 0.8564 0.6207 0.6033 0.5791 0.8683 0.5877 

LPIHN 0.8442 0.5500 0.6528 0.5002 0.8436 0.5649 

3.5 Case studies 

The purpose of the case study is to verify the power of the model for predicting new protein 

without any known related lncRNAs. We masked all relationships between all lncRNAs and 

the same protein. The model was trained with the rest of the known associations and tested on 
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masked associations (validation data sets). Specifically, in the protein case studies, we 

converted all 1 to 0 corresponding to the same protein in the lncRNA-protein adjacency matrix 

𝐴 and sorted all lncRNA samples (positive and unknown samples) that are related to this 

protein based on the model. Then, we chose the top ranked predictions to further verify the 

performance. The model will be efficient if the top predictions have more positive samples. 

 
Figure 4. Performance of different methods on benchmark data set via 20 runs of 5-CV. 

 

In the protein case studies, the top 10 prediction associations of two protein 

(ENSP00000401371 and ENSP00000381031) were extrapolated by LPI-RNMF as shown in 

Table 3. Our method achieved 9/10 and 10/10 successful prediction performance, respectively. 

The previous works LPI-FKLKRR [48] and LPI-KTASLP [44] also used the protein 

ENSP00000401371 to make case studies and achieved 6/10 and 5/10 successful prediction 

performance, respectively. In the lncRNA case studies, since the number of the protein is small, 

the top 5 associations of two lncRNAs (NONHSAT031708 and NONHSAT007429) were 

extrapolated by the LPI-RNMF as shown in Table 4, respectively. All predictions of these two 

lncRNAs are right. The previous work LPI-FKLKRR also used the lncRNA NONHSAT031708 

to make a case study and achieved 3/5 successful prediction performance. If we have a new 

protein, the results demonstrate that our method can predict the possibility of interaction 

between this new protein and 990 lncRNAs used in the experiment. 
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3.6 Evaluation on novel data set 

A novel data set is further tested to demonstrate the stable performance of our algorithm. The 

summary information of the novel data set can be found in Table 1. The 5-fold cross-validation 

was implemented on the novel data set, and the comparison results have been shown in Table 

5. From the table, we can observe that LPI-RNMF achieves the average AUPR value of 0.7459 

and the average AUC value of 0.9739. The performance is higher than LPI-KTASLP and LPI-

FKLKRR methods. The results indicate that better robustness performance can be obtained by 

our method on the new data set. 

 

Table 3. Top 10 associations of protein ENSP00000401371 and ENSP00000381031 

lncRNA ID Protein ID Rank Confirm? 

NONHSAT021830 ENSP00000401371 1 Confirmed 

NONHSAT137541 ENSP00000401371 2 Confirmed 

NONHSAT135796 ENSP00000401371 3 Confirmed 

NONHSAT041921 ENSP00000401371 4 Confirmed 

NONHSAT009703 ENSP00000401371 5 Confirmed 

NONHSAT138142 ENSP00000401371 6 Confirmed 

NONHSAT027070 ENSP00000401371 7 Confirmed 

NONHSAT104639 ENSP00000401371 8 —— 

NONHSAT104991 ENSP00000401371 9 Confirmed 

NONHSAT011652 ENSP00000401371 10 Confirmed 

NONHSAT021830 ENSP00000381031 1 Confirmed 

NONHSAT137541 ENSP00000381031 2 Confirmed 

NONHSAT135796 ENSP00000381031 3 Confirmed 

NONHSAT009703 ENSP00000381031 4 Confirmed 

NONHSAT041921 ENSP00000381031 5 Confirmed 

NONHSAT138142 ENSP00000381031 6 Confirmed 

NONHSAT027070 ENSP00000381031 7 Confirmed 

NONHSAT104991 ENSP00000381031 8 Confirmed 

NONHSAT011652 ENSP00000381031 9 Confirmed 

NONHSAT001511 ENSP00000381031 10 Confirmed 

 

Table 4. Top 5 associations of lncRNA NONHSAT031708 and NONHSAT007429 

lncRNA ID Protein ID Rank Confirm? 

NONHSAT031708 ENSP00000385269 1 Confirmed 

NONHSAT031708 ENSP00000258729 2 Confirmed 

NONHSAT031708 ENSP00000240185 3 Confirmed 

NONHSAT031708 ENSP00000371634 4 Confirmed 

NONHSAT031708 ENSP00000290341 5 Confirmed 

NONHSAT007429 ENSP00000385269 1 Confirmed 

NONHSAT007429 ENSP00000258729 2 Confirmed 

NONHSAT007429 ENSP00000371634 3 Confirmed 

NONHSAT007429 ENSP00000240185 4 Confirmed 

NONHSAT007429 ENSP00000290341 5 Confirmed 
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Table 5. Performance of different methods via 5-fold cross-validation on the novel dataset. 

Methods AUC AUPR 

LPI-RNMF 0.9739 0.7459 

LPI-KTASLP 0.9152 0.7173 

LPI-FKLKRR 0.9669 0.7062 

4 Conclusion and discussion 

In this paper, a novel model called LPI-RNMF is proposed to reveal the potential LPIs based 

on the regularized nonnegative matrix factorization algorithm. In the 5-fold cross-validation 

and LOOCV evaluation framework, the AUC values of LPI-RNMF are 0.9102 and 0.9210, 

respectively, which are better than other computational methods compared in this paper. 

Furthermore, case studies and implementing a test on a novel data set also demonstrate that 

LPI-RNMF has a robust and stable performance. The results confirm that the proposed method 

is promising in predicting unknown LPIs. 

Several factors leading to LPI-RNMF prediction performance are summarized as follows. 

Firstly, LPI-RNMF discover unknown associations using a semi-supervised learning strategy 

and does not require negative samples. Secondly, the calculation process of LPI-RNMF uses 

less prior information and model parameters, thus saving time and promoting the robust 

performance. Thirdly, it is based on the regularized nonnegative matrix factorization, not only 

integrating GIP kernel similarity and sequence similarity but also mining conveniently the 

topological structure information. Of course, LPI-RNMF also has some limitations, such as 

combining reasonably various kinds of data sources will be a challenge for the computational 

model if some supplementary data is introduced. 
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