Minimal Value of the Exponential of the Generalized Randić Index Over Trees

Roberto Cruz, Marisol Londoño, Juan Rada
Instituto de Matemáticas, Universidad de Antioquia
Medellín, Colombia
roberto.cruz@udea.edu.co, marisol.londono@udea.edu.co, pablo.rada@udea.edu.co

(Received September 18, 2020)

Abstract

The generalized Randić index of a graph G with vertex set $V(G)$ and edge set $E(G)$, is defined as $$
\chi_{\alpha}(G)=\sum_{u v \in E(G)}(d(u) d(v))^{\alpha},
$$ where α is an arbitrary real number, and $d(u)$ denotes the degree of $u \in V(G)$. In this paper we study the exponential of $\chi_{\alpha}(G)$, defined as $$
e^{\chi_{\alpha}}(G)=\sum_{u v \in E(G)} e^{(d(u) d(v))^{\alpha}} .
$$

More concretely, we show that over the set \mathcal{T}_{n} of trees with n vertices, the minimal value of $e^{\chi_{\alpha}}$ is attained in the path P_{n} when $\alpha>0$, and in the star S_{n} when $\alpha<0$.

1 Introduction

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. Two vertices are called adjacent if they are connected by an edge. If there is an edge from vertex u to vertex v we indicate this by writing $u v$. For a vertex v of G, the degree of v is denoted by $d(v)=d_{G}(v)$. We will denote by $m_{i, j}=m_{i, j}(G)$ the number of edges in G joining vertices of degree i and j.

A tree T is a connected acyclic graph. A vertex u of a tree T is called a branching vertex if $d_{T}(u) \geq 3$ and it is called a leaf if $d_{T}(u)=1$. Let $\pi: v_{0} v_{1} \cdots v_{k}$ be a path of length k of a tree T such that $d_{T}\left(v_{i}\right)=2$ for all $i=1, \ldots, k-1$. If v_{0} and v_{k} are branching vertices of T then π is an internal path of T; if v_{0} is a branching vertex and v_{k} is a leaf then π is a pendant path of T.

The Randić index $\chi(G)$ is one of the classical topological indices which play an important role in theoretical chemistry, especially in QSPR/QSAR research [11, 15, 16, 26, 27]. It was invented by Milan Randić in 1975 [24] and defined as

$$
\chi(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{d(u) d(v)}}
$$

Later, in 1998 Bollobás and Erdös [3] generalized this index as

$$
\chi_{\alpha}(G)=\sum_{u v \in E(G)}(d(u) d(v))^{\alpha},
$$

where α is an arbitrary real number. For a comprehensive survey of its mathematical properties see the surveys $[13,17]$, and for recent results see the papers $[2,9,10,12,14,18$ 20, 25].

The (generalized) Randić index is an important example of what is now known as vertex-degree-based (VDB, for short) topological indices [1,4,21,22, 28, 29], defined for a graph G with n vertices as

$$
\varphi(G)=\sum_{(i, j) \in K} m_{i, j}(G) \varphi(i, j)
$$

where $\{\varphi(i, j)\}$ is a set of real numbers, and

$$
K=\{(i, j) \in \mathbb{N} \times \mathbb{N}: 1 \leq i \leq j \leq n-1\}
$$

When $\varphi(i, j)=(i j)^{\alpha}$, we recover χ_{α}.
The exponential of a VDB topological index was recently introduced in [23], and defined as

$$
e^{\varphi}(G)=\sum_{(i, j) \in K} m_{i, j}(G) e^{\varphi(i, j)}
$$

For further results see [4-8]. Our main concern in this paper is to study the exponential of the generalized Randić index. For a graph G with n vertices, the exponential of the generalized Randić index χ_{α} is defined as

$$
e^{\chi_{\alpha}}(G)=\sum_{(i, j) \in K} m_{i, j}(G) e^{(i j)^{\alpha}}
$$

where $\alpha \in \mathbb{R}$. We are particularly interested in \mathcal{T}_{n}, the set of trees with n vertices. Let $T \in \mathcal{T}_{n}$, where $n \geq 3$. Since a tree is a connected acyclic graph, then $m_{1,1}(T)=0$, $m_{i, j}(T)=0$ for any $1 \leq i \leq j \leq n-1$ such that $i+j>n$ and

$$
\begin{equation*}
\sum_{(i, j) \in K} m_{i, j}(T)=n-1 \tag{1}
\end{equation*}
$$

Hence, for every $T \in \mathcal{T}_{n}$

$$
\begin{equation*}
e^{\chi_{\alpha}}(T)=\sum_{(i, j) \in L} m_{i, j}(T) e^{(i j)^{\alpha}} \tag{2}
\end{equation*}
$$

where L is the subset of K defined as

$$
L=\{(i, j) \in K: i+j \leq n,(i, j) \neq(1,1)\} .
$$

We say that T is a minimal tree with respect to $e^{\chi_{\alpha}}$ over \mathcal{T}_{n} if $e^{\chi_{\alpha}}(T) \leq e^{\chi_{\alpha}}(S)$ for all $S \in \mathcal{T}_{n}$. We will show in this paper that if $\alpha>0$ (resp. $\alpha<0$) then, the path P_{n} (resp. the star S_{n}) on n vertices is a tree with minimum $e^{\chi_{\alpha}}$ over \mathcal{T}_{n}.

