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Abstract

For a molecular graph, the modified first Zagreb (mM1) index is equal to the

sum of the reciprocal of the squares of the vertex degrees, and the modified second

Zagreb (mM2) index is equal to the sum of the reciprocal of the products of degrees

of pairs of adjacent vertices. In this paper, lower and upper bounds on mM1 index

of trees are presented and the extremal trees are characterized. In addition, a

lower bound on mM2 index of trees is determined and the extremal trees are also

characterized. Finally, lower and upper bounds for the mM1 index of trees with a

given domination number are determined and the extremal trees are characterized

as well.

1 Introduction

First and second Zagreb indices [6], which were introduced in the 1970s and originated

from chemical researches on total π-electron energy of conjugated molecules, are two im-

portant vertex-degree-based graph invariants. Over the past four decades, Zagreb indices

have been extensively studied, and lots of their mathematical properties have been inves-

tigated, see [1, 4, 9, 11, 16, 24, 27]. Nowadays, these indices and their variants are widely

used to study molecular complexity [14,21,22], ZE-isomerism [10], and chirality [8].
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Let G be a simple graph with vertex set V (G) and edge set E(G). For a vertex

v ∈ V (G), let dv denote the degree of the vertex v. The (original) first and second Zagreb

indices are defined as below:

M1(G) =
∑

v∈V (G)

(dv)
2,

and

M2(G) =
∑

uv∈E(G)

dudv.

However, Zagreb indices have a problem that their contributing parts give larger

weights to inner (interior) vertices and edges and smaller weights to outer (terminal)

vertices and edges of a graph. Since the outer vertices and bonds are related to a larger

part of the molecular surface, it is possible to describe the physical, chemical and biolog-

ical properties of molecules better. In order to make up for the shortcomings of Zagreb

indices, researchers tried to consider the modified first (mM1) and second (mM2) Zagreb

indices, which are defined as below [20]:

mM1(G) =
∑

v∈V (G)

1

(dv)2
,

and

mM2(G) =
∑

uv∈E(G)

1

dudv
.

It is worth noting that there is an analogy between the method of creating a mod-

ified Zagreb index based on the (original) Zagreb index, and the method of creating a

Harary index [15, 23] from the Wiener index [25]. So far, there have been many pub-

lished bibliography and papers summarized the Zagreb indices and its various modifica-

tions [7, 18, 19, 28]. In 2011, Hao [13] discussed the relations between the Zagreb indices

and the modified Zagreb indices, and presented some mathematical properties of them.

Meanwhile, the extremal graphs of topological indices and the connection between

these indices and domination number have also attracted a lot of interest [3, 12, 17]. In

2016, Borovićanin and Furtula [2] gave the strict upper bounds for Zagreb indices of trees

in terms of domination number and a lower bound for the first Zagreb index (M1) of trees

in terms of domination number and characterized the corresponding extremal graphs.

Two years later, Wang et al. [26] determined upper and lower bounds of first and second

multiplicative Zagreb index on trees with a given domination number.
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Motivated by [2] and [26], we aim to consider the similar issues regarding modified

first (mM1) and second (mM2) Zagreb indices in this paper. Let T be a tree with vertex

set V (T ) and edge set E(T ). Given a vertex v ∈ V (T ), the set of neighbors of v is

N(v) = {u ∈ V (T )| uv ∈ E(T )}. The maximum vertex degree in T is denoted by ∆. A

vertex v ∈ V (T ) with dv = 1 is called a pendent vertex. The diameter of a tree is the

longest path between two pendent vertices. The domination set of a graph G, denoted by

D, is a subset of V (G) such that each vertex of V (G)\D is adjacent to at least one vertex

of D. Domination number γ(G) of the graph G is the minimum cardinality among any

dominating set D of the graph G.

Based on the above considerations, the rest of this paper is organized as below. In

Section 2, lower and upper bounds on mM1 index of trees are presented and the extremal

trees are characterized. In addition, a lower bound on mM2 index of trees is determined

and the extremal trees are also characterized. In Section 3, lower and upper bounds

for the mM1 index of trees in terms of the domination number are determined and the

extremal trees are characterized as well.

