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Abstract 

Edge-orienting conformers of octahedral [MX6–n(AB2)n] (n = 1 – 5 ) complexes have been 

enumerated on the basis of the group theory method, where M, X, and AB2 are the central 

metal atom, monoatomic ligand, and the symmetrical triatomic ligand with a donor atom A, 

respectively. In the complexes, each MAB2 unit is assumed to belong to the local C2v point 

group. Since the enumeration had already been conducted for the [M(AB2)6] complex, in this 

study, the enumeration was conducted for the following complexes: [MX(AB2)5], cis-

[MX2(AB2)4], trans-[MX2(AB2)4], fac-[MX3(AB2)3], mer-[MX3(AB2)3] cis-[MX4(AB2)2] 

trans-[MX4(AB2)2], and [MX5(AB2)]. In all the cases, the completeness of the enumerations 

was confirmed on the basis of the orbit-stabilizer theorem.  

 

1 Introduction  

Flexible molecules can have various conformer structures, and the dominant species should be 

clarified for a better understanding of the properties. Prediction of conformers is difficult for 

flexible octahedral metal complexes, because of the multiple junctions at the metal centers. 

Fundamental enumeration studies and related works have been actively conducted for cubic 

symmetry [1–23], and the enumeration results are very helpful for conformational prediction 

of flexible metal complexes [23–27]. 
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Enumeration of the conformers for octahedral metal complexes were previously 

conducted only with the AB and bent ABC type ligands (Figure 1) [17–22], but recently the 

enumeration was conducted also for an octahedral metal complex with six C2v-symmetric AB2 

ligands (Figure 1c) [23]. This enumeration result was found to be useful for conformational 

prediction of [M(py)6] type complex [23], where M and py represent the central metal atom and 

the pyridine ligand, respectively. For the purpose of extending the targets to penta-pyridine 

complexes, tetra-pyridine complexes, etc., in this study, conformers of octahedral       

[MX6–n(AB2)n] (n = 1 – 5 ) complexes have been enumerated on the basis of the group theory 

method (X: monoatomic ligand). In the complexes, each MAB2 unit is assumed to belong to 

the local C2v point group. For the C2v-symmetric AB2 ligand, there are two typical orientations 

on the octahedral coordination geometry: edge orientation and bisecting orientation (Figure 2); 

however, only the edge-orienting conformers were considered in this study, because the edge-

orienting Th conformer was found to be the only species for the [Mg(py)6]
2+ complex cation 

[23]. 

 

Figure 1. Three typical ligand moieties: an AB ligand in a bent form (a), a bent ABC ligand in a bent 

form (b), and a C2v-symmetric AB2 ligand (c).  

 
Figure 2. Typical orientations with respect to the octahedral coordination geometry: edge orientations 

(a) and bisecting orientations (b) 
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2 Methods  

Three-dimensional models were handled by Winmostar software [28], and the point groups 

were confirmed by the software. The enumeration of the conformers was conducted on the basis 

of the group theory method. The enumeration algorithm is described in reference 29, and the 

enumeration was conducted manually. The completeness of enumerations was confirmed as 

follows. According to the orbit-stabilizer theorem [29], [the total number of each conformer] is 

equal to [the order of the rotation group of the conformer] divided by [the order of the rotation 

group of the coordination geometry], and the sum of the total number of each conformer should 

be equal to the number of structures (= 2n for [MX6–n(AB2)n] complex). 

 

3 Results and discussion  

3.1 Enumeration for octahedral [MX(AB2)5] complexes 

The enumeration was conducted for the octahedral [MX(AB2)5] complex on the basis of the 

group theory. The conformers were exhaustively obtained without duplication by the algorithm 

according to the orbit-stabilizer theorem [29], and the resulting conformers are listed in Table 

1, and their structures are depicted in Figure 3. As the result, nine conformers, P5-A1 through 

P5-A9, were found [point groups: 4 C2v, 4 Cs, and 1 C1]. Among them, only P5-A9 (C1 point 

group) is chiral. Except for the C1 point group, all of the obtained groups are the subgroups of 

the C4v point group of the octahedral MXA5 coordination geometry. The completeness of the 

enumeration can be confirmed by the orbit-stabilizer theorem as follows. Fixing the X ligand 

in the positive z direction, 25 (= 32) structures of the edge-orienting conformers should be 

considered. The total number of the structures for each point group is 2 (= 4/2), 4 (= 4/1), and 

4 (= 4/1) for the C2v, Cs, and C1 point groups, respectively, by considering the orders of the 

rotation groups. Then the total number of considered structures is confirmed to be equal to 32 