2 Minimal value of $e^{\chi \alpha}$ in trees when $\alpha>0$

We show in this section that if $\alpha>0$ then, P_{n} is the unique minimal tree with respect to $e^{\chi_{\alpha}}$ over \mathcal{T}_{n}. First we need a technical lemma.

Lemma 2.1 Let $\alpha>0$.

1. The function $h(q)=e^{(3 q)^{\alpha}}-e^{(2 q)^{\alpha}}$ is increasing in $[2,+\infty)$;
2. $e^{6^{\alpha}}-e^{4^{\alpha}}>e^{4^{\alpha}}+e^{2^{\alpha}}-2 e^{3^{\alpha}}$;
3. $2 e^{6^{\alpha}}-2 e^{4^{\alpha}}>e^{4^{\alpha}}-e^{3^{\alpha}}$.

Proof. 1. For all $q \in[2,+\infty)$, the derivative

$$
\frac{d}{d q} h(q)=\alpha q^{\alpha-1}\left(3^{\alpha} e^{(3 q)^{\alpha}}-2^{\alpha} e^{(2 q)^{\alpha}}\right)>0
$$

for all $q \geq 2$, since $q^{\alpha-1}>0,3^{\alpha}>2^{\alpha}$ and $e^{(3 q)^{\alpha}}>e^{(2 q)^{\alpha}}$.
2. We will first show that

$$
\begin{equation*}
6^{\alpha}-4^{\alpha}>4^{\alpha}-3^{\alpha} \tag{3}
\end{equation*}
$$

In fact, the function $g(\alpha)=\frac{3^{\alpha}}{2^{\alpha}}+\frac{3^{\alpha}}{2^{2 \alpha}}-2$ is strictly increasing in $[0,+\infty)$ since

$$
\begin{aligned}
\frac{d}{d \alpha} g(\alpha) & =\left(\frac{3}{2}\right)^{\alpha} \ln \left(\frac{3}{2}\right)+\left(\frac{3}{4}\right)^{\alpha} \ln \left(\frac{3}{4}\right) \geq\left(\frac{3}{4}\right)^{\alpha} \ln \left(\frac{3}{2}\right)+\left(\frac{3}{4}\right)^{\alpha} \ln \left(\frac{3}{4}\right) \\
& =\left(\frac{3}{4}\right)^{\alpha}\left[\ln \left(\frac{3}{2}\right)+\ln \left(\frac{3}{4}\right)\right]>0
\end{aligned}
$$

Hence

$$
6^{\alpha}+3^{\alpha}-2\left(4^{\alpha}\right)=2^{2 \alpha} g(\alpha)>2^{2 \alpha} g(0)=0 .
$$

Now from (3) we deduce that

$$
\begin{aligned}
e^{6^{\alpha}}-e^{4^{\alpha}} & =e^{4^{\alpha}}\left(e^{6^{\alpha}-4^{\alpha}}-1\right)>e^{3^{\alpha}}\left(e^{4^{\alpha}-3^{\alpha}}-1\right) \\
& =e^{4^{\alpha}}-e^{3^{\alpha}}>\left(e^{4^{\alpha}}-e^{3^{\alpha}}\right)+\left(e^{2^{\alpha}}-e^{3^{\alpha}}\right)=e^{4^{\alpha}}+e^{2^{\alpha}}-2 e^{3^{\alpha}} .
\end{aligned}
$$

3. Using (3),

$$
2 e^{6^{\alpha}}-2 e^{4^{\alpha}}=2 e^{4^{\alpha}}\left(e^{6^{\alpha}-4^{\alpha}}-1\right)>e^{3^{\alpha}}\left(e^{4^{\alpha}-3^{\alpha}}-1\right)=e^{4^{\alpha}}-e^{3^{\alpha}} .
$$

Proposition 2.2 Let $n \geq 5$ and $\alpha>0$. Consider the trees T and T^{\prime} with n vertices shown in Figure 1. If $p \geq 3$ then, $e^{\chi_{\alpha}}(T)>e^{\chi_{\alpha}}\left(T^{\prime}\right)$.

