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Abstract

In this paper, we will obtain two equal-size equivalence classes for the set of all
codons under the action of the group L which is corresponding to the maximal self-
complementary C3−codes. An n−dimensional vector space on the field GF (23) will
be introduced based on its Boolean lattice structure and then obtain its associated
Lie algebra. The commutator between codons will recognize collinear codons and
codon graph is defined for all codons of the desired set that are collinear and it will
illustrate the relation between codons using Hamming distances. This establishes
a relationship between the codons of the defined genetic code and the algebraic
structure.

1 Basic definitions

Throughout this paper the DNA bases will be denoted by A, G, C and T and in RNA T

will be changed by U . The set of all DNA bases is denoted by Ω and the notations Ω∗,

Ω+ and Ωn, n ≥ 1, stand for the set of all words, non-empty words and words of length

n on Ω, respectively. A sequence of length three in Ω is called a codon. It is well-known

that each codon can be converted to one of twenty amino acids or one terminated signal.

It is well-known that for each prime power pn there exists a unique finite field of this

order that will be denoted by GF (pn), the Galois field of order pn. A non-empty set B

∗Corresponding author

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 85 (2021) 545-553
                         

                                          ISSN 0340 - 6253 



equipped with two binary operations ∧ and ∨, a unary operation ¬ and two special ele-

ments 0 and 1 is called a Boolean algebra if (B,∧,∨,¬, 0, 1) is a distributive complemented

lattice with minimum element 0 and maximum element 1.

The pairs (G,C) and (A, T ) of bases in Ω are called the complementary bases of

DNA. This notations help us to define a Boolean algebra on Ω and extends this structure

to Ωn, where n ≥ 1 is a positive integer. Sanchez et al. [14] introduced two Boolean

algebra structures on the set of all codons. These Boolean algebra structures are dual

and since they have the same number of elements, they are isomorphic. Furthermore, The

Boolean algebras constructed from the Galois field GF (64) and the authors calculated the

Hamming distance between codons which reflects the different hydrophobicities between

their respective coded amino acids. We refer the interested readers to consults other

interesting papers of Sanchez and his co-authors on the genetic code Boolean lattice [12],

DNA sequences vector space on a genetic code Galois field [13] and the symmetry group

of the genetic-code cubes [15].

We recall that Ω3 is the set of all codons in which Ω = {C, T,A,G}. Define φ : Ω3 −→

Ω3 by φ(rst) = str. Following [3, 4], four permutations I, c, p and r on Ω can be defined

by I = (), c = (A, T )(C,G), p = (A,G)(C, T ) and r = (A,C)(G, T ). The mappings I,

c, p and r are called, the identity, the nucleotide complementary, the pyrimidine/purine

and the keto/amino mappings, respectively.

Suppose Ω? and Ω+ denote the set of all words and non-empty words on Ω, respec-

tively. A subset S of Ω+ is called a code if for x1, . . . , xn, y1, . . . , ym ∈ S, n,m ≥ 1,

the condition x1 . . . xn = y1 . . . ym implies that n = m and xi = yi, 1 ≤ i ≤ n. A

trinucleotide code is a non-empty subset X of Ω3. It is called self-complementary if for

each trinucleotide t from X, c(t) ∈ X. A trinucleotide code X ⊆ Ω3 is said to be cir-

cular, if for x1, . . . , xn, y1, . . . , ym ∈ X, n,m ≥ 1, r ∈ Ω∗ and s ∈ Ω+, the conditions

sx2 . . . xnr = y1 . . . ym and x1 = rs imply that n = m, xi = yi, 1 ≤ i ≤ n, and r = ε,

where ε denotes the empty word, see [10, Definitions 3, 4 and 5] for more details. A

trinucleotide code X is called C3 self-complementary, if X,φ(X) and φ2(X) are circular,

c(X) = X, c(φ(X)) = φ2(X) and c(φ2(X)) = φ(X). A circular trinucleotide code X is

maximal, if for each x ∈ Ω3 \X, X ∪ {x} is not a circular trinucleotide code. The codons

abc, bca and cab are called cyclic and a periodic code is a code of type xxx in which x ∈ Ω.

