Communications in Mathematical and in Computer Chemistry

Minimal Value of the Exponential of the Generalized Randić Index Over Trees

Roberto Cruz, Marisol Londoño, Juan Rada

Instituto de Matemáticas, Universidad de Antioquia Medellín, Colombia

(Received September 18, 2020)

Abstract

The generalized Randić index of a graph G with vertex set V(G) and edge set E(G), is defined as

$$\chi_{\alpha}(G) = \sum_{uv \in E(G)} \left(d\left(u\right) d\left(v\right) \right)^{\alpha}$$

where α is an arbitrary real number, and d(u) denotes the degree of $u \in V(G)$. In this paper we study the exponential of $\chi_{\alpha}(G)$, defined as

$$e^{\chi_{\alpha}}\left(G\right) = \sum_{uv \in E(G)} e^{\left(d(u)d(v)\right)^{\alpha}}$$

More concretely, we show that over the set \mathcal{T}_n of trees with n vertices, the minimal value of e^{χ_α} is attained in the path P_n when $\alpha > 0$, and in the star S_n when $\alpha < 0$.

1 Introduction

Let G be a graph with vertex set V(G) and edge set E(G). Two vertices are called adjacent if they are connected by an edge. If there is an edge from vertex u to vertex v we indicate this by writing uv. For a vertex v of G, the degree of v is denoted by $d(v) = d_G(v)$. We will denote by $m_{i,j} = m_{i,j}(G)$ the number of edges in G joining vertices of degree i and j. A tree T is a connected acyclic graph. A vertex u of a tree T is called a branching vertex if $d_T(u) \ge 3$ and it is called a leaf if $d_T(u) = 1$. Let $\pi : v_0v_1 \cdots v_k$ be a path of length k of a tree T such that $d_T(v_i) = 2$ for all $i = 1, \ldots, k-1$. If v_0 and v_k are branching vertices of T then π is an internal path of T; if v_0 is a branching vertex and v_k is a leaf then π is a pendant path of T.

The Randić index χ (G) is one of the classical topological indices which play an important role in theoretical chemistry, especially in QSPR/QSAR research [11, 15, 16, 26, 27]. It was invented by Milan Randić in 1975 [24] and defined as

$$\chi\left(G\right) = \sum_{uv \in E(G)} \frac{1}{\sqrt{d\left(u\right)d\left(v\right)}} \; .$$

Later, in 1998 Bollobás and Erdös [3] generalized this index as

$$\chi_{\alpha}(G) = \sum_{uv \in E(G)} \left(d\left(u\right) d\left(v\right) \right)^{\alpha},$$

where α is an arbitrary real number. For a comprehensive survey of its mathematical properties see the surveys [13, 17], and for recent results see the papers [2, 9, 10, 12, 14, 18–20, 25].

The (generalized) Randić index is an important example of what is now known as vertex-degree-based (VDB, for short) topological indices [1, 4, 21, 22, 28, 29], defined for a graph G with n vertices as

$$\varphi\left(G\right) = \sum_{(i,j)\in K} m_{i,j}\left(G\right)\varphi\left(i,j\right),$$

where $\{\varphi(i, j)\}$ is a set of real numbers, and

$$K = \{(i, j) \in \mathbb{N} \times \mathbb{N} : 1 \le i \le j \le n - 1\}.$$

When $\varphi(i, j) = (ij)^{\alpha}$, we recover χ_{α} .

The exponential of a VDB topological index was recently introduced in [23], and defined as

$$e^{\varphi}(G) = \sum_{(i,j)\in K} m_{i,j}(G) e^{\varphi(i,j)}$$

For further results see [4–8]. Our main concern in this paper is to study the exponential of the generalized Randić index. For a graph G with n vertices, the exponential of the generalized Randić index χ_{α} is defined as

$$e^{\chi_{\alpha}}\left(G\right) = \sum_{(i,j)\in K} m_{i,j}\left(G\right) e^{(ij)^{\alpha}},$$

where $\alpha \in \mathbb{R}$. We are particularly interested in \mathcal{T}_n , the set of trees with *n* vertices. Let $T \in \mathcal{T}_n$, where $n \geq 3$. Since a tree is a connected acyclic graph, then $m_{1,1}(T) = 0$, $m_{i,j}(T) = 0$ for any $1 \leq i \leq j \leq n-1$ such that i+j > n and

$$\sum_{(i,j)\in K} m_{i,j}(T) = n - 1.$$
 (1)

Hence, for every $T \in \mathcal{T}_n$

$$e^{\chi_{\alpha}}(T) = \sum_{(i,j)\in L} m_{i,j}(T)e^{(ij)^{\alpha}},$$
(2)

where L is the subset of K defined as

$$L = \{(i, j) \in K : i + j \le n, (i, j) \ne (1, 1)\}$$

We say that T is a minimal tree with respect to $e^{\chi_{\alpha}}$ over \mathcal{T}_n if $e^{\chi_{\alpha}}(T) \leq e^{\chi_{\alpha}}(S)$ for all $S \in \mathcal{T}_n$. We will show in this paper that if $\alpha > 0$ (resp. $\alpha < 0$) then, the path P_n (resp. the star S_n) on n vertices is a tree with minimum $e^{\chi_{\alpha}}$ over \mathcal{T}_n .

