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Abstract

The generalized Randić index of a graph G with vertex set V (G) and edge set
E (G), is defined as

χα (G) =
∑

uv∈E(G)

(d (u) d (v))α ,

where α is an arbitrary real number, and d (u) denotes the degree of u ∈ V (G). In
this paper we study the exponential of χα (G), defined as

eχα (G) =
∑

uv∈E(G)

e(d(u)d(v))
α

.

More concretely, we show that over the set Tn of trees with n vertices, the minimal
value of eχα is attained in the path Pn when α > 0, and in the star Sn when α < 0.

1 Introduction

Let G be a graph with vertex set V (G) and edge set E (G). Two vertices are called

adjacent if they are connected by an edge. If there is an edge from vertex u to vertex

v we indicate this by writing uv. For a vertex v of G, the degree of v is denoted by

d (v) = dG (v). We will denote by mi,j = mi,j (G) the number of edges in G joining

vertices of degree i and j.
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A tree T is a connected acyclic graph. A vertex u of a tree T is called a branching

vertex if dT (u) ≥ 3 and it is called a leaf if dT (u) = 1. Let π : v0v1 · · · vk be a path of

length k of a tree T such that dT (vi) = 2 for all i = 1, . . . , k−1. If v0 and vk are branching

vertices of T then π is an internal path of T ; if v0 is a branching vertex and vk is a leaf

then π is a pendant path of T .

The Randić index χ (G) is one of the classical topological indices which play an impor-

tant role in theoretical chemistry, especially in QSPR/QSAR research [11, 15, 16, 26, 27].

It was invented by Milan Randić in 1975 [24] and defined as

χ (G) =
∑

uv∈E(G)

1√
d (u) d (v)

.

Later, in 1998 Bollobás and Erdös [3] generalized this index as

χα (G) =
∑

uv∈E(G)

(d (u) d (v))α ,

where α is an arbitrary real number. For a comprehensive survey of its mathematical

properties see the surveys [13,17], and for recent results see the papers [2,9,10,12,14,18–

20,25].

The (generalized) Randić index is an important example of what is now known as

vertex-degree-based (VDB, for short) topological indices [1, 4, 21, 22, 28, 29], defined for a

graph G with n vertices as

ϕ (G) =
∑

(i,j)∈K

mi,j (G)ϕ (i, j) ,

where {ϕ (i, j)} is a set of real numbers, and

K = {(i, j) ∈ N× N : 1 ≤ i ≤ j ≤ n− 1} .

When ϕ (i, j) = (ij)α, we recover χα.

The exponential of a VDB topological index was recently introduced in [23], and

defined as

eϕ (G) =
∑

(i,j)∈K

mi,j (G) eϕ(i,j) .

For further results see [4–8]. Our main concern in this paper is to study the exponential

of the generalized Randić index. For a graph G with n vertices, the exponential of the

generalized Randić index χα is defined as

eχα (G) =
∑

(i,j)∈K

mi,j (G) e(ij)
α

,
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where α ∈ R. We are particularly interested in Tn, the set of trees with n vertices. Let

T ∈ Tn, where n ≥ 3. Since a tree is a connected acyclic graph, then m1,1(T ) = 0,

mi,j(T ) = 0 for any 1 ≤ i ≤ j ≤ n− 1 such that i+ j > n and∑
(i,j)∈K

mi,j(T ) = n− 1. (1)

Hence, for every T ∈ Tn
eχα (T ) =

∑
(i,j)∈L

mi,j(T )e(ij)
α

, (2)

where L is the subset of K defined as

L = {(i, j) ∈ K : i+ j ≤ n, (i, j) 6= (1, 1)} .

We say that T is a minimal tree with respect to eχα over Tn if eχα (T ) ≤ eχα (S) for all

S ∈ Tn. We will show in this paper that if α > 0 (resp. α < 0) then, the path Pn (resp.

the star Sn) on n vertices is a tree with minimum eχα over Tn.

2 Minimal value of eχα in trees when α > 0

We show in this section that if α > 0 then, Pn is the unique minimal tree with respect to

eχα over Tn. First we need a technical lemma.

Lemma 2.1 Let α > 0.

1. The function h (q) = e(3q)
α − e(2q)α is increasing in [2,+∞);

2. e6
α − e4α > e4

α
+ e2

α − 2e3
α
;

3. 2e6
α − 2e4

α
> e4

α − e3α.