2 Bounds for modified Zagreb indices of trees

To obtain bounds for modified first Zagreb indices, we now consider a graph trans-

formation: let T and T ′ be n-vertices trees as depicted in Figure 1, where T ′ is obtained

by moving a pendent vertex v4 ∈ V (T ) such that it is adjacent another pendent vertex

v2 ∈ V (T ). Obviously, one can see that d(v′1) = d(v1), d(v′2) = 2, d(v′3) = d(v3) − 1 and

d(v′4) = d(v4) = 1.

Figure 1. Graph transform T → T ′.

Lemma 1. Let T and T ′ be n-vertex trees as depicted in Figure 1 with dv2 = dv4 = 1 and
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dv3 ≥ 2. Then

mM1(T ) ≥mM1(T
′) ,

with equality holding if and only if dv3 = 2.

Proof. It’s easy to calculate that

mM1(T )−mM1(T
′) =

1

(dv3)
2
− 1

(dv3 − 1)2
+

3

4
≥ 1

4
− 1 +

3

4
= 0

with equality holding if and only if dv3 = 2.

By Lemma 1, we can get bounds for mM1 and characterize their extremal trees as

below.

Theorem 2. Let T be a tree with n vertices. Then

(i) mM1(T ) ≥ n+ 6

4
, with equality holding if and only if T ∼= Pn,

(ii) mM1(T ) ≤ n− 1 + (
1

n− 1
)2, with equality holding if and only if T ∼= Sn.

Proof. By continuing the above transformation T → T ′, we can move all vertices of T until

the desired path Pn is generated, which will always reduce the mM1-value. In addition,

for a n-vertices tree, the star Sn has the largest mM1-value (see [13]).

Next we give the lower bound of the modified second Zagreb index by induction

hypothesis. The upper bound of the mM2 cannot be obtained through a simple discussion.

But by analogy and simple verification, we propose a conjecture in the following.

Theorem 3. Let T be a tree with n vertices. Then mM2(T ) ≥ 1, with equality holding if

and only if T ∼= Sn.

Proof. For T ∼= S3 (T ∼= P3), T ∼= P4 and T ∼= S4, we have mM2(S3) = 1, mM2(P4) =
5

4
> 1, and mM2(S4) = 1. Suppose that results hold for any trees with n− 1 vertices. If

|V (T )| = n, we take a diameter v1v2 · · · vl (l ≥ 4) in T . Let T1 = T −{v1}, then we obtain

mM2(T ) =mM2(T1)− (
1

dv2 − 1
− 1

dv2
)(dv2 − 2 +

1

dv3
) +

1

dv2

≥ 1− (
1

dv2 − 1
− 1

dv2
)(dv2 − 2 +

1

2
) +

1

dv2
(1)

= 1 +
1

2
(

1

dv2 − 1
− 1

dv2
) > 1 .

Equality holds in (1) if and only if mM2(T1) = 1 and dv3 = 1, which implies that

T ∼= Sn.
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Definition 1. Let F be a set of trees. The path Pn all belong to F , and then we

construct new graphs in the set on following way. If T ′ ∈ F satisfies that there exists

v ∈ V (T ′) such that N {u1, u2, · · · , udv}, du1 = du2 = · · · = dudv = 2, and we take any

path Pt = w1w2 · · ·wt with t ≥ 2, then the tree T such that V (T ) = V (T ′) ∪ V (Pt) and

E(T ) = E(T ′) ∪ E(Pt) ∪ {vw1}, belongs to F .

Figure 2. Two trees from the set F .

Conjecture 2.1. Let T be a tree on n vertices. Then mM2(T ) ≤ n+ 1

4
, with equality

holding if and only if T ∈ F .

3 Bounds for the modified first Zagreb index of trees

with a given domination number

In this section, we will discuss sharp bounds for the modified first Zagreb index (mM1)

of trees in terms of domination number and characterize their extremal graphs. First we

consider the lower bound of mM1.

Note that 1 ≤ γ(T ) ≤ n
2

for any n-vertices trees, and γ(T ) = 1 if and only if T ∼= Sn.

By Theorem 2, one can see that mM1(T ) attain its lower bound when T ∼= Pn, and in this

case, γ = dn
3
e. Based on the above statement, it’s not difficult to find that the structure

of extremal trees of mM1(T ) may differ for 1 ≤ γ ≤ n
3

and n
3
< γ ≤ n

2
.