2 Minimal value of $e^{\chi_{\alpha}}$ in trees when $\alpha > 0$

We show in this section that if $\alpha > 0$ then, P_n is the unique minimal tree with respect to $e^{\chi_{\alpha}}$ over \mathcal{T}_n . First we need a technical lemma.

Lemma 2.1 Let $\alpha > 0$.

- 1. The function $h(q) = e^{(3q)^{\alpha}} e^{(2q)^{\alpha}}$ is increasing in $[2, +\infty)$;
- 2. $e^{6^{\alpha}} e^{4^{\alpha}} > e^{4^{\alpha}} + e^{2^{\alpha}} 2e^{3^{\alpha}};$
- 3. $2e^{6^{\alpha}} 2e^{4^{\alpha}} > e^{4^{\alpha}} e^{3^{\alpha}}$.

Proof. 1. For all $q \in [2, +\infty)$, the derivative

$$\frac{d}{dq}h\left(q\right) = \alpha q^{\alpha-1} \left(3^{\alpha} e^{(3q)^{\alpha}} - 2^{\alpha} e^{(2q)^{\alpha}}\right) > 0,$$

for all $q \ge 2$, since $q^{\alpha-1} > 0$, $3^{\alpha} > 2^{\alpha}$ and $e^{(3q)^{\alpha}} > e^{(2q)^{\alpha}}$.

2. We will first show that

$$6^{\alpha} - 4^{\alpha} > 4^{\alpha} - 3^{\alpha}. \tag{3}$$

In fact, the function $g(\alpha) = \frac{3^{\alpha}}{2^{\alpha}} + \frac{3^{\alpha}}{2^{2\alpha}} - 2$ is strictly increasing in $[0, +\infty)$ since

$$\frac{d}{d\alpha}g(\alpha) = \left(\frac{3}{2}\right)^{\alpha}\ln\left(\frac{3}{2}\right) + \left(\frac{3}{4}\right)^{\alpha}\ln\left(\frac{3}{4}\right) \ge \left(\frac{3}{4}\right)^{\alpha}\ln\left(\frac{3}{2}\right) + \left(\frac{3}{4}\right)^{\alpha}\ln\left(\frac{3}{4}\right)$$
$$= \left(\frac{3}{4}\right)^{\alpha}\left[\ln\left(\frac{3}{2}\right) + \ln\left(\frac{3}{4}\right)\right] > 0.$$

Hence

$$6^{\alpha} + 3^{\alpha} - 2(4^{\alpha}) = 2^{2\alpha}g(\alpha) > 2^{2\alpha}g(0) = 0.$$

Now from (3) we deduce that

$$e^{6^{\alpha}} - e^{4^{\alpha}} = e^{4^{\alpha}} \left(e^{6^{\alpha} - 4^{\alpha}} - 1 \right) > e^{3^{\alpha}} \left(e^{4^{\alpha} - 3^{\alpha}} - 1 \right)$$
$$= e^{4^{\alpha}} - e^{3^{\alpha}} > \left(e^{4^{\alpha}} - e^{3^{\alpha}} \right) + \left(e^{2^{\alpha}} - e^{3^{\alpha}} \right) = e^{4^{\alpha}} + e^{2^{\alpha}} - 2e^{3^{\alpha}}$$

3. Using (3),

$$2e^{6^{\alpha}} - 2e^{4^{\alpha}} = 2e^{4^{\alpha}} \left(e^{6^{\alpha} - 4^{\alpha}} - 1\right) > e^{3^{\alpha}} \left(e^{4^{\alpha} - 3^{\alpha}} - 1\right) = e^{4^{\alpha}} - e^{3^{\alpha}}.$$

Proposition 2.2 Let $n \ge 5$ and $\alpha > 0$. Consider the trees T and T' with n vertices shown in Figure 1. If $p \ge 3$ then, $e^{\chi_{\alpha}}(T) > e^{\chi_{\alpha}}(T')$.