Proof. Let $q=d_{T}(u)$. Then

$$
\begin{aligned}
\Delta & =e^{\chi_{\alpha}}(T)-e^{\chi_{\alpha}}\left(T^{\prime}\right)=e^{(p q)^{\alpha}}+(p-1) e^{p^{\alpha}}-e^{(2 q)^{\alpha}}-(p-2) e^{4^{\alpha}}-e^{2^{\alpha}} \\
& =\left(e^{(p q)^{\alpha}}-e^{(2 q)^{\alpha}}\right)+(p-2)\left(e^{p^{\alpha}}-e^{4^{\alpha}}\right)+\left(e^{p^{\alpha}}-e^{2^{\alpha}}\right) .
\end{aligned}
$$

If $p \geq 4$, then each of the summands is non-negative since $\alpha>0$. Consequently, $\Delta>0$. Now assume that $p=3$. Then

$$
\Delta=\left(e^{(3 q)^{\alpha}}-e^{(2 q)^{\alpha}}\right)+\left(e^{3^{\alpha}}-e^{4^{\alpha}}\right)+\left(e^{3^{\alpha}}-e^{2^{\alpha}}\right) .
$$

Note that $q \geq 2$ since $n \geq 5$. It follows from parts 1 . and 2. of Lemma 2.1 that

$$
e^{(3 q)^{\alpha}}-e^{(2 q)^{\alpha}} \geq h(2)=e^{6^{\alpha}}-e^{4^{\alpha}}>e^{4^{\alpha}}+e^{2^{\alpha}}-2 e^{3^{\alpha}}
$$

which implies that $\Delta>0$.

T

T^{\prime}

Figure 1. Trees used in the proof of Proposition 2.2.

Proposition 2.3 Let $\alpha>0$. Suppose that T is a minimal tree with respect to $e^{\chi_{\alpha}}$ over \mathcal{T}_{n}. If v is a vertex of T adjacent to a leaf u of T, then $d_{T}(v)=2$.

Proof. Assume that $d_{T}(v)=d$ and let π be a largest path of T that contains v. Let s be an end-vertex of π and r a vertex in π adjacent to s. By Proposition 2.2, $d_{T}(r)=2$. Let T^{\prime} be the tree obtained from T by deleting the leaf u and adding an edge incident to s (see Figure 2). Let q_{1}, \ldots, q_{d-1} be the degrees of the adjacent vertices of v different from u. Clearly,

$$
\begin{equation*}
\Delta=e^{\chi_{\alpha}}(T)-e^{\chi_{\alpha}}\left(T^{\prime}\right)=\sum_{i=1}^{d-1}\left(e^{\left(d q_{i}\right)^{\alpha}}-e^{\left((d-1) q_{i}\right)^{\alpha}}\right)+e^{d^{\alpha}}-e^{4^{\alpha}} \tag{4}
\end{equation*}
$$

We consider two cases:

1. $d \geq 4$. It follows easily from (4) that $\Delta>0$, since $\alpha>0$.
2. $d=3$. Let v_{1} and v_{2} be the adjacent vertices to v (different from u), such that $d_{T}\left(v_{1}\right)=p$ and $d_{T}\left(v_{2}\right)=q$. It follows from Proposition 2.2 that $p \geq 2$ and $q \geq 2$. Then

$$
\Delta(p, q)=e^{(3 p)^{\alpha}}-e^{(2 p)^{\alpha}}+e^{(3 q)^{\alpha}}-e^{(2 q)^{\alpha}}+e^{3^{\alpha}}-e^{4^{\alpha}}
$$

Since $\alpha>0$, then

$$
\frac{\partial \Delta(p, q)}{\partial p}=\frac{\alpha}{p}\left(e^{(3 p)^{\alpha}}(3 p)^{\alpha}-e^{(2 p)^{\alpha}}(2 p)^{\alpha}\right)>0
$$

and

$$
\frac{\partial \Delta(p, q)}{\partial q}=\frac{\alpha}{q}\left(e^{(3 q)^{\alpha}}(3 q)^{\alpha}-e^{(2 q)^{\alpha}}(2 q)^{\alpha}\right)>0 .
$$

Hence by part 3. of Lemma 2.1,

$$
\Delta(p, q) \geq \Delta(2,2)=2 e^{6^{\alpha}}-2 e^{4^{\alpha}}+e^{3^{\alpha}}-e^{4^{\alpha}}>0
$$

which contradicts the fact that T is minimal.

Figure 2. Trees used in the proof of Proposition 2.3.
We need one more techincal lemma to prove the main result of this section.

Lemma 2.4 Let $\alpha>0$. Then

$$
e^{x^{2 \alpha}}\left(1+2 \alpha x^{2 \alpha}\right)+2 e^{2^{\alpha}}-3 e^{4^{\alpha}}>0,
$$

for all $x \geq 2$.