[2 × 4(for 4 C2v) + 4 × 6(for 4 Cs + 1 C1 + 1 C1*) = 32], where the symbol “*” represents the 

mirror image. 
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Table 1. Edge-orienting conformers for a [MX(AB2)5] complex 

Code Example a Point Group 

P5-A1 [ [±�], [±�], [−], [±�], [±�], [±�] ] C2v 

P5-A2 [ [±�], [±�], [−], [±�], [±�], [±�] ] C2v 

P5-A3 [ [±�], [±�], [−], [±�], [±�], [±�] ] C2v 

P5-A4 [ [±�], [±�], [−], [±�], [±�], [±�] ] C2v 

P5-A5 [ [±�], [±�], [−], [±�], [±�], [±�] ] Cs 

P5-A6 [ [±�], [±�], [−], [±�], [±�], [±�] ] Cs 

P5-A7 [ [±�], [±�], [−], [±�], [±�], [±�] ] Cs 

P5-A8 [ [±�], [±�], [−], [±�], [±�], [±�] ] Cs 

P5-A9 b [ [±�], [±�], [−], [±�], [±�], [±�] ] C1 

aOrder: (x, y, z, –x, –y, –z). bEnantiomeric mirror image exists. 

 

 

Figure 3. Structures of edge-orienting conformers for [MX(AB2)5] complex, P5-A1 – P5-A9.  
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3.2 Enumeration for octahedral cis/trans-[MX2(AB2)4] complexes 

The enumeration was conducted for both the octahedral cis- and trans-[MX2(AB2)4] complexes 

by the group theory method [29]. The resulting conformers are listed in Tables 2 and 3, and 

their structures are presented in Figures 4 and 5, respectively. For the cis-[MX2(AB2)4] complex, 

seven conformers, P4C-A1 through P4C-A7, were found [2 C2, 4 Cs, and 1 C1]. Among them, 

the C2 and C1 conformers are chiral. Except for the C1 point group, all of the obtained groups 

are the subgroups of the C2v point group for the octahedral cis-MX2A4 coordination geometry. 

The completeness of the enumeration can be confirmed by the orbit-stabilizer theorem as 

follows. Fixing the two X ligands in the positive x and the positive y directions, 24 (= 16) 

structures of the edge-orienting conformers should be considered. The total number of the 

structures for each point group is 1 (= 2/2), 2 (= 2/1), and 2 (= 2/1) for the C2, Cs, and C1 point 

groups, respectively, by considering the orders of the rotation groups. Then the total number of 

considered structures is confirmed to be equal to 16 [1 × 4(for 2 C2 + 2 C2*) + 2 × 6(for 4 Cs + 

1 C1 + 1 C1*) = 16], where the symbol “*” represents the mirror image. 

 

Table 2. Edge-orienting conformers for a cis-[MX2(AB2)4] complex 

Code Example a Point Group 

P4C-A1 b [ [−], [−], [±�], [±�], [±�], [±�] ] C2 

P4C-A2 b [ [−], [−], [±�], [±�], [±�], [±�] ] C2 

P4C-A3 [ [−], [−], [±�], [±�], [±�], [±�] ] Cs 

P4C-A4 [ [−], [−], [±�], [±�], [±�], [±�] ] Cs 

P4C-A5 [ [−], [−], [±�], [±�], [±�], [±�] ] Cs 

P4C-A6 [ [−], [−], [±�], [±�], [±�], [±�] ] Cs 

P4C-A7 b [ [−], [−], [±�], [±�], [±�], [±�] ] C1 

a Order: (x, y, z, –x, –y, –z). b Enantiomeric mirror image exists. 

For the trans-[MX2(AB2)4] complex, six conformers, P4T-A1 through P4T-A6, were 

found [2 D4h, 1 D2h, and 3 C2v]. Among them, none of the conformers are chiral. All of the 

obtained groups are the subgroups of the D4h point group for the octahedral trans-MX2A4 

coordination geometry. The completeness of the enumeration can be confirmed as follows. 

Fixing the two X ligands in the positive z and the negative z directions, 24 (= 16) structures of 

the edge-orienting conformers should be considered. The total number of the structures for each 

point group is 1 (= 8/8), 2 (= 8/4), and 4 (= 8/2) for the D4h, D2h, and C2v. point groups, 
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respectively, by considering the orders of the rotation groups. Then the total number of 

considered structures is confirmed to be equal to 16 [1 × 2(for 2 D4h) + 2 × 1(for 1 D2h) + 4 × 

3(3 C2v) = 16], where the symbol “*” represents the mirror image. 

 

 

Figure 4. Structures of edge-orienting conformers for cis-[MX2(AB2)4] complex, P4C-A1 – P4C-A7.  