Proof. 1. For all q ∈ [2,+∞) , the derivative

d

dq
h (q) = αqα−1

(
3αe(3q)

α − 2αe(2q)
α)
> 0,

for all q ≥ 2, since qα−1 > 0, 3α > 2α and e(3q)
α
> e(2q)

α
.

2. We will first show that

6α − 4α > 4α − 3α. (3)

In fact, the function g (α) = 3α

2α
+ 3α

22α
− 2 is strictly increasing in [0,+∞) since

d

dα
g (α) =

(
3

2

)α
ln

(
3

2

)
+

(
3

4

)α
ln

(
3

4

)
≥
(

3

4

)α
ln

(
3

2

)
+

(
3

4

)α
ln

(
3

4

)
=

(
3

4

)α [
ln

(
3

2

)
+ ln

(
3

4

)]
> 0 .
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Hence

6α + 3α − 2 (4α) = 22αg (α) > 22αg (0) = 0.

Now from (3) we deduce that

e6
α − e4α = e4

α (
e6
α−4α − 1

)
> e3

α (
e4
α−3α − 1

)
= e4

α − e3α >
(
e4
α − e3α

)
+
(
e2
α − e3α

)
= e4

α

+ e2
α − 2e3

α

.

3. Using (3),

2e6
α − 2e4

α

= 2e4
α (
e6
α−4α − 1

)
> e3

α (
e4
α−3α − 1

)
= e4

α − e3α .

Proposition 2.2 Let n ≥ 5 and α > 0. Consider the trees T and T ′ with n vertices

shown in Figure 1. If p ≥ 3 then, eχα (T ) > eχα (T ′).

Proof. Let q = dT (u). Then

∆ = eχα (T )− eχα (T ′) = e(pq)
α

+ (p− 1) ep
α − e(2q)

α

− (p− 2) e4
α − e2α

=
(
e(pq)

α

− e(2q)
α
)

+ (p− 2)
(
ep
α − e4α

)
+
(
ep
α − e2α

)
.

If p ≥ 4, then each of the summands is non-negative since α > 0. Consequently,

∆ > 0. Now assume that p = 3. Then

∆ =
(
e(3q)

α

− e(2q)
α
)

+
(
e3
α − e4α

)
+
(
e3
α − e2α

)
.

Note that q ≥ 2 since n ≥ 5. It follows from parts 1. and 2. of Lemma 2.1 that

e(3q)
α

− e(2q)
α

≥ h (2) = e6
α − e4α > e4

α

+ e2
α − 2e3

α

,

which implies that ∆ > 0.

Figure 1. Trees used in the proof of Proposition 2.2.
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Proposition 2.3 Let α > 0. Suppose that T is a minimal tree with respect to eχα over

Tn. If v is a vertex of T adjacent to a leaf u of T , then dT (v) = 2.

Proof. Assume that dT (v) = d and let π be a largest path of T that contains v. Let

s be an end-vertex of π and r a vertex in π adjacent to s. By Proposition 2.2, dT (r) = 2.

Let T ′ be the tree obtained from T by deleting the leaf u and adding an edge incident

to s (see Figure 2). Let q1, . . . , qd−1 be the degrees of the adjacent vertices of v different

from u. Clearly,

∆ = eχα (T )− eχα (T ′) =
d−1∑
i=1

(
e(dqi)

α

− e((d−1)qi)
α
)

+ ed
α − e4α . (4)

We consider two cases:

1. d ≥ 4. It follows easily from (4) that ∆ > 0, since α > 0.

2. d = 3. Let v1 and v2 be the adjacent vertices to v (different from u), such that

dT (v1) = p and dT (v2) = q. It follows from Proposition 2.2 that p ≥ 2 and q ≥ 2. Then

∆ (p, q) = e(3p)
α

− e(2p)
α

+ e(3q)
α

− e(2q)
α

+ e3
α − e4α .

Since α > 0, then

∂∆ (p, q)

∂p
=
α

p

(
e(3p)

α

(3p)α − e(2p)
α

(2p)α
)
> 0,

and

∂∆ (p, q)

∂q
=
α

q

(
e(3q)

α

(3q)α − e(2q)
α

(2q)α
)
> 0.

Hence by part 3. of Lemma 2.1,

∆ (p, q) ≥ ∆ (2, 2) = 2e6
α − 2e4

α

+ e3
α − e4α > 0,

which contradicts the fact that T is minimal.