Proof. Since $\alpha>0$ and $x \geq 2$,

$$
\begin{equation*}
1+2 \alpha x^{2 \alpha} \geq 1+2 \alpha 2^{2 \alpha}=1+\alpha 2^{2 \alpha+1} \tag{5}
\end{equation*}
$$

On the other hand, $e^{x} \geq 1+x$ for all $x \in \mathbb{R}$. In particular,

$$
\begin{equation*}
e^{2^{\alpha}-4^{\alpha}} \geq 1+2^{\alpha}-4^{\alpha} . \tag{6}
\end{equation*}
$$

From (5) and (6) we deduce,

$$
\begin{align*}
e^{x^{2 \alpha}}\left(1+2 \alpha x^{2 \alpha}\right)+2 e^{2^{\alpha}}-3 e^{4^{\alpha}} & \geq e^{2^{2 \alpha}}\left(1+\alpha 2^{2 \alpha+1}\right)+2 e^{2^{\alpha}}-3 e^{4^{\alpha}} \\
& =2 e^{2^{2 \alpha}}\left(\alpha 2^{2 \alpha}+e^{2^{\alpha}-4^{\alpha}}-1\right) \\
& \geq 2 e^{2^{2 \alpha}}\left(\alpha 2^{2 \alpha}+2^{\alpha}-4^{\alpha}\right) \\
& =2^{2 \alpha+1} e^{2^{2 \alpha}}\left(\alpha+\frac{1}{2^{\alpha}}-1\right) . \tag{7}
\end{align*}
$$

Moreover, the function $p(\alpha)=\alpha+\frac{1}{2^{\alpha}}-1$ is strictly increasing in $\left(\frac{\ln (\ln 2)}{(\ln 2)},+\infty\right)$, since

$$
\frac{d}{d \alpha} p(\alpha)=1-\frac{\ln 2}{2^{\alpha}}>0
$$

for all $\alpha \geq \frac{\ln (\ln 2)}{(\ln 2)} \approx-0.52877$. Consequently,

$$
\alpha+\frac{1}{2^{\alpha}}-1>p(0)=0,
$$

and by (7),

$$
e^{x^{2 \alpha}}\left(1+2 \alpha x^{2 \alpha}\right)+2 e^{2^{\alpha}}-3 e^{4^{\alpha}}>0
$$

Recall that L is the subset of K defined as

$$
L=\{(i, j) \in K: i+j \leq n,(i, j) \neq(1,1)\} .
$$

Define the function

$$
f(i, j)=\frac{i j}{i+j}\left(e^{(i j)^{\alpha}}+2 e^{2^{\alpha}}-3 e^{4^{\alpha}}\right)
$$

where $(i, j) \in L$. Note that

$$
f(1,2)=f(2,2)=2\left(e^{2^{\alpha}}-e^{4^{\alpha}}\right) .
$$

It can be easily deduced from [4, Theorem 2.1] that if $T \in \mathcal{T}_{n}$ then,

$$
\begin{equation*}
e^{\chi_{\alpha}}(T)=e^{\chi_{\alpha}}\left(P_{n}\right)+\sum_{(i, j) \in L}[f(i, j)-f(1,2)] \frac{i+j}{i j} m_{i, j}(T), \tag{8}
\end{equation*}
$$

for every $\alpha \in \mathbb{R}$. Consider the extension of L to the compact set

$$
\widehat{L}=\{(x, y) \in \mathbb{R} \times \mathbb{R}: 1 \leq x \leq y \leq n-1, x+y \leq n, y \geq 2\} .
$$

Theorem 2.5 Let $\alpha>0$ and $n \geq 5$. The path P_{n} is the unique minimal tree with respect to $e^{\chi_{\alpha}}$ over \mathcal{T}_{n}.

Proof. Let T_{0} be a tree with minimal value of χ_{α} over \mathcal{T}_{n}. By Proposition 2.3, $m_{1, j}\left(T_{0}\right)=0$ for all $j \geq 3$. Let

$$
M=\{(i, j) \in L: i \geq 2\}
$$

Then by (8),

$$
\begin{align*}
e^{\chi_{\alpha}}\left(T_{0}\right) & =e^{\chi_{\alpha}}\left(P_{n}\right)+\sum_{(i, j) \in L}[f(i, j)-f(1,2)] \frac{i+j}{i j} m_{i, j}\left(T_{0}\right) \\
& =e^{\chi_{\alpha}}\left(P_{n}\right)+\sum_{(i, j) \in M}[f(i, j)-f(1,2)] \frac{i+j}{i j} m_{i, j}\left(T_{0}\right) . \tag{9}
\end{align*}
$$

Let

$$
\widehat{M}=\{(x, y) \in \widehat{L}: x \geq 2\}
$$

and

$$
f(x, y)=\frac{x y}{x+y}\left(e^{(x y)^{\alpha}}+2 e^{2^{\alpha}}-3 e^{4^{\alpha}}\right),
$$

defined over \widehat{M}. We will show that $\min _{(i, j) \in \widehat{M}} f(i, j)=f(2,2)$. By Lemma 2.4 and the fact that $\alpha>0$,