Table 3. Edge-orienting conformers for a trans-[MX2(AB2)4] complex 

Code Example a Point Group 

P4T-A1 [ [±�], [±�], [−], [±�], [±�], [−] ] D4h 

P4T-A2 [ [±�], [±�], [−], [±�], [±�], [−] ] D4h 

P4T-A3 [ [±�], [±�], [−], [±�], [±�], [−] ] D2h 

P4T-A4 [ [±�], [±�], [−], [±�], [±�], [−] ] C2v 

P4T-A5 [ [±�], [±�], [−], [±�], [±�], [−] ] C2v 

P4T- A6 [ [±�], [±�], [−], [±�], [±�], [−] ] C2v 

aOrder: (x, y, z, –x, –y, –z).  
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Figure 5. Structures of edge-orienting conformers for trans-[MX2(AB2)4] complex, P4T-A1 – P4T-A6.  

 

3.3 Enumeration for octahedral fac/mer-[MX3(AB2)3] complexes 

The enumeration was conducted for both the octahedral fac- and mer-[MX3(AB2)3] complexes 

by the group theory method [29]. The resulting conformers are summarized in Tables 4 and 5, 

and their structures are shown in Figures 6 and 7, respectively. For the fac-[MX3(AB2)3] 

complex, two conformers, P3F-A1 and P3F-A2, were obtained. Their point groups are C3 and 

C1, respectively, and both conformers are chiral. Except for the C1 point group, the obtained 

group is the subgroup of the C3v point group for the octahedral fac-MX3A3 coordination 

geometry. The completeness of the enumeration can be as follows. Fixing the three X ligands 

in the positive x, positive y, and positive z directions, 23 (= 8) structures of the edge-orienting 

conformers should be considered. The total number of the structures for each point group is 1 

(= 3/3) and 3 (= 3/1) for the C3 and C1 point groups, respectively, by considering the orders of 

the rotation groups. Then the total number of considered structures is confirmed to be equal to 

8 [1 × 2(for 1 C3 + 1 C3*) + 3 × 2(for 1 C1 + 1 C1*) = 8], where the symbol “*” represents the 

mirror image. 
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Table 4. Edge-orienting conformers for a fac-[MX3(AB2)3] complex 

Code Example a Point Group 

P3F-A1 b [ [−], [−], [−], [±�], [±�], [±�] ] C3 

P3F-A2 b [ [−], [−], [−], [±�], [±�], [±�] ] C1 

aOrder: (x, y, z, –x, –y, –z). bEnantiomeric mirror image exists. 

 

Figure 6. Structures of edge-orienting conformers for fac-[MX3(AB2)3] complex, P3F-A1 – P3F-A2.  

For the mer-[MX3(AB2)3] complex, six conformers, P3M-A1 through P3M-A6, were 

obtained [4 C2v and 2 Cs], and none of the conformers are chiral. The obtained group is the 

subgroup of the C2v point group for the octahedral mer-MX3A3 coordination geometry. The 

completeness of the enumeration can be as follows. Fixing the three X ligands in the positive x, 

positive z, and negative z directions, 23 (= 8) structures of the edge-orienting conformers should 

be considered. The total number of the structures for each point group is 1 (= 2/2) and 2 (= 2/1) 

for the C2v and Cs point groups, respectively, by considering the orders of the rotation groups. 

Then the total number of considered structures is confirmed to be equal to 8 [1 × 4(for 4 C2v) + 

2 × 2(for 2 Cs) = 8], where the symbol “*” represents the mirror image. 

Table 5. Edge-orienting conformers for a mer-[MX3(AB2)3] complex 

Code Example a Point Group 

P3M-A1 [ [−], [±�], [−], [±�], [±�], [−] ] C2v 

P3M-A2 [ [−], [±�], [−], [±�], [±�], [−] ] C2v 

P3M-A3 [ [−], [±�], [−], [±�], [±�], [−] ] C2v 

P3M-A4 [ [−], [±�], [−], [±�], [±�], [−] ] C2v 

P3M-A5 [ [−], [±�], [−], [±�], [±�], [−] ] Cs 

P3M-A6 [ [−], [±�], [−], [±�], [±�], [−] ] Cs 

aOrder: (x, y, z, –x, –y, –z).  
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Figure 7. Structures of edge-orienting conformers for mer-[MX3(AB2)3] complex, P3M-A1–P3M-A6.  