Figure 2. Trees used in the proof of Proposition 2.3.

We need one more techincal lemma to prove the main result of this section.
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Lemma 2.4 Let α > 0. Then

ex
2α (

1 + 2αx2α
)

+ 2e2
α − 3e4

α

> 0,

for all x ≥ 2.

Proof. Since α > 0 and x ≥ 2,

1 + 2αx2α ≥ 1 + 2α22α = 1 + α22α+1. (5)

On the other hand, ex ≥ 1 + x for all x ∈ R. In particular,

e2
α−4α ≥ 1 + 2α − 4α. (6)

From (5) and (6) we deduce,

ex
2α (

1 + 2αx2α
)

+ 2e2
α − 3e4

α ≥ e2
2α (

1 + α22α+1
)

+ 2e2
α − 3e4

α

= 2e2
2α (

α22α + e2
α−4α − 1

)
≥ 2e2

2α (
α22α + 2α − 4α

)
= 22α+1e2

2α

(
α +

1

2α
− 1

)
. (7)

Moreover, the function p(α) = α + 1
2α
− 1 is strictly increasing in

(
ln(ln 2)
(ln 2)

,+∞
)

, since

d

dα
p(α) = 1− ln 2

2α
> 0,

for all α ≥ ln(ln 2)
(ln 2)

≈ −0.528 77. Consequently,

α +
1

2α
− 1 > p (0) = 0,

and by (7),

ex
2α (

1 + 2αx2α
)

+ 2e2
α − 3e4

α

> 0.

Recall that L is the subset of K defined as

L = {(i, j) ∈ K : i+ j ≤ n, (i, j) 6= (1, 1)} .

Define the function

f (i, j) =
ij

i+ j

(
e(ij)

α

+ 2e2
α − 3e4

α
)
,
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where (i, j) ∈ L. Note that

f (1, 2) = f (2, 2) = 2
(
e2
α − e4α

)
.

It can be easily deduced from [4, Theorem 2.1] that if T ∈ Tn then,

eχα (T ) = eχα (Pn) +
∑

(i,j)∈L

[f (i, j)− f (1, 2)]
i+ j

ij
mi,j (T ) , (8)

for every α ∈ R. Consider the extension of L to the compact set

L̂ = {(x, y) ∈ R× R : 1 ≤ x ≤ y ≤ n− 1, x+ y ≤ n, y ≥ 2} .

Theorem 2.5 Let α > 0 and n ≥ 5. The path Pn is the unique minimal tree with respect

to eχα over Tn.

Proof. Let T0 be a tree with minimal value of χα over Tn. By Proposition 2.3,

m1,j (T0) = 0 for all j ≥ 3. Let

M = {(i, j) ∈ L : i ≥ 2} .

Then by (8),

eχα (T0) = eχα (Pn) +
∑

(i,j)∈L

[f (i, j)− f (1, 2)]
i+ j

ij
mi,j (T0)

= eχα (Pn) +
∑

(i,j)∈M

[f (i, j)− f (1, 2)]
i+ j

ij
mi,j (T0) . (9)

Let

M̂ =
{

(x, y) ∈ L̂ : x ≥ 2
}

and

f (x, y) =
xy

x+ y

(
e(xy)

α

+ 2e2
α − 3e4

α
)
,

defined over M̂ . We will show that min
(i,j)∈M̂

f(i, j) = f(2, 2). By Lemma 2.4 and the fact

that α > 0,

∂

∂y
f (x, y) = x

xe(xy)
α

+ 2xe2
α − 3xe4

α
+ xαe(xy)

α

(xy)α + yαe(xy)
α

(xy)α

(x+ y)2

≥ x
xex

2α
+ 2xe2

α − 3xe4
α

+ xαex
2α
x2α + xαex

2α
x2α

(x+ y)2

=
x2

(x+ y)2

(
ex

2α (
1 + 2αx2α

)
+ 2e2

α − 3e4
α
)
> 0,
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for all (x, y) ∈ M̂ , and

∂

∂x
f (x, x) =

1

2

(
ex

2α (
1 + 2αx2α

)
+ 2e2

α − 3e4
α
)
> 0,

for all x ≥ 2. This clearly implies that the minimum value of f over M̂ is f (2, 2) = f (1, 2).

Finally, if T ∈ Tn then by (9) we deduce

eχα (T ) ≥ eχα (T0) ≥ eχα (Pn) .