There are 60 non-periodic codons that can be partitioned into 20 parts each of which
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contains cyclic codons. Arquès and Michel [1] proved that there are 216 C3 maximal self-

complementary trinucleotide code and Fimmel et al. [4] proved that these 216 codes can

be partitioned into 27 equivalence classes of the same length 8 and defined the group L =

{I, c, r, p, πAT , πCG, πACTG, πAGTC} isomorphic to the dihedral group of order 8. Here,

πAT = (A, T ), πCG = (C,G), πACTG = (A,C, T,G) and πAGTC = (A,G, T, C). They

also noted that a trinucleotide circular code can contain at most one element from every

equivalence class and cannot contain the codons AAA, CCC, GGG and TTT . As a

consequence, a trinucleotide circular code can contain at most 20 codons and there are at

most 320 maximal trinucleotide circular codes.

Following Arquès and Michel [1], the set Ω3 of all codons can be partitioned into three

subsets X0, X1 and X2 as follows:

X0 = { AAC,AAT,ACC,ATC,ATT,CAG,CTC,CTG,GAA,GAC,

GAG,GAT,GCC,GGC,GGT,GTA,GTC,GTT, TAC, TTC};

X1 = { AAG,ACA,ACG,ACT,AGC,AGG,ATA,ATG,CCA,CCG,

GCG,GTG, TAG, TCA, TCC, TCG, TCT, TGC, TTA, TTG};

X2 = { AGA,AGT,CAA,CAC,CAT,CCT,CGA,CGC,CGG,CGT,

CTA,CTT,GCA,GCT,GGA, TAA, TAT, TGA, TGG, TGT}.

in which X0 is a maximal and circular C3 self-complementary trinucleotide code. Fur-

thermore, c(X0) = X0, c(X1) = X2, c(X2) = X1, X1 = P (X0) and X2 = P (X1). Here,

P : Ω3 −→ Ω3 is a one to one correspondence given by P (XY Z) = Y ZX.

The aim of this paper is to study the genetic-code architecture by an Lie algebra

approach. We follow the procedure used by Sanchez et al. in [14] . First we obtain two

equal-size equivalence classes for the set of all codons under the action of the group L

which is corresponding to the maximal self-complementary C3−codes. An n−dimensional

vector space on the field GF (23) will be introduced based on its Boolean lattice structure

and then obtain its associated Lie algebra. Note that by [14], the algebraic properties of

the codons in the constructed Boolean algebra are related to the hydrophobic properties

of the amino acids. The commutator between codons will recognize collinear codons and

codon graph is defined for all codons of the desired set that are collinear and it will

illustrate the relation between codons using Hamming distances. The Hamming distances

between codons are calculated. Knowing the distance between two codons is important
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in identifying the physico-chemical properties of the code, the position of the base and

the genetic mutation.

Throughout this paper, our notation is standard. The finite field of order q = pn, p

is prime, is denoted by GF (q). We refer to [8, 9] for our notations in code biology and

to [7] for applications of this topic in physics. Our algebraic notions and notations are

taken from [2, 6, 11]. Our calculations are done with the aid of computer algebra system

GAP [16].

2 Lie algebra on GF(8)

Following Sanchez and Grau [12], it is possible to construct a Boolean algebra on Ω in

which A is minimum, G is maximum and C, T are complement of each other and so there

are incomparable. If Z2 = {0, 1} then by correspondence C ↔ 00, A ↔ 01, T ↔ 10 and

G↔ 11, they introduced a geometric description of this Boolean algebra with vertices of

a symmetric square. This shows that each codon XY Z ∈ Ω3 can be written in a unique

way as a0a1a2a3a4a5 such that ai ∈ {0, 1}, 0 ≤ i ≤ 5. This representation of XY Z is

denoted by ξ(XY Z).

Suppose F is a field of prime order p and f(x) ∈ F [x] is an irreducible polynomial of

degree n in x. It is well-known that F [x]
〈f(x)〉 is a field of order pn and each member of this

field can be represented uniquely by a polynomial of degree < n. Sanchez et al. [13] used

this known result in algebra to present a one-to-one correspondence α : Ω3 −→ GF (64)

given by α(XY Z) = a0 +a1x+a2x
2 +a3x

3 +a4x
4 +a5x

5, where ξ(XY Z) = a0a1a2a3a4a5.

By [2, Example 3.2], there are nine irreducible polynomials of degree 6 over the field

GF (2). One of these irreducible polynomials is g(x) = x6 + x + 1 and so Z2[x]
〈g(x)〉 is a field

of order 64.