Proof. Let $q = d_T(u)$. Then

$$\begin{aligned} \Delta &= e^{\chi_{\alpha}} \left(T \right) - e^{\chi_{\alpha}} \left(T' \right) = e^{(pq)^{\alpha}} + (p-1) e^{p^{\alpha}} - e^{(2q)^{\alpha}} - (p-2) e^{4^{\alpha}} - e^{2^{\alpha}} \\ &= \left(e^{(pq)^{\alpha}} - e^{(2q)^{\alpha}} \right) + (p-2) \left(e^{p^{\alpha}} - e^{4^{\alpha}} \right) + \left(e^{p^{\alpha}} - e^{2^{\alpha}} \right). \end{aligned}$$

If $p \ge 4$, then each of the summands is non-negative since $\alpha > 0$. Consequently, $\Delta > 0$. Now assume that p = 3. Then

$$\Delta = \left(e^{(3q)^{\alpha}} - e^{(2q)^{\alpha}}\right) + \left(e^{3^{\alpha}} - e^{4^{\alpha}}\right) + \left(e^{3^{\alpha}} - e^{2^{\alpha}}\right).$$

Note that $q \ge 2$ since $n \ge 5$. It follows from parts 1. and 2. of Lemma 2.1 that

$$e^{(3q)^{\alpha}} - e^{(2q)^{\alpha}} \ge h(2) = e^{6^{\alpha}} - e^{4^{\alpha}} > e^{4^{\alpha}} + e^{2^{\alpha}} - 2e^{3^{\alpha}},$$

which implies that $\Delta > 0$.

Figure 1. Trees used in the proof of Proposition 2.2.

Proposition 2.3 Let $\alpha > 0$. Suppose that T is a minimal tree with respect to $e^{\chi_{\alpha}}$ over \mathcal{T}_n . If v is a vertex of T adjacent to a leaf u of T, then $d_T(v) = 2$.

Proof. Assume that $d_T(v) = d$ and let π be a largest path of T that contains v. Let s be an end-vertex of π and r a vertex in π adjacent to s. By Proposition 2.2, $d_T(r) = 2$. Let T' be the tree obtained from T by deleting the leaf u and adding an edge incident to s (see Figure 2). Let q_1, \ldots, q_{d-1} be the degrees of the adjacent vertices of v different from u. Clearly,

$$\Delta = e^{\chi_{\alpha}} \left(T \right) - e^{\chi_{\alpha}} \left(T' \right) = \sum_{i=1}^{d-1} \left(e^{(dq_i)^{\alpha}} - e^{((d-1)q_i)^{\alpha}} \right) + e^{d^{\alpha}} - e^{4^{\alpha}}.$$
 (4)

We consider two cases:

1. $d \ge 4$. It follows easily from (4) that $\Delta > 0$, since $\alpha > 0$.

2. d = 3. Let v_1 and v_2 be the adjacent vertices to v (different from u), such that $d_T(v_1) = p$ and $d_T(v_2) = q$. It follows from Proposition 2.2 that $p \ge 2$ and $q \ge 2$. Then

$$\Delta(p,q) = e^{(3p)^{\alpha}} - e^{(2p)^{\alpha}} + e^{(3q)^{\alpha}} - e^{(2q)^{\alpha}} + e^{3^{\alpha}} - e^{4^{\alpha}}.$$

Since $\alpha > 0$, then

$$\frac{\partial\Delta\left(p,q\right)}{\partial p} = \frac{\alpha}{p} \left(e^{(3p)^{\alpha}} \left(3p\right)^{\alpha} - e^{(2p)^{\alpha}} \left(2p\right)^{\alpha} \right) > 0,$$

and

$$\frac{\partial\Delta\left(p,q\right)}{\partial q} = \frac{\alpha}{q} \left(e^{(3q)^{\alpha}} \left(3q\right)^{\alpha} - e^{(2q)^{\alpha}} \left(2q\right)^{\alpha} \right) > 0.$$

Hence by part 3. of Lemma 2.1,

$$\Delta(p,q) \ge \Delta(2,2) = 2e^{6^{\alpha}} - 2e^{4^{\alpha}} + e^{3^{\alpha}} - e^{4^{\alpha}} > 0,$$

which contradicts the fact that T is minimal.

Figure 2. Trees used in the proof of Proposition 2.3.

We need one more techincal lemma to prove the main result of this section.

Lemma 2.4 Let $\alpha > 0$. Then

$$e^{x^{2\alpha}} \left(1 + 2\alpha x^{2\alpha} \right) + 2e^{2^{\alpha}} - 3e^{4^{\alpha}} > 0,$$

for all $x \geq 2$.