3 Minimal value of eχα in trees when α < 0

In this section we prove that the star Sn attains the minimal value of eχα over Tn, when

α < 0.

Proposition 3.1 Let α < 0 and T ∈ Tn be a minimal tree with respect to eχα over Tn.

Then T has no pendent paths of length greater than one.

Proof. Suppose T a minimal tree with respect to eχα and it contains a pendent path

of length k ≥ 3. Then T has the form depicted in Figure 3, where S is a subtree of T

and x = dT (u) ≥ 3. Consider the tree T ′ in the same figure and let xi = dT (ui), where

u1, . . . , ux−1 are the vertices adjacent to u in S. Then

eχα (T ′)− eχα (T ) =
x−1∑
i=1

[
ex

α
i (x+k−2)

α

− exαi xα
]

+
[
e2
α(x+k−2)α − e2αxα

]
+ (k − 2)

[
e(x+k−2)

α

− e4α
]
< 0.

and we get a contradiction.

Figure 3. Trees used in the proof of Proposition 3.1 for k ≥ 3.

Now suppose T is a minimal tree with respect to eχα over Tn and it contains a pendent

path of length k = 2. Then T has the form depicted in Figure 4, where S is a subtree of
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T and x = dT (u) ≥ 3. Consider the tree T ′ in the same figure and let xi = dT (ui), where

u1, . . . , ux−1 are the vertices adjacent to u in S. Then

eχα (T ′)− eχα (T ) =
x−1∑
i=1

[
ex

α
i (x+1)α − exαi xα

]
+ 2e(x+1)α − e2αxα − e2α

< 2e(x+1)α − e(2x)
α

− e2α = f1 (x) .

f1 (x) is a real continuosly differentiable function defined for x ≥ 1. The derivative of f1

Figure 4. Trees used in the proof of Proposition 3.1 for k = 2.

is

d

dx
f1 (x) = 2α

[
e(x+1)α (x+ 1)α−1 − e(2x)

α

(2x)α−1
]

Note that since α < 0, d
dx
f1 (x) < 0 for x > 1 and d

dx
f1 (1) = 0. Then f1 (x) attains

its maximum at x = 1. Then

eχα (T ′)− eχα (T ) < f1 (x) ≤ f1 (1) = 0

and we get a contradiction.

Proposition 3.2 Let α < 0 and T ∈ Tn be a minimal tree with respect to eχα over Tn.

Then T has no internal paths of length greater than 1.

Proof. Suppose T is a minimal tree with respect to eχα over Tn and contains an

internal path of length k + 1 with k ≥ 2 (see Figure 5) and consider the tree T ′ depicted

in Figure 5, where U and V are subtrees of T . Assume that x = dT (u) ≥ 3, y = dT (v) ≥ 3,

and xi = dT (ui), where u1, . . . , ux−1 are the vertices adjacent to u in U . Then

Figure 5. Trees used in the proof of Proposition 3.2 for k ≥ 2.
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eχα (T ′)− eχα (T ) =
x−1∑
i=1

[
ex

α
i (x+k)

α

− exαi xα
]

+ (k − 1)
[
e(x+k)

α

− e4α
]

+[
e(x+k)

αyα − e2αyα
]

+ e(x+k)
α

− e2αxα

< (k − 1)
[
e(x+k)

α

− e4α
]

+ e(x+k)
α

− e2αxα

≤
[
e(x+k)

α

− e4α
]

+ e(x+k)
α

− e2αxα

= 2e(x+k)
α

− e4α − e2αxα

≤ 2e(x+2)α − e4α − e2αxα = f2 (x) .

f2 (x) is a real continuosly differentiable function defined for x ≥ 2. The derivative of f2

is
d

dx
f2 (x) = 2α

[
e(x+2)α (x+ 2)α−1 − (2x)α−1 e(2x)

α
]
.

Note that since α < 0, d
dx
f2 (x) < 0 for x > 2 and d

dx
f2 (2) = 0. Then f2 (x) attains

its maximum at x = 2. Then

eχα (T ′)− eχα (T ) < f2 (x) ≤ f2 (2) = 0.

and we get a contradiction.