Assume that D is a minimum dominating set of the n-vertices tree T . The domi-

nation number is denoted by γ, where γ = γ(T ) = |D|. Let D = V (T )\D, and then

E1(T ) =
{
uv ∈ E(T )| u ∈ D, v ∈ D

}
, E2(T ) = {uv ∈ E(T )| u ∈ D, v ∈ D}, E3(T ) ={

uv ∈ E(T )| u ∈ D, v ∈ D
}

. The number of edges in E1(T ), E2(T ), E3(T ) are written

by m1, m2, and m3, respectively. Obviously, the following equations always hold for a
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tree T . 
m1 +m2 +m3 = n− 1,∑
v∈D

dv = m1 + 2m2,∑
v∈D

dv = m1 + 2m3.

(2)

Combining with (2) and the definition of mM1, we get

mM1(T ) =
∑
v∈D

(
1

dv

)2

+
∑
v∈D

(
1

dv

)2

. (3)

The formula shown in (3) attains the minimum if dv ∈
{
bm1+2m2

γ
c, dm1+2m2

γ
e
}

for each

v ∈ D while dv ∈
{
bm1+2m3

n−γ c, d
m1+2m3

n−γ e
}

for each v ∈ D. Moreover, each vertex in D is

adjacent to at least one vertex of D, then m1 ≥ n − γ. From (2), it’s easy to get that

m2 +m3 ≤ γ − 1, implying

|m2 −m3| ≤ γ − 1 . (4)

Let m1 + 2m2 = k1γ + r1 and m1 + 2m3 = k2(n − γ) + r2, where k1 = bm1+2m2

γ
c,

r1 = m1 + 2m2 − γbm1+2m2

γ
c, k2 = bm1+2m3

n−γ c, and r2 = m1 + 2m3 − (n − γ)bm1+2m3

n−γ c.

Based on previous considerations, one can see that the formula shown in (3) will attain

the minimum if r1 vertices in D have degree k1 + 1, γ − r1 vertices in D have degree k1,

r2 vertices in D have degree k2 + 1 and (n− γ)− r2 vertices in D have degree k2.

Thus,

∑
v∈D

(
1

dv

)2

≥ r1

(
1

k1 + 1

)2

+ (γ − r1)
(

1

k1

)2

=

[
(n− 1 +m2 −m3)− γ

⌊
n− 1 +m2 −m3

γ

⌋]

×

 1⌊
n−1+m2−m3

γ

⌋
+ 1

2

−

 1⌊
n−1+m2−m3

γ

⌋
2

+ γ

(⌊
n− 1 +m2 −m3

γ

⌋)2

,

(5)
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and ∑
v∈D

(
1

dv

)2

≥ r2

(
1

k2 + 1

)2

+ (n− γ − r2)
(

1

k2

)2

=

[
(n− 1 +m3 −m2)− (n− γ)

⌊
n− 1 +m3 −m2

n− γ

⌋]

×

 1⌊
n−1+m3−m2

n−γ

⌋
+ 1

2

−

 1⌊
n−1+m3−m2

n−γ

⌋
2

+ (n− γ)

(⌊
n− 1 +m3 −m2

n− γ

⌋)2

.

(6)

Combining with (5) and (6), we have

mM1(T ) ≥
[
(n− 1 +m2 −m3)− γ

⌊
n− 1 +m2 −m3

γ

⌋]

×

 1⌊
n−1+m2−m3

γ

⌋
+ 1

2

−

 1⌊
n−1+m2−m3

γ

⌋
2 

+

[
(n− 1 +m3 −m2)− (n− γ)

⌊
n− 1 +m3 −m2

n− γ

⌋]

×

 1⌊
n−1+m3−m2

n−γ

⌋
+ 1

2

−

 1⌊
n−1+m3−m2

n−γ

⌋
2+ γ

(⌊
n− 1 +m2 −m3

γ

⌋)2

+ (n− γ)

(⌊
n− 1 +m3 −m2

n− γ

⌋)2

.

(7)

In fact, the lower bound for the modified first Zagreb index can be determined by

a function g(m2 − m3), and its domain of definition is given by (4). From (7), we get

mM1(T ) ≥ g(m2 −m3). Next, we discuss the lower bound of mM1 in two categories.