Proof. Since $\alpha > 0$ and $x \ge 2$,

$$1 + 2\alpha x^{2\alpha} \ge 1 + 2\alpha 2^{2\alpha} = 1 + \alpha 2^{2\alpha+1}.$$
 (5)

On the other hand, $e^x \ge 1 + x$ for all $x \in \mathbb{R}$. In particular,

$$e^{2^{\alpha}-4^{\alpha}} \ge 1+2^{\alpha}-4^{\alpha}.$$
 (6)

From (5) and (6) we deduce,

$$e^{x^{2\alpha}} (1 + 2\alpha x^{2\alpha}) + 2e^{2^{\alpha}} - 3e^{4^{\alpha}} \geq e^{2^{2\alpha}} (1 + \alpha 2^{2\alpha+1}) + 2e^{2^{\alpha}} - 3e^{4^{\alpha}}$$

$$= 2e^{2^{2\alpha}} (\alpha 2^{2\alpha} + e^{2^{\alpha} - 4^{\alpha}} - 1)$$

$$\geq 2e^{2^{2\alpha}} (\alpha 2^{2\alpha} + 2^{\alpha} - 4^{\alpha})$$

$$= 2^{2\alpha+1}e^{2^{2\alpha}} \left(\alpha + \frac{1}{2^{\alpha}} - 1\right).$$
(7)

Moreover, the function $p(\alpha) = \alpha + \frac{1}{2^{\alpha}} - 1$ is strictly increasing in $\left(\frac{\ln(\ln 2)}{(\ln 2)}, +\infty\right)$, since

$$\frac{d}{d\alpha}p(\alpha) = 1 - \frac{\ln 2}{2^{\alpha}} > 0,$$

for all $\alpha \geq \frac{\ln(\ln 2)}{(\ln 2)} \approx -0.528$ 77. Consequently,

$$\alpha + \frac{1}{2^{\alpha}} - 1 > p(0) = 0,$$

and by (7),

$$e^{x^{2\alpha}} \left(1 + 2\alpha x^{2\alpha}\right) + 2e^{2^{\alpha}} - 3e^{4^{\alpha}} > 0.$$

Recall that L is the subset of K defined as

$$L = \{(i, j) \in K : i + j \le n, (i, j) \ne (1, 1)\}.$$

Define the function

$$f(i,j) = \frac{ij}{i+j} \left(e^{(ij)^{\alpha}} + 2e^{2^{\alpha}} - 3e^{4^{\alpha}} \right),$$

where $(i, j) \in L$. Note that

$$f(1,2) = f(2,2) = 2(e^{2^{\alpha}} - e^{4^{\alpha}}).$$

It can be easily deduced from [4, Theorem 2.1] that if $T \in \mathcal{T}_n$ then,

$$e^{\chi_{\alpha}}(T) = e^{\chi_{\alpha}}(P_n) + \sum_{(i,j)\in L} \left[f(i,j) - f(1,2)\right] \frac{i+j}{ij} m_{i,j}(T),$$
(8)

for every $\alpha \in \mathbb{R}$. Consider the extension of L to the compact set

$$L = \{(x, y) \in \mathbb{R} \times \mathbb{R} : 1 \le x \le y \le n - 1, \ x + y \le n, \ y \ge 2\}.$$

Theorem 2.5 Let $\alpha > 0$ and $n \ge 5$. The path P_n is the unique minimal tree with respect to $e^{\chi_{\alpha}}$ over \mathcal{T}_n .

Proof. Let T_0 be a tree with minimal value of χ_{α} over \mathcal{T}_n . By Proposition 2.3, $m_{1,j}(T_0) = 0$ for all $j \geq 3$. Let

$$M = \{(i, j) \in L : i \ge 2\}.$$

Then by (8),

$$e^{\chi_{\alpha}}(T_{0}) = e^{\chi_{\alpha}}(P_{n}) + \sum_{(i,j)\in L} [f(i,j) - f(1,2)] \frac{i+j}{ij} m_{i,j}(T_{0})$$

$$= e^{\chi_{\alpha}}(P_{n}) + \sum_{(i,j)\in M} [f(i,j) - f(1,2)] \frac{i+j}{ij} m_{i,j}(T_{0}).$$
(9)

Let

$$\widehat{M} = \left\{ (x, y) \in \widehat{L} : x \ge 2 \right\}$$

and

$$f(x,y) = \frac{xy}{x+y} \left(e^{(xy)^{\alpha}} + 2e^{2^{\alpha}} - 3e^{4^{\alpha}} \right),$$

defined over \widehat{M} . We will show that $\min_{(i,j)\in \widehat{M}} f(i,j) = f(2,2)$. By Lemma 2.4 and the fact that $\alpha > 0$,