It is easy to see that x3 + x2 + 1 is an irreducible polynomial on GF (2). Set M =

{b0b1b2 | bi ∈ {0, 1}} and β : M −→ GF (8) is given by β(b0b1b2) = b0 + b1x + b2x
2. Set

M = {m0 = 111,m1 = 110,m2 = 101,m3 = 011,m4 = 100,m5 = 010,m6 = 001,m7 =

000} and Gj = {mimj | mi ∈ M, 0 ≤ i ≤ 7}, where 0 ≤ j ≤ 7. It can easily be seen that

|Gj| = 8, 0 ≤ j ≤ 7, ∩7j=0Gj = ∅ and Ω3 = ∪7j=0Gj. The subsets Gj of Ω3, 0 ≤ j ≤ 7, are

as follows:
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G0 = {111111, 110111, 101111, 011111, 100111, 010111, 001111, 000111},

G1 = {111110, 110110, 101110, 011110, 100110, 010110, 001110, 000110},

G2 = {111101, 110101, 101101, 011101, 100101, 010101, 001101, 000101},

G3 = {111011, 110011, 101011, 011011, 100011, 010011, 001011, 000011},

G4 = {111100, 110100, 101100, 011100, 100100, 010100, 001100, 000100},

G5 = {111010, 110010, 101010, 011010, 100010, 010010, 001010, 000010},

G6 = {111001, 110001, 101001, 011001, 100001, 010001, 001001, 000001},

G7 = {111000, 110000, 101000, 011000, 100000, 010000, 001000, 000000}.

We now define an action of the group L on Ω3 byXY Zα = (Xα)(Y α)(Zα), XY Z ∈ Ω3

and α ∈ L, and extend this action to {G0, G1, G2, G3, G4, G5, G6, G7}. By some tedious

calculations, one can see that c(G1) = G6, r(G1) = G4, p(G1) = G3, c(G7) = G0,

r(G7) = G5 and p(G7) = G2. This proves that the action of L on Ω3 has exactly two

orbits as [G0] = {G0, G2, G5, G7} and [G1] = {G1, G3, G4, G6}. Note that in the notation

of Sanchez et al. [13], AAA ∈ G2, CCC ∈ G0, GGG ∈ G7 and TTT ∈ G5.

Suppose Ψ : G0 −→ GF (8) is a mapping given by Ψ(XY Z) = Ψ(a0a1a2a3a4a5) =

(a0 + a5) + (a1 + a4)x + (a2 + a3)x
2. Then Ψ(CCC) = Ψ(111111) = 0, Ψ(CAC) =

Ψ(110111) = x2, Ψ(TCC) = Ψ(101111) = x, Ψ(ACC) = Ψ(011111) = 1, Ψ(TAC) =

Ψ(100111) = x+x2, Ψ(AAC) = Ψ(010111) = 1 +x2, Ψ(GCC) = Ψ(001111) = 1 +x and

Ψ(GAC) = Ψ(000111) = 1 + x+ x2.

Following Sanchez et al. [13], if XY Z and X ′Y ′Z ′ are two codons and λ ∈ GF (8),

then we define:

XY Z +X ′Y ′Z ′ = Ψ−1([Ψ(XY Z) + Ψ(X ′Y ′Z ′) mod 2]),

XY Z •X ′Y ′Z ′ = Ψ−1([f(XY Z) •Ψ(X ′Y ′Z ′) mod q(x)]),

λ ? XY Z = Ψ−1([λ.Ψ(XY Z) mod q(x)]).

It is easy to check that by above definitions, G0 is a vector space of dimension 3 over

the field GF (2). To makes G0 into a Lie algebra, we have to define the codon commu-

tator [XY Z,X ′Y ′Z ′]. To do this we use a similar method as Sanchez et al. [14]. Define

[XY Z,X ′Y ′Z ′] = (Z ×X ′ +X × Z ′)(Z × Y ′ + Y × Z ′)(Z × Z ′). Here, the operations+

and × between DNA bases are defined by Table 2.1.
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+ C T A G
C C T A G
T T C G A
A A G C T
G G A T C

× C T A G
C C C C C
T C T A G
A C A G T
G C G T A

Table 2.1. The operations + and × between DNA bases.

XY Z X ′Y ′Z ′ XY Z +X ′Y ′Z ′

CAC TAC TCC
CAC ACC AAC
CAC GCC GAC
TCC AAC GAC
TCC ACC GCC
TAC AAC GCC
TAC ACC GAC

Table 2.2. Collinear codons of G0.