Definition 2. Let G1(n, γ) be a set of trees T with n vertices and domination number

γ. For each T ∈ G1(n, γ), T consists of the stars of orders bn−γ
γ
c and dn−γ

γ
e with exactly

γ − 1 pairs of adjacent pendent vertices in neighboring stars.
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Figure 3. Two non-isomorphic trees from G1(n, γ) with 18 vertices and 5 domina-

tion number.

Theorem 4. Let T be a tree on n vertices with domination number γ, where 1 ≤ γ ≤ n
3
.

Then we have

mM1(T ) ≥
(
n− γ

⌊
n− 1

γ

⌋) 1⌊
n−1
γ

⌋
2

−

 1⌊
n−1
γ

⌋
− 1

2
+ γ

 1⌊
n−1
γ

⌋
− 1

2

+

(
n− 5

2
γ +

3

2

)
. (8)

Equality holds if and only if T ∈ G1(n, γ).

Proof. For T ∼= P3, we have γ = 1 and mM1(P3) = (3− 2)(
1

4
− 1) + 1 + (3− 5

2
+

3

2
) =

9

4
.

Then we can suppose that n > 3. Note that 1 < γ ≤ n
3
, then we obtain n− γ ≥ 2n

3
, and

γ−1
n−γ ≤

n−3
2n

< 1
2
. From (4), one can see that

1 =
n− 1 + (1− γ)

n− γ
≤ n− 1 + (m3 −m2)

n− γ
≤ n− 1 + (γ − 1)

n− γ
= 1 + 2

γ − 1

n− γ
< 2,

consequently,

k2 =

⌊
n− 1 +m3 −m2

n− γ

⌋
= 1 .

Furthermore, n−1+(m2−m3)
γ

≥ n−1+(1−γ)
γ

= n−γ
γ
≥ 2n

n
= 2, implying k1 = bn−1+m2−m3

γ
c

≥ 2. Based on the previous discussion, we can get the simplified formula of g(m2 −m3),

that is

g(m2 −m3) =

[(
1

k1 + 1

)2

−
(

1

k1

)2

+
3

4

]
(m2 −m3) + (n− γk1 − 1)

×

[(
1

k1 + 1

)2

−
(

1

k1

)2
]

+ γ

(
1

k1

)2

+

(
n− 7

4
γ +

3

4

)
.

(9)
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Next, we need to consider two cases.

Case 1. 0 ≤ m2 −m3 ≤ γ − 1.

In this case, we have n−1
γ−1 ≤

n−1+m2−m3

γ
≤ n−1

γ
+ γ−1

γ
< n−1

γ
+1. The following equations

are easily to obtained.

k1 = bn− 1 +m2 −m3

γ
c = bn− 1

γ
c, for 0 ≤ m2 −m3 ≤ γbn− 1

γ
c+ γ − n, (10)

k1 = bn− 1 +m2 −m3

γ
c = bn− 1

γ
c+ 1, for γbn− 1

γ
c+ γ − n+ 1 ≤ m2 −m3 ≤ γ − 1.

(11)

Combining with (9), (10) and (11), one can see that the function g(m2−m3) increases

for
[
0, γbn−1

γ
c+ γ − n

]
and

[
γbn−1

γ
c+ γ − n+ 1, γ − 1

]
. Therefore, the function g(m2−

m3) may attain its minimum if m2 −m3 = 0 or m2 −m3 = γbn−1
γ
c+ γ − n+ 1. We have

to calculate the following equation:

g(γbn− 1

γ
c+ γ − n+ 1)− g(0) =

[
γ

⌊
n− 1

γ

⌋
+ γ − (n− 1)

]
 1⌊

n−1
γ

⌋
+ 1

2

−

 1⌊
n−1
γ

⌋
2

+
3

4

 . (12)

Note that n−1
γ
≥ 3(n−1)

n
≥ 2 + n−3

n
, implying bn−1

γ
c ≥ 2, then 1⌊

n−1
γ

⌋
+ 1

2

−

 1⌊
n−1
γ

⌋
2

+
3

4

 ≥ (1

9
− 1

4
+

3

4

)
=

11

18
> 0 . (13)

From (12) and (13), we have g(0) < g(γbn−1
γ
c+ γ − n+ 1), then

g(0) = (n−γbn− 1

γ
c−1)

( 1

bn−1
γ
c+ 1

)2

−

(
1

bn−1
γ
c

)2
+γ

(
1

bn−1
γ
c

)2

+

(
n− 7

4
γ +

3

4

)
.