$$\begin{aligned} \frac{\partial}{\partial y} f\left(x,y\right) &= x \frac{x e^{(xy)^{\alpha}} + 2x e^{2^{\alpha}} - 3x e^{4^{\alpha}} + x \alpha e^{(xy)^{\alpha}} \left(xy\right)^{\alpha} + y \alpha e^{(xy)^{\alpha}} \left(xy\right)^{\alpha}}{\left(x+y\right)^{2}} \\ &\geq x \frac{x e^{x^{2^{\alpha}}} + 2x e^{2^{\alpha}} - 3x e^{4^{\alpha}} + x \alpha e^{x^{2^{\alpha}}} x^{2^{\alpha}} + x \alpha e^{x^{2^{\alpha}}} x^{2^{\alpha}}}{\left(x+y\right)^{2}} \\ &= \frac{x^{2}}{\left(x+y\right)^{2}} \left(e^{x^{2^{\alpha}}} \left(1 + 2\alpha x^{2^{\alpha}}\right) + 2e^{2^{\alpha}} - 3e^{4^{\alpha}}\right) > 0, \end{aligned}$$

for all $(x, y) \in \widehat{M}$, and

$$\frac{\partial}{\partial x}f\left(x,x\right) = \frac{1}{2}\left(e^{x^{2\alpha}}\left(1+2\alpha x^{2\alpha}\right)+2e^{2^{\alpha}}-3e^{4^{\alpha}}\right) > 0.$$

for all $x \ge 2$. This clearly implies that the minimum value of f over \widehat{M} is f(2,2) = f(1,2). Finally, if $T \in \mathcal{T}_n$ then by (9) we deduce

$$e^{\chi_{\alpha}}(T) \ge e^{\chi_{\alpha}}(T_0) \ge e^{\chi_{\alpha}}(P_n)$$

3 Minimal value of $e^{\chi_{\alpha}}$ in trees when $\alpha < 0$

In this section we prove that the star S_n attains the minimal value of $e^{\chi_{\alpha}}$ over \mathcal{T}_n , when $\alpha < 0$.

Proposition 3.1 Let $\alpha < 0$ and $T \in \mathcal{T}_n$ be a minimal tree with respect to $e^{\chi_{\alpha}}$ over \mathcal{T}_n . Then T has no pendent paths of length greater than one.

Proof. Suppose T a minimal tree with respect to $e^{\chi_{\alpha}}$ and it contains a pendent path of length $k \geq 3$. Then T has the form depicted in Figure 3, where S is a subtree of T and $x = d_T(u) \geq 3$. Consider the tree T' in the same figure and let $x_i = d_T(u_i)$, where u_1, \ldots, u_{x-1} are the vertices adjacent to u in S. Then

$$e^{\chi_{\alpha}}(T') - e^{\chi_{\alpha}}(T) = \sum_{i=1}^{x-1} \left[e^{x_i^{\alpha}(x+k-2)^{\alpha}} - e^{x_i^{\alpha}x^{\alpha}} \right] + \left[e^{2^{\alpha}(x+k-2)^{\alpha}} - e^{2^{\alpha}x^{\alpha}} \right] \\ + (k-2) \left[e^{(x+k-2)^{\alpha}} - e^{4^{\alpha}} \right] < 0.$$

and we get a contradiction.

Figure 3. Trees used in the proof of Proposition 3.1 for $k \ge 3$.

Now suppose T is a minimal tree with respect to $e^{\chi_{\alpha}}$ over \mathcal{T}_n and it contains a pendent path of length k = 2. Then T has the form depicted in Figure 4, where S is a subtree of

T and $x = d_T(u) \ge 3$. Consider the tree T' in the same figure and let $x_i = d_T(u_i)$, where u_1, \ldots, u_{x-1} are the vertices adjacent to u in S. Then

$$e^{\chi_{\alpha}}(T') - e^{\chi_{\alpha}}(T) = \sum_{i=1}^{x-1} \left[e^{x_{i}^{\alpha}(x+1)^{\alpha}} - e^{x_{i}^{\alpha}x^{\alpha}} \right] + 2e^{(x+1)^{\alpha}} - e^{2^{\alpha}x^{\alpha}} - e^{2^{\alpha}}$$

$$< 2e^{(x+1)^{\alpha}} - e^{(2x)^{\alpha}} - e^{2^{\alpha}} = f_{1}(x).$$

 $f_1(x)$ is a real continuously differentiable function defined for $x \ge 1$. The derivative of f_1

Figure 4. Trees used in the proof of Proposition 3.1 for k = 2.

is

$$\frac{d}{dx}f_{1}(x) = 2\alpha \left[e^{(x+1)^{\alpha}} (x+1)^{\alpha-1} - e^{(2x)^{\alpha}} (2x)^{\alpha-1}\right]$$

Note that since $\alpha < 0$, $\frac{d}{dx}f_1(x) < 0$ for x > 1 and $\frac{d}{dx}f_1(1) = 0$. Then $f_1(x)$ attains its maximum at x = 1. Then

$$e^{\chi_{\alpha}}(T') - e^{\chi_{\alpha}}(T) < f_1(x) \le f_1(1) = 0$$

and we get a contradiction.