 

3.4 Enumeration for octahedral cis/trans-[MX4(AB2)2] complexes 

The enumeration was conducted for both the octahedral cis- and trans-[MX4(AB2)2] complexes 

by the group theory method [29]. The resulting conformers are listed in Tables 6 and 7, and 

their structures are presented in Figures 8 and 9, respectively. For the cis-[MX4(AB2)2] complex, 

three conformers, P2C-A1 through P2C-A3, were found [2 C2v and 1 Cs], and none of the 

conformers are chiral. All of the obtained groups are the subgroups of the C2v point group for 

the octahedral cis-MX4A2 coordination geometry. The completeness of the enumeration can be 

confirmed as follows. Fixing the four X ligands in the positive z, the negative x, the negative y, 

and the negative z directions, 22 (= 4) structures of the edge-orienting conformers should be 

considered. The total number of the structures for each point group is 1 (= 2/2) and 2 (= 2/1) 

for the C2v and Cs point groups, respectively, by considering the orders of the rotation groups. 

Then the total number of considered structures is confirmed to be equal to 4 [1 × 2(for 2 C2v) + 

2 × 1(for 1 Cs) = 4], where the symbol “*” represents the mirror image. 
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Table 6. Edge-orienting conformers for a cis-[MX4(AB2)2] complex 

Code Example a Point Group 

P2C-A1 [ [±�], [±�], [−], [−], [−], [−] ] C2v 

P2C-A2 [ [±�], [±�], [−], [−], [−], [−] ] C2v 

P2C-A3 [ [±�], [±�], [−], [−], [−], [−] ] Cs 

aOrder: (x, y, z, –x, –y, –z).  

 

Figure 8. Structures of edge-orienting conformers for cis-[MX4(AB2)2] complex, P2C-A1 – P2C-A3.  

For the trans-[MX4(AB2)2] complex, two conformers, P2T-A1 and P2T-A2, were found 

[D2h and D2d], and none of the conformers are chiral. All of the obtained groups are the 

subgroups of the D4h point group for the octahedral trans-MX4A2 coordination geometry. The 

completeness of the enumeration can be confirmed as follows. Fixing the four X ligands in the 

positive and negative x directions and the positive and negative y directions, 22 (= 4) structures 

of the edge-orienting conformers should be considered. The total number of the structures for 

each point group is 2 (= 8/4) and 2 (= 8/4) for the D2h and D2d. point groups, respectively, by 

considering the orders of the rotation groups. Then the total number of considered structures is 

confirmed to be equal to 4 [2 × 1(for 1 D2h) + 2 × 1(for 1 D2d) = 4], where the symbol “*” 

represents the mirror image. 

 

Table 7. Edge-orienting conformers for a trans-[MX4(AB2)2] complex 

Code Example a Point Group 

P2T-A1 [ [−], [−], [±�], [−], [−], [±�] ] D2h 

P2T-A2 [ [−], [−], [±�], [−], [−], [±�] ] D2d 

aOrder: (x, y, z, –x, –y, –z).  
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Figure 9. Structures of edge-orienting conformers for trans-[MX4(AB2)2] complex, P2T-A1 – P2T-A2.  

3.5 Enumeration for octahedral [MX5(AB2)] complexes 

The enumeration was conducted for the octahedral [MX5(AB2)] complex to complete the work 

of this series. Only one conformer, P1-A1, was found as listed in Table 8 and as depicted in 

Figure 10. The point group is C2v, which is not chiral, and this point group is the subgroup of 

the C4v point group of the octahedral MX5A coordination geometry. The completeness of the 

enumeration can be confirmed as follows. Fixing the five X ligands in the positive and negative 

x directions, the positive and negative y directions, and the negative z direction, two edge-

orienting structures should be considered. The total number of the structures for the C2v point 

group is 2 (= 4/2) by considering the orders of the C4v and C2v rotation groups. Then the total 

number of considered structures is confirmed to be equal to 2 [2 × 1(for 1 C2v) = 2]. 

 

Table 8. Edge-orienting conformers for a [MX5(AB2)] complex 

Code Example a Point Group 

P1-A1 [ [−], [−], [±�], [−], [−], [−] ] C2v 

aOrder: (x, y, z, –x, –y, –z).  

 

Figure 10. Structures of edge-orienting conformers for [MX(AB2)5] complex, P5-A1 – P5-A9.  
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4 Concluding remarks  

In this study, conformers were enumerated on the basis of group theory method for octahedral 

[MX6–n(AB2)n] (n = 1 – 5 ) complexes: [MX(AB2)5], cis-[MX2(AB2)4], trans-[MX2(AB2)4], fac-

[MX3(AB2)3], mer-[MX3(AB2)3], cis-[MX4(AB2)2], trans-[MX4(AB2)2], and [MX5(AB2)] 

complexes. Using the enumeration result, summarized in Tables 1-8, and the previous result for 

the [M(AB2)6] complex, conformational analysis can be fully conducted for various types of 

octahedral metal complexes with pyridine ligands. Such research is expected to be useful for 

the development of metal complexes with valuable functions including catalytic activity. 
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