Case 2. −γ + 1 ≤ m2 −m3 ≤ 0.

In this case, n−1
γ
− 1 ≤ n−γ

γ
≤ n−1+m2−m3

γ
≤ n−1

γ
. Then by (4), we have

k1 = bn− 1 +m2 −m3

γ
c = bn− 1

γ
c, for γbn− 1

γ
c − n+ 1 ≤ m2 −m3 ≤ 0, (14)

k1 = bn− 1 +m2 −m3

γ
c = bn− 1

γ
c − 1, for 1− γ ≤ m2 −m3 ≤ γbn− 1

γ
c − n. (15)

Similarly, combining with (9), (14) and (15), we conclude that the function g(m2−m3)

attains its minimum if m2 −m3 = γbn−1
γ
c − n+ 1 or m2 −m3 = 1− γ. Thus, we let
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g

(
γ

⌊
n− 1

γ

⌋
− n+ 1

)
− g(1− γ) = −

[
(n− γ)− γbn− 1

γ
c
]

( 1

bn−1
γ
c

)2

−

(
1

bn−1
γ
c − 1

)2

+
3

4

 .
Analogously, we have[

(n− γ)− γbn− 1

γ
c
]
≤ 0, for γ ≥ 2, (16)

and ( 1

bn−1
γ
c

)2

−

(
1

bn−1
γ
c − 1

)2

+
3

4

 ≥ 0, for bn− 1

γ
c ≥ 2. (17)

Briefly, g(γbn−1
γ
c−n+1)−g(1−γ) ≥ 0, i.e., g(1−γ) ≤ g(γbn−1

γ
c−n+1). If the equality

holds in (16), we get n−γ
γ

= bn−1
γ
c, which implies that only the relation (14) holds. In

addition, the equality holds in (17) if and only if bn−1
γ
c = 2, i.e., 2γ+1 ≤ n < 3γ+1. Based

on previous assumptions, we have n = 3γ, then the corresponding tree T is consists of γ

stars of order 3 (S3) with exactly γ− 1 pairs of adjacent pendent vertices in neighbouring

stars. One can easily check that T ∈ G1(n, γ). Therefore, we just need to consider the

following formula:

g(1− γ) =

(
n− γ

⌊
n− 1

γ

⌋)( 1

bn−1
γ
c

)2

−

(
1

bn−1
γ
c − 1

)2


+ γ

(
1

bn−1
γ
c − 1

)2

+

(
n− 5

2
γ +

3

2

)
.

Finally, in order to find the feasible minimum value of the function g(m2 −m3), we

have to calculate the difference between g(0) and g(1−γ). The formula of g(0)− g(1−γ)

is given by

g(0)− g(1− γ) =

(
n− γ

⌊
n− 1

γ

⌋)

×


( 1

bn−1
γ
c+ 1

)2

−

(
1

bn−1
γ
c

)2
−

( 1

bn−1
γ
c

)2

−

(
1

bn−1
γ
c − 1

)2


−

( 1

bn−1
γ
c+ 1

)2

−

(
1

bn−1
γ
c

)2
+ γ

( 1

bn−1
γ
c

)2

−

(
1

bn−1
γ
c − 1

)2


+
3

4
(γ − 1) .
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Obviously,( 1

bn−1
γ
c+ 1

)2

−

(
1

bn−1
γ
c

)2
 >

( 1

bn−1
γ
c

)2

−

(
1

bn−1
γ
c − 1

)2
 ,

then we get

g(0)− g(1− γ) >

(
n− γ

⌊
n− 1

γ

⌋)

×


( 1

bn−1
γ
c+ 1

)2

−

(
1

bn−1
γ
c

)2
−

( 1

bn−1
γ
c

)2

−

(
1

bn−1
γ
c − 1

)2


+ (γ − 1)

( 1

bn−1
γ
c

)2

−

(
1

bn−1
γ
c − 1

)2

+
3

4

 > 0.