Proposition 3.2 Let $\alpha < 0$ and $T \in \mathcal{T}_n$ be a minimal tree with respect to $e^{\chi_{\alpha}}$ over \mathcal{T}_n . Then T has no internal paths of length greater than 1.

Proof. Suppose T is a minimal tree with respect to $e^{\chi_{\alpha}}$ over \mathcal{T}_n and contains an internal path of length k + 1 with $k \geq 2$ (see Figure 5) and consider the tree T' depicted in Figure 5, where U and V are subtrees of T. Assume that $x = d_T(u) \geq 3$, $y = d_T(v) \geq 3$, and $x_i = d_T(u_i)$, where u_1, \ldots, u_{x-1} are the vertices adjacent to u in U. Then

Figure 5. Trees used in the proof of Proposition 3.2 for $k \ge 2$.

-436-

$$\begin{split} e^{\chi_{\alpha}}\left(T'\right) - e^{\chi_{\alpha}}\left(T\right) &= \sum_{i=1}^{x-1} \left[e^{x_{i}^{\alpha}(x+k)^{\alpha}} - e^{x_{i}^{\alpha}x^{\alpha}} \right] + \left(k-1\right) \left[e^{(x+k)^{\alpha}} - e^{4^{\alpha}} \right] + \\ & \left[e^{(x+k)^{\alpha}y^{\alpha}} - e^{2^{\alpha}y^{\alpha}} \right] + e^{(x+k)^{\alpha}} - e^{2^{\alpha}x^{\alpha}} \\ &< \left(k-1\right) \left[e^{(x+k)^{\alpha}} - e^{4^{\alpha}} \right] + e^{(x+k)^{\alpha}} - e^{2^{\alpha}x^{\alpha}} \\ &\leq \left[e^{(x+k)^{\alpha}} - e^{4^{\alpha}} \right] + e^{(x+k)^{\alpha}} - e^{2^{\alpha}x^{\alpha}} \\ &= 2e^{(x+k)^{\alpha}} - e^{4^{\alpha}} - e^{2^{\alpha}x^{\alpha}} \\ &\leq 2e^{(x+2)^{\alpha}} - e^{4^{\alpha}} - e^{2^{\alpha}x^{\alpha}} = f_{2}\left(x\right). \end{split}$$

 $f_2(x)$ is a real continuously differentiable function defined for $x \ge 2$. The derivative of f_2 is

$$\frac{d}{dx}f_2(x) = 2\alpha \left[e^{(x+2)^{\alpha}} \left(x+2 \right)^{\alpha-1} - \left(2x \right)^{\alpha-1} e^{(2x)^{\alpha}} \right].$$

Note that since $\alpha < 0$, $\frac{d}{dx}f_2(x) < 0$ for x > 2 and $\frac{d}{dx}f_2(2) = 0$. Then $f_2(x)$ attains its maximum at x = 2. Then

$$e^{\chi_{\alpha}}(T') - e^{\chi_{\alpha}}(T) < f_2(x) \le f_2(2) = 0.$$

and we get a contradiction.

Suppose now that T is a minimal tree with respect to $e^{\chi_{\alpha}}$ and contains an internal path of length k = 2 (see Figure 6) and consider the tree T' depicted in Figure 6, where U and V are subtrees of T. Assume that $x = d_T(u) \ge 3$, $y = d_T(v) \ge 3$, $x_i = d_T(u_i)$, where u_1, \ldots, u_{x-1} are the vertices adjacent to u in U and $y_i = d_T(v_i)$, where v_1, \ldots, v_{y-1} are the vertices adjacent to v in V. Then

Figure 6. Trees used in the proof of Proposition 3.2 for k = 1.

$$e^{\chi_{\alpha}} (T') - e^{\chi_{\alpha}} (T) = \sum_{i=1}^{x-1} \left[e^{x_{i}^{\alpha} (x+y)^{\alpha}} - e^{x_{i}^{\alpha} x^{\alpha}} \right] + \sum_{i=1}^{y-1} \left[e^{y_{i}^{\alpha} (x+y)^{\alpha}} - e^{y_{i}^{\alpha} y^{\alpha}} \right] + 2e^{(x+y)^{\alpha}} - e^{2^{\alpha} x^{\alpha}} - e^{2^{\alpha} y^{\alpha}} < 2e^{(x+y)^{\alpha}} - e^{2^{\alpha} x^{\alpha}} - e^{2^{\alpha} y^{\alpha}} = f_{3}(x+y) - f_{3}(2x) + f_{3}(x+y) - f_{3}(2y)$$

where $f_3(z) = e^{z^{\alpha}}$ is a real continuously differentiable function for z > 0. If x = y, $f_3(x + y) - f_3(2x) + f_3(x + y) - f_3(2y) = 0$ and

$$e^{\chi_{\alpha}}(T') - e^{\chi_{\alpha}}(T) < f_3(x+y) - f_3(2x) + f_3(x+y) - f_3(2y) = 0.$$