$$
\begin{aligned}
\frac{\partial}{\partial y} f(x, y) & =x \frac{x e^{(x y)^{\alpha}}+2 x e^{2^{\alpha}}-3 x e^{4^{\alpha}}+x \alpha e^{(x y)^{\alpha}}(x y)^{\alpha}+y \alpha e^{(x y)^{\alpha}}(x y)^{\alpha}}{(x+y)^{2}} \\
& \geq x \frac{x e^{x^{2 \alpha}}+2 x e^{2^{\alpha}}-3 x e^{4^{\alpha}}+x \alpha e^{x^{\alpha}} x^{2 \alpha}+x \alpha e^{x^{2 \alpha}} x^{2 \alpha}}{(x+y)^{2}} \\
& =\frac{x^{2}}{(x+y)^{2}}\left(e^{x^{2 \alpha}}\left(1+2 \alpha x^{2 \alpha}\right)+2 e^{2^{\alpha}}-3 e^{4^{\alpha}}\right)>0,
\end{aligned}
$$

for all $(x, y) \in \widehat{M}$, and

$$
\frac{\partial}{\partial x} f(x, x)=\frac{1}{2}\left(e^{x^{2 \alpha}}\left(1+2 \alpha x^{2 \alpha}\right)+2 e^{2^{\alpha}}-3 e^{4^{\alpha}}\right)>0
$$

for all $x \geq 2$. This clearly implies that the minimum value of f over \widehat{M} is $f(2,2)=f(1,2)$.
Finally, if $T \in \mathcal{T}_{n}$ then by (9) we deduce

$$
e^{\chi_{\alpha}}(T) \geq e^{\chi_{\alpha}}\left(T_{0}\right) \geq e^{\chi_{\alpha}}\left(P_{n}\right)
$$

3 Minimal value of $e^{\chi \alpha}$ in trees when $\alpha<0$

In this section we prove that the star S_{n} attains the minimal value of $e^{\chi_{\alpha}}$ over \mathcal{T}_{n}, when $\alpha<0$.

Proposition 3.1 Let $\alpha<0$ and $T \in \mathcal{T}_{n}$ be a minimal tree with respect to $e^{\chi_{\alpha}}$ over \mathcal{T}_{n}. Then T has no pendent paths of length greater than one.

Proof. Suppose T a minimal tree with respect to $e^{\chi_{\alpha}}$ and it contains a pendent path of length $k \geq 3$. Then T has the form depicted in Figure 3, where S is a subtree of T and $x=d_{T}(u) \geq 3$. Consider the tree T^{\prime} in the same figure and let $x_{i}=d_{T}\left(u_{i}\right)$, where u_{1}, \ldots, u_{x-1} are the vertices adjacent to u in S. Then

$$
\begin{aligned}
e^{\chi_{\alpha}}\left(T^{\prime}\right)-e^{\chi_{\alpha}}(T)= & \sum_{i=1}^{x-1}\left[e^{x_{i}^{\alpha}(x+k-2)^{\alpha}}-e^{x_{i}^{\alpha} x^{\alpha}}\right]+\left[e^{2^{\alpha}(x+k-2)^{\alpha}}-e^{2^{\alpha} x^{\alpha}}\right] \\
& +(k-2)\left[e^{(x+k-2)^{\alpha}}-e^{4^{\alpha}}\right]<0 .
\end{aligned}
$$

and we get a contradiction.

Figure 3. Trees used in the proof of Proposition 3.1 for $k \geq 3$.

Now suppose T is a minimal tree with respect to $e^{\chi_{\alpha}}$ over \mathcal{T}_{n} and it contains a pendent path of length $k=2$. Then T has the form depicted in Figure 4, where S is a subtree of
T and $x=d_{T}(u) \geq 3$. Consider the tree T^{\prime} in the same figure and let $x_{i}=d_{T}\left(u_{i}\right)$, where u_{1}, \ldots, u_{x-1} are the vertices adjacent to u in S. Then

$$
\begin{aligned}
e^{\chi_{\alpha}}\left(T^{\prime}\right)-e^{\chi_{\alpha}}(T) & =\sum_{i=1}^{x-1}\left[e^{x_{i}^{\alpha}(x+1)^{\alpha}}-e^{x_{i}^{\alpha} x^{\alpha}}\right]+2 e^{(x+1)^{\alpha}}-e^{2^{\alpha} x^{\alpha}}-e^{2^{\alpha}} \\
& <2 e^{(x+1)^{\alpha}}-e^{(2 x)^{\alpha}}-e^{2^{\alpha}}=f_{1}(x)
\end{aligned}
$$

$f_{1}(x)$ is a real continuosly differentiable function defined for $x \geq 1$. The derivative of f_{1}

Figure 4. Trees used in the proof of Proposition 3.1 for $k=2$.
is

$$
\frac{d}{d x} f_{1}(x)=2 \alpha\left[e^{(x+1)^{\alpha}}(x+1)^{\alpha-1}-e^{(2 x)^{\alpha}}(2 x)^{\alpha-1}\right]
$$

Note that since $\alpha<0, \frac{d}{d x} f_{1}(x)<0$ for $x>1$ and $\frac{d}{d x} f_{1}(1)=0$. Then $f_{1}(x)$ attains its maximum at $x=1$. Then

$$
e^{\chi_{\alpha}}\left(T^{\prime}\right)-e^{\chi_{\alpha}}(T)<f_{1}(x) \leq f_{1}(1)=0
$$

and we get a contradiction.
Proposition 3.2 Let $\alpha<0$ and $T \in \mathcal{T}_{n}$ be a minimal tree with respect to $e^{\chi_{\alpha}}$ over \mathcal{T}_{n}. Then T has no internal paths of length greater than 1.