Suppose now that T is a minimal tree with respect to eχα and contains an internal

path of length k = 2 (see Figure 6) and consider the tree T ′ depicted in Figure 6, where

U and V are subtrees of T . Assume that x = dT (u) ≥ 3, y = dT (v) ≥ 3, xi = dT (ui),

where u1, . . . , ux−1 are the vertices adjacent to u in U and yi = dT (vi), where v1, . . . , vy−1

are the vertices adjacent to v in V . Then

Figure 6. Trees used in the proof of Proposition 3.2 for k = 1.
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eχα (T ′)− eχα (T ) =
x−1∑
i=1

[
ex

α
i (x+y)

α

− exαi xα
]

+

y−1∑
i=1

[
ey

α
i (x+y)

α

− eyαi yα
]

+2e(x+y)
α

− e2αxα − e2αyα

< 2e(x+y)
α

− e2αxα − e2αyα

= f3(x+ y)− f3(2x) + f3(x+ y)− f3(2y)

where f3 (z) = ez
α

is a real continuosly differentiable function for z > 0.

If x = y, f3(x+ y)− f3(2x) + f3(x+ y)− f3(2y) = 0 and

eχα (T ′)− eχα (T ) < f3(x+ y)− f3(2x) + f3(x+ y)− f3(2y) = 0.

If x < y, then 2x < x+ y < 2y. By the mean value Theorem, there exists two points

2x < z1 < x+ y < z2 < 2y such that

eχα (T ′)− eχα (T ) < f3(x+ y)− f3(2x) + f3(x+ y)− f3(2y)

= (f ′3 (z1)− f ′3 (z2)) (y − x)

= α (y − x)
[
zα−11 ez

α
1 − zα−12 ez

α
2
]
< 0

If x > y, similarly one can prove that eχα (T ′)−eχα (T ) < 0 and we get a contradiction.

Let T be a tree with at least one branching vertex v of degree k ≥ 3. The tree T can be

viewed as the coalescence of k subtrees T1, . . . , Tk of T at the vertex v. These subtrees are

called branches of T at v (see Figure 7). A branching vertex v of T is an outer branching

vertex of T if all branches of T at v (except for possibly one) are paths [5].

Figure 7. Branches of the tree T at branching vertex v.

Proposition 3.3 Let α < 0 and T ∈ Tn be a minimal tree with respect to eχα. Then T

has at most one branching vertex.
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Proof. Suppose T is a minimal tree with respect to eχα over Tn. By Propositions

3.1 and 3.2, T has no internal paths of length greater than one and all pendent paths

are of length one. Suppose T has more than one branching vertex, then T has the form

depicted in Figure 8 where u is a branching vertex and v is an outer branching vertex of

degree k + 1 for k ≥ 2. Consider the tree T ′ depicted in Figure 8, where U is a subtree

of T . Assume that x = dT (u) ≥ 3 and xi = dT (ui), where u1, . . . , ux−1 are the vertices

adjacent to u in U . Then

Figure 8. Trees used in the proof of Proposition 3.3.

eχα (T ′)− eχα (T ) =
x−1∑
i=1

[
ex

α
i (x+k)

α

− exαi xα
]

+ (k + 1) e(x+k)
α

− ke(k+1)α − exα(k+1)α

< (k + 1) e(x+k)
α

− ke(k+1)α − exα(k+1)α = f4 (x) .

f4 (x) is a real continuosly differentiable function defined for x ≥ 1. The derivative of f4

is
d

dx
f4 (x) = α (k + 1)

[
e(k+x)

α

(k + x)α−1 − (x (k + 1))α−1 e(x(k+1))α
]

Note that since α < 0, d
dx
f4 (x) < 0 for x > 1 and d

dx
f4 (1) = 0. Then f4 (x) attains

its maximum at x = 1. Consequently,

eχα (T ′)− eχα (T ) < f4 (x) ≤ f4 (1) = 0

and we get a contradiction.

Theorem 3.4 Let α < 0. For n ≥ 5, the minimal tree with respect to eχα over Tn is the

star Sn.

Proof. By Proposition 3.3, the minimal tree with respect to eχα over Tn has at most

one branching vertex. The only tree with no branching vertices is the path Pn and the
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only tree, satisfying Propositions 3.1 and 3.2, with exactly one branching vertex, is the

star Sn. Then,

eχα (Sn)− eχα (Pn) = (n− 1) e(n−1)
α

− (n− 3) e4
α − 2e2

α

= (n− 3)
(
e(n−1)

α

− e4α
)

+ 2
(
e(n−1)

α

− e2α
)
< 0.
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