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Abstract 

It was conjectured that inequality M2(G)/m – M1(G)/n ≥ 0 holds for all simple 

connected graphs with n vertices and m edges, where M1(G) and M2(G) are the first 

and the second Zagreb indices of a graph G, respectively. Performing detailed 

investigations, it was proved that the conjecture does not hold for all general 

connected graphs, counterexamples were presented in some families of acyclic 

graphs. The 2-walk (a,b) linear graphs belong to the family of connected non-regular 

graphs having exactly two main eigenvalues. In this study, we show that M2(G)/m – 

M1(G)/n  ≥ 0 is also true for 2-walk linear graphs. 

 

1 Introduction 
 

We consider connected simple graphs without loops and multiple edges. For a connected 

graph G, V(G) and E(G) denote the set of vertices and edges, n and m the numbers of vertices 

and edges, respectively. Denote by d(u) the degree of a vertex u. Let Δ=Δ(G) and δ=δ(G) be 

the maximum and the minimum degrees, respectively, of vertices of G. A universal vertex of  
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an n-vertex graph is a vertex adjacent to all other vertices, consequently Δ=n-1 holds. An edge 

of G connecting vertices u and v is denoted by uv. 

 

Using the standard terminology [1, 2, 3, 4], let A=A(G) be the adjacency matrix of a graph G. 

The adjacency spectrum of a G is the set of graph eigenvalues of A(G) with their 

multiplicities. For a graph G, we denote by ρ(G) the largest eigenvalue of A(G) and call it the 

spectral radius of G. The Laplacian matrix of graph G is defined by L(G)= D(G) – A(G), 

where D(G) is the diagonal matrix of the vertex degrees. The Laplacian spectrum of graph G 

is the set of the Laplacian eigenvalues of G. Graphs with the same spectrum with respect to 

matrices A(G) and L(G) are called A-cospectal and L-cospectral, respectively.  

 

A cone over a connected graph G is obtained by adding a vertex to G that is adjacent to all 

vertices of G. Cone graphs are non-bipartite graphs, they contain triangles and exactly one 

universal vertex, their diameter is equal to 2. 

 

A graph is called R-regular if all its vertices have the same degree R. A connected graph is 

called irregular if it contains at least two vertices with different degrees. A bidegreed graph is 

an irregular graph whose vertices have exactly two different degrees, δ and Δ. A connected 

bipartite bidegreed graph G is semiregular if every edge of G joins a vertex of degree δ to a 

vertex of degree Δ [5].  

A bipartite graph G is called pseudo-semiregular [2, 5] if each vertex in the same part of 

bipartition has the same average degree. From these definitions it follows that any semiregular 

graph is a bipartite pseudo-semiregular graph. The converse of this statement is not true.  

 

A connected graph G is called harmonic (pseudo-regular) [5-24] if there exists a positive 

integer p(G) such that each vertex u of G has the same average neighbor degree number equal 

to p(G). For the spectral radius of a harmonic graph G, the equality ρ(G)=p(G) holds. A 

harmonic graphs with ρ(G)=p(G) is said to be a p-harmonic graph.  

From the definition it follows that any regular graph is a harmonic graph. Irregular harmonic 

graphs are called strictly harmonic graphs. It is easy to see that there exist infinitely many 

bipartite and non-bipartite harmonic graphs. 
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Recently, the so-called complete split-like graphs have been introduced in [25, 26]. By 

definition a complete split-like graph KSL(n, q, ε) is an n-vertex bidegreed graph with q  ≥ 1 

vertices of degree n-1 and n-q vertices of degree ε, where q  ≤  ε <  n-1.  

 

Traditional complete split graphs KS(n, q) form a particular subclass of complete split-like 

graphs, where q=ε holds. Complete split-like graphs KSL(n, q, ε) represent a subset of 2-walk 

(a,b) linear graphs [2, 25, 26 ]. 

 

For the topological characterization of a molecular graph G, the first Zagreb index M1(G) and 

the second Zagreb index M2(G) were proposed by Gutman and Trinajtić  [27]. 

 

The first Zagreb index M1(G) is equal to the sum of squares of the degrees of the vertices, and 

the second Zagreb index M2(G) is equal to the sum of products of the degrees of pairs of 

adjacent vertices of the graph G. They are defined by  

 

 2

1

u V(G)

M (G) d (u)


=    and  2

uv E(G)

M (G) d(u)d(v)


=  . 

The relations between Zagreb indices and different topological indices used in mathematical 

chemistry have intensively been studied in the last four decades. Readers are referred to the 

literature sources given in the reference list [28 - 37]. 

For comparing Zagreb indices of a graph G with n vertices and m edges the following 

topological invariant was proposed: 

 

2 1M (G) M (G)
Z(G)

m n
= − .       (1) 

It was conjectured that Z(G) ≥ 0 is valid for all connected simple graphs [38, 39]. In the 

literature the inequality Z(G) ≥ 0 is referred to as the Zagreb indices inequality. Performing 

detailed investigations for checking the validity of inequality Z(G) ≥ 0, it has been revealed 

that Z(G) ≥ 0 is fulfilled for several particular graph families, but it does not hold for all 

general connected graphs [31, 32]. 

 

It is important to note that among connected graphs the validity of the Zagreb indices 

inequality has been proved for trees, unicyclic graphs, connected bidegreed graphs and 
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molecular graphs with Δ≤4 [19, 31, 32, 34]. However, it was demonstrated by 

counterexamples that there exist bicyclic and tricyclic graphs not satisfying the Zagreb indices 

inequality [31, 32, 34, 36]. Recently, it has been proved that for almost all connected graphs 

Z(G)≥0 is fulfilled [35]. 