If x < y, then 2x < x + y < 2y. By the mean value Theorem, there exists two points $2x < z_1 < x + y < z_2 < 2y$ such that

$$e^{\chi_{\alpha}} (T') - e^{\chi_{\alpha}} (T) < f_3(x+y) - f_3(2x) + f_3(x+y) - f_3(2y)$$

= $(f'_3(z_1) - f'_3(z_2)) (y-x)$
= $\alpha (y-x) [z_1^{\alpha-1}e^{z_1^{\alpha}} - z_2^{\alpha-1}e^{z_2^{\alpha}}] < 0$

If x > y, similarly one can prove that $e^{\chi_{\alpha}}(T') - e^{\chi_{\alpha}}(T) < 0$ and we get a contradiction.

Let T be a tree with at least one branching vertex v of degree $k \ge 3$. The tree T can be viewed as the coalescence of k subtrees T_1, \ldots, T_k of T at the vertex v. These subtrees are called branches of T at v (see Figure 7). A branching vertex v of T is an outer branching vertex of T if all branches of T at v (except for possibly one) are paths [5].

Figure 7. Branches of the tree T at branching vertex v.

Proposition 3.3 Let $\alpha < 0$ and $T \in \mathcal{T}_n$ be a minimal tree with respect to $e^{\chi_{\alpha}}$. Then T has at most one branching vertex.

Proof. Suppose T is a minimal tree with respect to $e^{\chi_{\alpha}}$ over \mathcal{T}_n . By Propositions 3.1 and 3.2, T has no internal paths of length greater than one and all pendent paths are of length one. Suppose T has more than one branching vertex, then T has the form depicted in Figure 8 where u is a branching vertex and v is an outer branching vertex of degree k + 1 for $k \geq 2$. Consider the tree T' depicted in Figure 8, where U is a subtree of T. Assume that $x = d_T(u) \geq 3$ and $x_i = d_T(u_i)$, where u_1, \ldots, u_{x-1} are the vertices adjacent to u in U. Then

Figure 8. Trees used in the proof of Proposition 3.3.

$$e^{\chi_{\alpha}}(T') - e^{\chi_{\alpha}}(T) = \sum_{i=1}^{x-1} \left[e^{x_i^{\alpha}(x+k)^{\alpha}} - e^{x_i^{\alpha}x^{\alpha}} \right] + (k+1) e^{(x+k)^{\alpha}} - k e^{(k+1)^{\alpha}} - e^{x^{\alpha}(k+1)^{\alpha}} < (k+1) e^{(x+k)^{\alpha}} - k e^{(k+1)^{\alpha}} - e^{x^{\alpha}(k+1)^{\alpha}} = f_4(x).$$

 $f_4(x)$ is a real continuouly differentiable function defined for $x \ge 1$. The derivative of f_4 is

$$\frac{d}{dx}f_4(x) = \alpha (k+1) \left[e^{(k+x)^{\alpha}} (k+x)^{\alpha-1} - (x (k+1))^{\alpha-1} e^{(x(k+1))^{\alpha}} \right]$$

Note that since $\alpha < 0$, $\frac{d}{dx}f_4(x) < 0$ for x > 1 and $\frac{d}{dx}f_4(1) = 0$. Then $f_4(x)$ attains its maximum at x = 1. Consequently,

$$e^{\chi_{\alpha}}(T') - e^{\chi_{\alpha}}(T) < f_4(x) \le f_4(1) = 0$$

and we get a contradiction.

Theorem 3.4 Let $\alpha < 0$. For $n \ge 5$, the minimal tree with respect to $e^{\chi_{\alpha}}$ over \mathcal{T}_n is the star S_n .