Note that [XY Z,X ′Y ′Z ′] = [X ′Y ′Z ′, XY Z] and by this definition, G0 is a Lie al-

gebra on GF (8). It is well-known that the symmetry of commutators is related to the

homologous recombination.

Two codons (XY Z), (X ′Y ′Z ′) ∈ Ω3 \ (CCC) is called collinear if [XY Z,X ′Y ′Z ′] =

CCC. It is easy to check that by above definition

[XY Z,X ′Y ′Z ′] = [XY Z,XY Z +X ′Y ′Z ′] = [X ′Y ′Z ′, XY Z +X ′Y ′Z ′] (1)

and [XY Z,XY Z] = CCC.

Based on (Eq.1) it is obvious, if [XY Z,X ′Y ′Z ′] = CCC, then [XY Z,XY Z+X ′Y ′Z ′]

= CCC.

We classified collinear codons of G0 in Table 2.2.

By adding CCC to every rows of Table 2.2 , we have seven subgroups in form of

{CCC,XY Z,X ′Y ′Z ′, XY Z+X ′Y ′Z ′}. Based on Table 2.2, we have seven subgroups Hi,

for 0 ≤ i ≤ 6 as follows;

H0 = {CCC,CAC, TAC, TCC}, H1 = {CCC,CAC,ACC,AAC},

H2 = {CCC,CAC,GCC,GAC}, H3 = {CCC, TCC,AAC,GAC},

H4 = {CCC, TCC,ACC,GCC}, H5 = {CCC, TAC,AAC,GCC},

H6 = {CCC, TAC,ACC,GAC}.
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Collinear codons can be considered as one-dimensional subspace and can generate a

vectorial line.Therefore, each of Hi for 0 ≤ i ≤ 6 is a one-dimensional vector space.

Let J ⊆ Ω3. We define a directed codon graph G(J) = (V (J), E(J)) as follows:

V (J) = {N1, N2, ..., Nn|Ni ∈ Ω3 \ (CCC),∀1 ≤ i ≤ n,N1 < N2 < ... < Nn},

E(J) = {(Nj, Ni)|[Nj, Ni] = CCC,Ni, Nj ∈ V (J), ∀j, i ∈ {1, 2, ..., n}, j < i},

where (Nj, Ni) is an edge that connect vertices Nj to Ni.

It’s obvious that |V (J)| = n and |E(J)| = n(n−1)
2
− |Noncol(J)|, in which |Noncol(J)|

is number of codons in J that are not collinear.

Amino
acid
type

His Ser Trp Thr Asn Ala Asp

V (G0) CAC TCC TAC ACC AAC GCC GAC

E(G0)
(CAC, GCC), (TAC ,ACC), ( TCC, AAC)

Hamming
distance=3

(CAC, TCC), (CAC, ACC), (CAC, GAC), (TCC,
GAC), (TAC, AAC), (TAC, GCC), (ACC, GAC),

(TCC, ACC), (AAC, GCC)

Hamming
distance=2

(CAC, AAC), (TCC, TAC), (ACC, AAC), (TAC,
GAC), (AAC, GAC), ( GCC, GAC),(TCC, GCC) ,

(ACC, GCC), (CAC, TAC)

Hamming
distance=1

Table 2.3. Vertices, edges and Hamming distance of codon Graph G(G0).

ACC
GCC

AAC

TAC

CAC

TCC

GAC

Figure 1. The codon graph G(G0).

-551-



Codon Graph G(G0) is consist of seven vertices and 21 edges (Figure 1). Now we

define Hamming distance between edges of codon graph G(G0) to illustrate the differences

between codons.

Let (XY Z), (X ′Y ′Z ′) ∈ Ω3. The Hamming distance between two codons (XY Z) and

(X ′Y ′Z ′) which is indicated by d(XY Z,X ′Y ′Z ′) is the number of places in which the two

codon differ, i.e., have different characters and measure the differences between codons.

There are three codons {TAA, TAG, TGA} in Ω3 that called stop codons and other 61

codons construct 20 types of standard amino acids in protein structures. seven vertices of

codon graph G(G0) is consist of seven different type of amino acids. In Table 2. 3, more

information about vertices and edges of codon graph G(G0) are given.
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