Proof. Suppose T is a minimal tree with respect to $e^{\chi_{\alpha}}$ over \mathcal{T}_{n} and contains an internal path of length $k+1$ with $k \geq 2$ (see Figure 5) and consider the tree T^{\prime} depicted in Figure 5, where U and V are subtrees of T. Assume that $x=d_{T}(u) \geq 3, y=d_{T}(v) \geq 3$, and $x_{i}=d_{T}\left(u_{i}\right)$, where u_{1}, \ldots, u_{x-1} are the vertices adjacent to u in U. Then

Figure 5. Trees used in the proof of Proposition 3.2 for $k \geq 2$.

$$
\begin{aligned}
e^{\chi_{\alpha}}\left(T^{\prime}\right)-e^{\chi_{\alpha}}(T)= & \sum_{i=1}^{x-1}\left[e^{x_{i}^{\alpha}(x+k)^{\alpha}}-e^{x_{i}^{\alpha} x^{\alpha}}\right]+(k-1)\left[e^{(x+k)^{\alpha}}-e^{4^{\alpha}}\right]+ \\
& {\left[e^{(x+k)^{\alpha} y^{\alpha}}-e^{2^{\alpha} y^{\alpha}}\right]+e^{(x+k)^{\alpha}}-e^{2^{\alpha} x^{\alpha}} } \\
< & (k-1)\left[e^{(x+k)^{\alpha}}-e^{4^{\alpha}}\right]+e^{(x+k)^{\alpha}}-e^{2^{\alpha} x^{\alpha}} \\
\leq & {\left[e^{(x+k)^{\alpha}}-e^{4^{\alpha}}\right]+e^{(x+k)^{\alpha}}-e^{2^{\alpha} x^{\alpha}} } \\
= & 2 e^{(x+k)^{\alpha}}-e^{4^{\alpha}}-e^{2^{\alpha} x^{\alpha}} \\
\leq & 2 e^{(x+2)^{\alpha}}-e^{4^{\alpha}}-e^{2^{\alpha} x^{\alpha}}=f_{2}(x) .
\end{aligned}
$$

$f_{2}(x)$ is a real continuosly differentiable function defined for $x \geq 2$. The derivative of f_{2} is

$$
\frac{d}{d x} f_{2}(x)=2 \alpha\left[e^{(x+2)^{\alpha}}(x+2)^{\alpha-1}-(2 x)^{\alpha-1} e^{(2 x)^{\alpha}}\right] .
$$

Note that since $\alpha<0, \frac{d}{d x} f_{2}(x)<0$ for $x>2$ and $\frac{d}{d x} f_{2}(2)=0$. Then $f_{2}(x)$ attains its maximum at $x=2$. Then

$$
e^{\chi_{\alpha}}\left(T^{\prime}\right)-e^{\chi_{\alpha}}(T)<f_{2}(x) \leq f_{2}(2)=0 .
$$

and we get a contradiction.
Suppose now that T is a minimal tree with respect to $e^{\chi_{\alpha}}$ and contains an internal path of length $k=2$ (see Figure 6) and consider the tree T^{\prime} depicted in Figure 6, where U and V are subtrees of T. Assume that $x=d_{T}(u) \geq 3, y=d_{T}(v) \geq 3, x_{i}=d_{T}\left(u_{i}\right)$, where u_{1}, \ldots, u_{x-1} are the vertices adjacent to u in U and $y_{i}=d_{T}\left(v_{i}\right)$, where v_{1}, \ldots, v_{y-1} are the vertices adjacent to v in V. Then

T

Figure 6. Trees used in the proof of Proposition 3.2 for $k=1$.

$$
\begin{aligned}
e^{\chi_{\alpha}}\left(T^{\prime}\right)-e^{\chi_{\alpha}}(T)= & \sum_{i=1}^{x-1}\left[e^{x_{i}^{\alpha}(x+y)^{\alpha}}-e^{x_{i}^{\alpha} x^{\alpha}}\right]+\sum_{i=1}^{y-1}\left[e^{y_{i}^{\alpha}(x+y)^{\alpha}}-e^{y_{i}^{\alpha} y^{\alpha}}\right] \\
& +2 e^{(x+y)^{\alpha}}-e^{2^{\alpha} x^{\alpha}}-e^{2^{\alpha} y^{\alpha}} \\
< & 2 e^{(x+y)^{\alpha}}-e^{2^{\alpha} x^{\alpha}}-e^{2^{\alpha} y^{\alpha}} \\
= & f_{3}(x+y)-f_{3}(2 x)+f_{3}(x+y)-f_{3}(2 y)
\end{aligned}
$$

where $f_{3}(z)=e^{z^{\alpha}}$ is a real continuosly differentiable function for $z>0$.
If $x=y, f_{3}(x+y)-f_{3}(2 x)+f_{3}(x+y)-f_{3}(2 y)=0$ and

$$
e^{\chi_{\alpha}}\left(T^{\prime}\right)-e^{\chi_{\alpha}}(T)<f_{3}(x+y)-f_{3}(2 x)+f_{3}(x+y)-f_{3}(2 y)=0 .
$$