This inequality is strict.

In brief, the equality holds in (8) if and only if m2−m3 = 1−γ. Note that m1, m2, and

m3 are all non-negative, then by system (2) and (3), we can obtain m2 = 0, m3 = γ − 1,

and m1 = n− γ. It’s not difficult to find that the corresponding extremal trees all belong

to G1(n, γ).

Definition 3. Let G2(n, γ) be a set of n-vertices trees T with domination number γ. If

T ∈ G2(n, γ), then each vertex in V (T ) has at most one pendent neighbor and T satisfies

one of the following conditions.

(i) There exists a minimum dominating set D of T has 3γ − n− 2 vertices with degree

3 and 2(n− 2γ) vertices with degree 2, while D has n− 2γ + 2 vertices with degree

2 and 3γ − n pendent vertices.

(ii) There exists a minimum dominating set D of T has n − 2γ vertices with degree

2 and 3γ − n pendent vertices, while D has 2(n − 2γ + 1) vertices with degree 2,

3γ−n−2 with degree 3, and each vertex in D has only one neighbor in domination

set D.

Figure 4. A tree from G2(n, γ) with 18 vertices and 8 domination number.
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Theorem 5. Let T be a tree on n vertices with domination number γ, where n
3
≤ γ ≤ n

2
.

Then we have

mM1(T ) ≥

 n+6
4
, for γ = dn

3
e

11
6
γ − 13

36
n+ 5

18
, for n+3

3
< γ ≤ n

2

. (18)

Equality holds if and only if T ∈ G2(n, γ).

Proof. By Theorem 2, one can see that the path Pn attains the mM1-value of trees with

γ = dn
3
e. Thus, we can suppose that γ ≥ n+3

3
. Due to 2n ≤ γ ≤ 3γ − 3, trees which we

consider in the subsequence have to satisfy γ ≥ 3 and n ≥ 6.

Note that

1 =
n− γ
n− γ

≤ n− 1 +m3 −m2

n− γ
≤ n− 1 + γ − 1

n− γ
= 1 + 2

γ − 1

n− γ
< 3,

implying k2 = bn−1+m3−m2

n−γ c = 1 or k2 = bn−1+m3−m2

n−γ c = 2. Therefore, we consider the

following two cases.

Case 1. k2 = bn−1+m3−m2

n−γ c = 1.

It is obvious that 1 ≤ n−1+m3−m2

n−γ < 2, implying m2−m3 ≥ 2γ − n. Since γ ≤ n
2
, then

2γ − n ≤ 0. Next, we must discuss further.

Case 1.1. 2γ − n ≤ −1.

Then we have 2 ≤ n−1
γ
≤ n−1

(n/3)+1
< 3, implying bn−1

γ
c = 2. If 2γ − n ≤ m2 −m3 ≤ 0,

we get

k1 = bn− 1 +m2 −m3

γ
c = bn− 1

γ
c = 2, for 2γ − n+ 1 ≤ m2 −m3 ≤ 0,

k1 = bn− 1 +m2 −m3

γ
c = bn− 1

γ
c − 1 = 1, for m2 −m3 = 2γ − n.

Since γ ≥ n+3
3

, combining with (7), then the formula of g(m2 −m3) can be given by

g(m2 −m3) =
11

18
(m2 −m3) +

31

36
n− 11

9
γ +

8

9
, for 2γ − n+ 1 ≤ m2 −m3 ≤ 0. (19)

Analogously, suppose that 0 ≤ m2 −m3 ≤ γ − 1, then we have

k1 = bn− 1 +m2 −m3

γ
c = bn− 1

γ
c = 2, for 0 ≤ m2 −m3 ≤ 3γ − n,

k1 = bn− 1 +m2 −m3

γ
c = bn− 1

γ
c+ 1 = 3, for 3γ − n+ 1 ≤ m2 −m3 ≤ γ − 1,

which implies that

g(m2 −m3) =
11

18
(m2 −m3) +

31

36
n− 11

9
γ +

8

9
, for 0 ≤ m2 −m3 ≤ 3γ − n, (20)
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and

g(m2 −m3) =
101

144
(m2 −m3) +

137

144
n− 215

144
γ +

115

144
, for 3γ − n+ 1 ≤ m2 −m3 ≤ γ − 1.