Proof. By Proposition 3.3, the minimal tree with respect to $e^{\chi_{\alpha}}$ over \mathcal{T}_n has at most one branching vertex. The only tree with no branching vertices is the path P_n and the

only tree, satisfying Propositions 3.1 and 3.2, with exactly one branching vertex, is the star S_n . Then,

$$e^{\chi_{\alpha}} (S_n) - e^{\chi_{\alpha}} (P_n) = (n-1) e^{(n-1)^{\alpha}} - (n-3) e^{4^{\alpha}} - 2e^{2^{\alpha}}$$
$$= (n-3) \left(e^{(n-1)^{\alpha}} - e^{4^{\alpha}} \right) + 2 \left(e^{(n-1)^{\alpha}} - e^{2^{\alpha}} \right) < 0.$$

References

- A. Ali, L. Zhong, I. Gutman, Harmonic index and its generalizations: Extremal results and bounds, MATCH Commun. Math. Comput. Chem. 81 (2019) 249–311.
- [2] S. Bermudo, J. E. Nápoles, J. Rada, Extremal trees for the Randić index with given domination number, Appl. Math. Comput. 375 (2020) #125122.
- [3] B. Bollobás, P. Erdős, Graphs of extremal weights, Ars Comb. 50 (1998) 225–233.
- [4] R. Cruz, J. Rada, The path and the star as extremal values of vertex-degree-based topological indices among trees, MATCH Commun. Math. Comput. Chem. 82 (2019) 715–732.
- [5] R. Cruz, J. Monsalve, J. Rada, Trees with maximum exponential Randić index, Discr. Appl. Math. 283 (2020) 634–643.
- [6] R. Cruz, J. Monsalve, J. Rada, On chemical trees that maximize atom-bond connectivity index, its exponential version, and minimize exponential geometric-arithmetic index, MATCH Commun. Math. Comput. Chem. 84 (2020) 691–718.
- [7] R. Cruz, J. Monsalve, J. Rada, Extremal values of vertex-degree-based topological indices of chemical trees, Appl. Math. Comput. 380 (2020) #125281.
- [8] R. Cruz, J. Rada, Extremal values of exponential vertex-degree-based topological indices over graphs, *Kragujevac J. Math.* 46 (2022) 105–113.
- [9] C. Dalfó, On the Randić index of graphs, *Discr. Math.* **342** (2019) 2792–2796.
- [10] H. Deng, S. Balachandran, S. Elumalai, Some tight bounds for the harmonic index and the variation of the Randić index of graphs, *Discr. Math.* 342 (2019) 2060–2065.
- [11] J. Devillers, A. Balaban, Topological Indices and Related Descriptors in QSAR and QSPR, Gordon & Breach, Amsterdam, 1999.
- [12] A. Estrada-Moreno, J. A. Rodríguez–Velázquez, On the general Randić index of polymeric networks modelled by generalized Sierpiński graphs, *Discr. Appl. Math.* 263 (2019) 140–151.
- [13] I. Gutman, B. Furtula (Eds.), Recent Results in the Theory of Randić Index, Univ. Kragujevac, Kragujevac, 2008.

- [14] I. Gutman, B. Furtula, V. Katanić, Randić index and information, AKCE Int. J. Graphs Comb. 15 (2018) 307–312.
- [15] L. Kier, L. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, (1976).
- [16] L. Kier, L. Hall, Molecular Connectivity in Structure-Activity Analysis, Wiley, New York, 1986.
- [17] X. Li, I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure Descriptors, Univ. Kragujevac, Kragujevac, 2006.
- [18] Y. Ma, S. Cao, Y. Shi, I. Gutman, M. Dehmer, B. Furtula, From the connectivity index to various Randić-type descriptors, *MATCH Commun. Math. Comput. Chem.* 80 (2018) 85–106.
- [19] C. T. Martínez-Martínez, J. A. Méndez-Bermúdez, J. M. Rodríguez, J. M. Sigarreta, Computational and analytical studies of the Randić index in Erdös–Rényi models, *Appl. Math. Comput.* **377** (2020) #125137.
- [20] B. Ning, X. Peng, The Randić index and signless Laplacian spectral radius of graphs, Discr. Math. 342 (2019) 643–653.
- [21] J. Rada, R. Cruz, Vertex-degree-based topological indices over graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) 603–616.
- [22] J. Rada, S. Bermudo, Is every graph the extremal value of a vertex-degree-based topological index?, MATCH Commun. Math. Comput. Chem. 81 (2019) 315–323.
- [23] J. Rada, Exponential vertex-degree-based topological indices and discrimination, MATCH Commun. Math. Comput. Chem. 82 (2019) 29–41.
- [24] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609–6615.
- [25] O. Suil, Y. Shi, Sharp bounds for the Randić index of graphs with given minimum and maximum degree, *Discr. Appl. Math.* 247 (2018) 111–115.
- [26] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley–VCH, Weinheim, 2000.
- [27] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 2009.
- [28] Y. Yao, M. Liu, K. C. Das, Y. Ye, Some extremal results for vertex-degree-based invariants, MATCH Commun. Math. Comput. Chem. 81 (2019) 325–344.
- [29] Y. Yao, M. Liu, X. Gu, Unified extremal results for vertex-degree-based graph invariants with given diameter, MATCH Commun. Math. Comput. Chem. 82 (2019) 699–714.