If $x<y$, then $2 x<x+y<2 y$. By the mean value Theorem, there exists two points $2 x<z_{1}<x+y<z_{2}<2 y$ such that

$$
\begin{aligned}
e^{\chi_{\alpha}}\left(T^{\prime}\right)-e^{\chi_{\alpha}}(T) & <f_{3}(x+y)-f_{3}(2 x)+f_{3}(x+y)-f_{3}(2 y) \\
& =\left(f_{3}^{\prime}\left(z_{1}\right)-f_{3}^{\prime}\left(z_{2}\right)\right)(y-x) \\
& =\alpha(y-x)\left[z_{1}^{\alpha-1} e^{z_{1}^{\alpha}}-z_{2}^{\alpha-1} e^{z_{2}^{\alpha}}\right]<0
\end{aligned}
$$

If $x>y$, similarly one can prove that $e^{\chi_{\alpha}}\left(T^{\prime}\right)-e^{\chi_{\alpha}}(T)<0$ and we get a contradiction.

Let T be a tree with at least one branching vertex v of degree $k \geq 3$. The tree T can be viewed as the coalescence of k subtrees T_{1}, \ldots, T_{k} of T at the vertex v. These subtrees are called branches of T at v (see Figure 7). A branching vertex v of T is an outer branching vertex of T if all branches of T at v (except for possibly one) are paths [5].

Figure 7. Branches of the tree T at branching vertex v.

Proposition 3.3 Let $\alpha<0$ and $T \in \mathcal{T}_{n}$ be a minimal tree with respect to $e^{\chi_{\alpha}}$. Then T has at most one branching vertex.

Proof. Suppose T is a minimal tree with respect to $e^{\chi_{\alpha}}$ over \mathcal{T}_{n}. By Propositions 3.1 and $3.2, T$ has no internal paths of length greater than one and all pendent paths are of length one. Suppose T has more than one branching vertex, then T has the form depicted in Figure 8 where u is a branching vertex and v is an outer branching vertex of degree $k+1$ for $k \geq 2$. Consider the tree T^{\prime} depicted in Figure 8, where U is a subtree of T. Assume that $x=d_{T}(u) \geq 3$ and $x_{i}=d_{T}\left(u_{i}\right)$, where u_{1}, \ldots, u_{x-1} are the vertices adjacent to u in U. Then

Figure 8. Trees used in the proof of Proposition 3.3.

$$
\begin{aligned}
e^{\chi_{\alpha}}\left(T^{\prime}\right)-e^{\chi_{\alpha}}(T)= & \sum_{i=1}^{x-1}\left[e^{x_{i}^{\alpha}(x+k)^{\alpha}}-e^{x_{i}^{\alpha} x^{\alpha}}\right] \\
& +(k+1) e^{(x+k)^{\alpha}}-k e^{(k+1)^{\alpha}}-e^{x^{\alpha}(k+1)^{\alpha}} \\
< & (k+1) e^{(x+k)^{\alpha}}-k e^{(k+1)^{\alpha}}-e^{x^{\alpha}(k+1)^{\alpha}}=f_{4}(x) .
\end{aligned}
$$

$f_{4}(x)$ is a real continuosly differentiable function defined for $x \geq 1$. The derivative of f_{4} is

$$
\frac{d}{d x} f_{4}(x)=\alpha(k+1)\left[e^{(k+x)^{\alpha}}(k+x)^{\alpha-1}-(x(k+1))^{\alpha-1} e^{(x(k+1))^{\alpha}}\right]
$$

Note that since $\alpha<0, \frac{d}{d x} f_{4}(x)<0$ for $x>1$ and $\frac{d}{d x} f_{4}(1)=0$. Then $f_{4}(x)$ attains its maximum at $x=1$. Consequently,

$$
e^{\chi_{\alpha}}\left(T^{\prime}\right)-e^{\chi_{\alpha}}(T)<f_{4}(x) \leq f_{4}(1)=0
$$

and we get a contradiction.

Theorem 3.4 Let $\alpha<0$. For $n \geq 5$, the minimal tree with respect to $e^{\chi_{\alpha}}$ over \mathcal{T}_{n} is the star S_{n}.