From (19) and (20), we get

g(m2−m3) =
11

18
(m2−m3) +

31

36
n− 11

9
γ+

8

9
, for 2γ−n+ 1 ≤ m2−m3 ≤ 3γ−n, (21)

Due to g(3γ − n+ 1)− g(3γ − n) = 11
18
> 0, we just need to consider the relation (21).

In order to determine the minimum value of m2 − m3, we have to continue the dis-

cussion. For an arbitrary minimum dominating set D of T , the number of vertices with

degree 2, and 3 are denoted by n2 and n3, respectively, while for the set D, the number

of vertices with degree 1, and 2 are denoted by n1 and n2.

Easily, we get 
n(T ) = n2 + n3 + n1 + n2,

n2 + n3 = γ,

n1 + n2 = n− γ.

(22)

Moreover,∑
v∈V (T )

dv = 2(n− 1) = 2(n2 + n3 + n1 + n2 − 1) = n1 + 2(n2 + n2) + 3n3,

implying n3 = n1 − 2. By system (22), we get n2 − n2 = 2γ − n+ 2, thenn− 1 +m2 −m3 = 2n2 + 3n1 − 6,

n− 1 +m3 −m2 = n1 + 2n2.
(23)

Combining with (7) and system (23), the function g(m2−m3) can be given as below.

g(n1) =
11

18
n1 +

1

4
n+

5

18
, for 2 ≤ n1 ≤ γ + 1.

Case 1.2. 2γ − n = 0, and γ = n
2

if n is even.

Then we get 1 ≤ n−1
γ

= 1 + γ−1
γ
< 2, implying bn−1

γ
c = 1.

Analogously, we can deduce the following relations.

k1 = bn− 1 +m2 −m3

γ
c = bn− 1

γ
c = 1, for m2 −m3 = 0,

k1 = bn− 1 +m2 −m3

γ
c = bn− 1

γ
c+ 1 = 2, for 1 ≤ m2 −m3 ≤

n

2
− 1.

Through the same derivation process, the function g(m2 −m3) can be given by

g(n1) =
11

18
n1 +

1

4
n+

5

18
, for 2 ≤ n1 ≤

n

2
.
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In 2016, Borovićanin and Furtula [2] have proved that n1 ≥ 3γ − n for any trees, and

n1 > 3γ − n always holds if there exists a vertex in V (T ) have two pendent neighbors.

Hence, we can get the feasible minimum value of the function g(m2 −m3), that is

g(3γ − n) =
11

6
γ − 13

36
n+

5

18
. (24)

The lower bound of mM1 of trees given in (24) will be achieved if n1 = 3γ − n, i.e.,

m2−m3 = 5γ− 2n+ 1. In this case, extremal trees which make all equalities hold in (18)

belong to G2(n, γ) (Definition 3 (i)).

Case 2. k2 = bn−1+m3−m2

n−γ c = 2.

Since 2 ≤ n−1+m3−m2

n−γ < 3, we get m2 −m3 ≤ 2γ − n+ 1. The following relation:

1 ≤ n− γ
γ
≤ n− 1 +m2 −m3

γ
≤ 2(γ − 1)

γ
< 2,

implies that k1 = bn−1+m2−m3

γ
c = 1.

If m3−m2 = n− 2γ+ 1, then n−1+m3−m2

n−γ = 2, which implies that all vertices in D has

degrees 2, where D is an arbitrary dominating set. One can easily check that all vertices

in D have degree 1 or 2, implying T ∼= Pn, a contradiction, since γ ≥ n+3
3

. We suppose

that m3 −m2 ≥ n− 2γ + 2, i.e., m2 −m3 ≤ 2γ − n− 2.

From (7), then

g(m2 −m3) = −11

18
(m2 −m3)−

13

36
n+

11

9
γ +

8

9
, for 1− γ ≤ m2 −m3 ≤ 2γ − n− 2.

Similarly, we need to find the feasible minimum value of m2 −m3. For an arbitrary

minimum dominating set D of T , the number of vertices with degree 1, and 2 are denoted

by n1 and n2, respectively, while for the set D, the number of vertices with degree 2, and

3 are denoted by n2 and n3.