Proof. By Proposition 3.3, the minimal tree with respect to $e^{\chi_{\alpha}}$ over \mathcal{T}_{n} has at most one branching vertex. The only tree with no branching vertices is the path P_{n} and the
only tree, satisfying Propositions 3.1 and 3.2 , with exactly one branching vertex, is the star S_{n}. Then,

$$
\begin{aligned}
e^{\chi_{\alpha}}\left(S_{n}\right)-e^{\chi_{\alpha}}\left(P_{n}\right) & =(n-1) e^{(n-1)^{\alpha}}-(n-3) e^{4^{\alpha}}-2 e^{2^{\alpha}} \\
& =(n-3)\left(e^{(n-1)^{\alpha}}-e^{4^{\alpha}}\right)+2\left(e^{(n-1)^{\alpha}}-e^{2^{\alpha}}\right)<0
\end{aligned}
$$

References

[1] A. Ali, L. Zhong, I. Gutman, Harmonic index and its generalizations: Extremal results and bounds, MATCH Commun. Math. Comput. Chem. 81 (2019) 249-311.
[2] S. Bermudo, J. E. Nápoles, J. Rada, Extremal trees for the Randić index with given domination number, Appl. Math. Comput. 375 (2020) \#125122.
[3] B. Bollobás, P. Erdős, Graphs of extremal weights, Ars Comb. 50 (1998) 225-233.
[4] R. Cruz, J. Rada, The path and the star as extremal values of vertex-degree-based topological indices among trees, MATCH Commun. Math. Comput. Chem. 82 (2019) 715-732.
[5] R. Cruz, J. Monsalve, J. Rada, Trees with maximum exponential Randić index, Discr. Appl. Math. 283 (2020) 634-643.
[6] R. Cruz, J. Monsalve, J. Rada, On chemical trees that maximize atom-bond connectivity index, its exponential version, and minimize exponential geometric-arithmetic index, MATCH Commun. Math. Comput. Chem. 84 (2020) 691-718.
[7] R. Cruz, J. Monsalve, J. Rada, Extremal values of vertex-degree-based topological indices of chemical trees, Appl. Math. Comput. 380 (2020) \#125281.
[8] R. Cruz, J. Rada, Extremal values of exponential vertex-degree-based topological indices over graphs, Kragujevac J. Math. 46 (2022) 105-113.
[9] C. Dalfó, On the Randić index of graphs, Discr. Math. 342 (2019) 2792-2796.
[10] H. Deng, S. Balachandran, S. Elumalai, Some tight bounds for the harmonic index and the variation of the Randić index of graphs, Discr. Math. 342 (2019) 2060-2065.
[11] J. Devillers, A. Balaban, Topological Indices and Related Descriptors in QSAR and QSPR, Gordon \& Breach, Amsterdam, 1999.
[12] A. Estrada-Moreno, J. A. Rodríguez-Velázquez, On the general Randić index of polymeric networks modelled by generalized Sierpiński graphs, Discr. Appl. Math. 263 (2019) 140-151.
[13] I. Gutman, B. Furtula (Eds.), Recent Results in the Theory of Randić Index, Univ. Kragujevac, Kragujevac, 2008.
[14] I. Gutman, B. Furtula, V. Katanić, Randić index and information, AKCE Int. J. Graphs Comb. 15 (2018) 307-312.
[15] L. Kier, L. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, (1976).
[16] L. Kier, L. Hall, Molecular Connectivity in Structure-Activity Analysis, Wiley, New York, 1986.
[17] X. Li, I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure Descriptors, Univ. Kragujevac, Kragujevac, 2006.
[18] Y. Ma, S. Cao, Y. Shi, I. Gutman, M. Dehmer, B. Furtula, From the connectivity index to various Randić-type descriptors, MATCH Commun. Math. Comput. Chem. 80 (2018) 85-106.
[19] C. T. Martínez-Martínez, J. A. Méndez-Bermúdez, J. M. Rodríguez, J. M. Sigarreta, Computational and analytical studies of the Randić index in Erdös-Rényi models, Appl. Math. Comput. 377 (2020) \#125137.
[20] B. Ning, X. Peng, The Randić index and signless Laplacian spectral radius of graphs, Discr. Math. 342 (2019) 643-653.
[21] J. Rada, R. Cruz, Vertex-degree-based topological indices over graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) 603-616.
[22] J. Rada, S. Bermudo, Is every graph the extremal value of a vertex-degree-based topological index?, MATCH Commun. Math. Comput. Chem. 81 (2019) 315-323.
[23] J. Rada, Exponential vertex-degree-based topological indices and discrimination, MATCH Commun. Math. Comput. Chem. 82 (2019) 29-41.
[24] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609-6615.
[25] O. Suil, Y. Shi, Sharp bounds for the Randić index of graphs with given minimum and maximum degree, Discr. Appl. Math. 247 (2018) 111-115.
[26] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
[27] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, WileyVCH, Weinheim, 2009.
[28] Y. Yao, M. Liu, K. C. Das, Y. Ye, Some extremal results for vertex-degree-based invariants, MATCH Commun. Math. Comput. Chem. 81 (2019) 325-344.
[29] Y. Yao, M. Liu, X. Gu, Unified extremal results for vertex-degree-based graph invariants with given diameter, MATCH Commun. Math. Comput. Chem. 82 (2019) 699-714.