Obviously, from relations n2−n2 = 2γ−n− 2 and m2−m3 = 2γ−n−n1 + 1, we get

g(n1) =
11

18
n1 +

1

4
n+

15

18
, for 3 ≤ n1 ≤ 3γ − n.

According to previous consideration, we can determine the only possible value of n1,

that is 3γ − n, implying m2 − m3 = 1 − γ. Thus, the feasible minimum value of the

function g(m2 −m3) can be given by

g(3γ − n) =
11

6
γ − 13

36
n+

5

18
.
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Then, we will infer that the extremal trees which meets all conditions discussed above,

where n+3
3

< γ ≤ n
2
, satisfy that their all vertices in an arbitrary minimum dominating

set D have degrees 1 and 2, while all vertices in D have degrees 2 and 3.

On the whole, 11
6
γ − 13

36
n + 5

18
is the minimum of mM1(T ) for n+3

3
< γ ≤ n

2
. At this

time, we can get m2 −m3 = 1− γ, m1 = n− γ, m2 = 0, and m3 = γ − 1. One can easily

check that the corresponding extremal trees belong to the set G2(n, γ) (Definition 3 (ii)).

This completes the proofs.

Figure 5. The trees T (n, γ)

Finally, we derive the upper bound for the modified first Zagreb index of trees with a

given domination number. So, we have the following theorem.

Theorem 6. Let T be a tree on n vertices with domination number γ. Then

mM1(T ) ≤ (n− γ) +

(
1

n− γ

)2

+
1

4
(γ − 1). (25)

Equality holds if and only if T ∼= T (n, γ).

Proof. For ∆ = 2, it’s obvious that T ∼= T (2, 1), T ∼= T (3, 1), and T ∼= T (4, 2). If n ≥ 5,

then γ = dn
3
e, the inequality in (25) is strict.

For ∆ ≥ 3, we take a diameter path v1v2 · · · vl (l ≥ 4). Based on the definition of

domination number, we have ∆ ≤ n− γ, then we can suppose that the inequality shown

in (25) holds for |V (T )| = n− 1. If |V (T )| = n, according to the discussion above, we let

T1 = T − {v1} and consider the following two cases.

Case 1. γ(T1) = γ(T ).

By induction hypothesis, we have
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mM1(T ) =mM1(T1)−
(

1

dv2 − 1

)2

+

(
1

dv2

)2

+ 1

≤ (n− γ − 1) +

(
1

n− γ − 1

)2

+
1

4
(γ − 1)−

(
1

dv2 − 1

)2

+

(
1

dv2

)2

+ 1

= (n− γ) +

(
1

n− γ

)2

+
1

4
(γ − 1) +

[(
1

n− γ − 1

)2

−
(

1

n− γ

)2
]

−

[(
1

dv2 − 1

)2

−
(

1

dv2

)2
]
≤ (n− γ) +

(
1

n− γ

)2

+
1

4
(γ − 1).

All equalities hold if and only if dv2 = n− γ, i.e., T = T (n, γ).

Case 2. γ(T1) = γ(T )− 1.

According to the definition of dominating set, one can see that dv2 = 2. Then

mM1(T ) =mM1(T1)−
(

1

dv2 − 1

)2

+

(
1

dv2

)2

+ 1

≤ (n− γ) +

(
1

n− γ

)2

+
1

4
(γ − 1)− 1

4
−
(

1

dv2 − 1

)2

+

(
1

dv2

)2

+ 1

= (n− γ) +

(
1

n− γ

)2

+
1

4
(γ − 1).

Equality holds if and only if T1 = T (n− 1, γ − 1). Hence, T = T (n, γ).

This completes the proof.

Nevertheless, we cannot determine the lower bound for mM2 of trees in terms of

domination number γ and characterize its extremal trees by similar methods of listing

cases. For this reason, we propose the following conjecture. Meanwhile, we believe that

the formula of upper bound for mM2 of trees in terms of domination number γ is regardless

of γ. We hope these problems can be solved in our next work.

Conjecture 3.1. Let T be a tree on n vertices with domination number γ. Then

mM2(T ) ≥ − γ − 1

2(n− γ)
+
γ + 1

2
,

with equality holding if and only if T ∼= T (n, γ).
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