 

The so-called 2-walk (a,b) linear graphs represent a broad class of connected irrregular 

graphs. In this study it will be shown that 2-walk (a,b) linear graphs satisfy the Zagreb indices 

inequality. 

 

2 Preliminaries 
 

A connected irregular graph G is called 2-walk linear (more precisely, 2-walk (a,b)–linear) if 

there exists a unique rational number pair (in fact, integers pair) (a,b) such that  

 

 S(u) d(u)t(u) ad(u) b= = +         (2) 

 

holds for every vertex u of G, where S(u) is the sum of the degrees of all vertices adjacent to 

u, and t(u) stands for the average of degrees of vertices adjacent to u [14]. As an example, 

consider the 12-vertex and 20-edge connected graph with degree set (3, 4, 5) depicted in 

Fig.1. This triangle-free graph having chromatic number 4 is known as the Grötzsch graph. 

From Eq. (2) it follows that this 2-walk (a, b) linear graph has parameters a=1 and b=10.  

 

Figure 1. A 11-vertex 2-walk (a,b) regular graph.  

 

Lemma 1 [19]: If G is a 2-walk (a,b) linear graph, then a and b are integers, and a ≥0.  
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Lemma 2 [10, 14, 18]: A connected irregular graph has exactly two main eigenvalues ρ > μ if 

and only if it is 2-walk linear. 

Lemma 3 [10, 14]: Let G be a connected 2-walk (a,b) linear graph with two main eigenvalues 

ρ and μ, where ρ is the spectral radius of G, and ρ > μ. Then  

 ( )21
, a a 4b

2
  =  + , 

consequently ρ + μ = a and ρμ = - b. 

 

Lemma 4 [10]: Let G be a connected graph with spectral radius ρ. Then G is semiregular 

graph if and only if G has two main eigenvalues ρ and μ, and μ = - ρ. In other words, G is 

semi-regular if and only if G is 2-walk (0,b) linear graph, that is a=0 holds. 

 

Lemma 5 [5, 12]: A connected irregular graph G with spectral radius ρ(G) is strictly 

harmonic (harmonic and irregular) if and only if G has exactly two main eigenvalues ρ and 

0. This means that G must be a 2-walk (a, 0) linear graph, where a = ρ(G) and b = 0.  

 

Lemma 6 [26]: Complete split-like graphs KSL(n, q, ε) form a subset of 2-walk (a, b) linear 

graphs.  

 

3 Some properties of 2-walk (a,b) linear graphs 
 

Some fundamental properties of 2-walk linear graphs are summarized in Refs. [14-25].  

 

Lemma 7 [5]: Let G be a connected n-vertex graph with spectral radius ρ(G). Then  

1M (G)
(G)

n
  ,  

and equality holds if and only if G is regular or semiregular. 

Lemma 8 [40]: Das verified that for a simple connected graph G  

 

 2

1

u V(G) u V(G)

M (G) d (u) d(u)t(u)
 

= =       

 2

2

uv E(G) u V(G)

1
M (G) d(u)d(v) d (u)t(u)

2 

= =  .    
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Lemma 9 [30]: Let G be a connected n-vertex graph and let ρ(G) be the spectral radius of G. 

Then  

2

u V(G)2

1

u V(G)

d (u)t(u)
2M (G)

(G)
M (G) d(u)t(u)





  =




, 

and equality holds if and only if G is regular or strictly harmonic. 

 

Lemma 10 [24]: Let G be a p-harmonic graph with spectral radius ρ(G). Then Zagreb indices 

M1(G) and M2(G) can be calculated as M1(G)=2mp(G)=2mρ(G) and M2(G)=mp2(G)=mρ2(G). 

Lemma 11 [26]: It has been proved that if G is a complete split-like graph KSL(n, q, ε) then  

 ( )21
, 1 ( 1) 4q(n 1)

2
  =  −   + + − − . 

As an example, some different types of 2-walk linear graphs are illustrated in Fig. 2. 

 

 
 

Figure 2. Bidegreed 2-walk (a,b) linear graphs. 

As can be observed, 

 GW is an ordinary 2-wall linear graph, with parameters a=1 and b=3, 

 GS is a semiregular graph with a=0 and b=8, 

 GH is a strictly harmonic graph with a=3 an b=0,  

 GC is a complete split graph KS(7, 2) with a=1, and b=10, 

Non-isomorphic graphs GA and GB have identical parameters a=2 and b=6. They 

belong to the class of complete split-like graphs of type KSL(7,1, 3). 
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Since graphs in Fig.2 are connected bidegreed graphs, based on previous considerations, the 

Zagreb indices inequality holds for them. 

 

Remark 1 A 2-walk linear graph can simply be constructed from connected regular graphs. If 

GR is an n-vertex connected (R ≥ 2)-regular graph differing from the complete graph Kn, then 

the cone over GR will be a 2-walk (a,b) linear graph identical to the complete split-like graph 

KSL(n+1, 1, R+1). It is easy to construct infinitely many values of (a, b) such that a 2-walk 

(a, b) linear graph exists, using the cone over regular graphs.  

Remark 2 It has been proved that for every integer k ≥ 1, there exists a 2-walk (a, b) linear 

graph G having at least k different degrees [15]. In other words, the number of distinct 

degrees of certain 2-walk linear graphs can be arbitrary large. In Fig. 3 this observation is 

demonstrated by the 34 vertex 3-harmonic graph with a degree set (1, 2, 3, 4, 5, 6) [41]. 

 

Figure 3. A 3-harmonic graph with degree set (1, 2, 3, 4, 5, 6). 

 

As it is known, if a graph G does not share its spectrum with other graphs, then G is uniquely 

determined by its spectrum [42]. An important observation is that the spectrum does not 

unambiguously characterize the combinatorial structure of 2-walk linear graphs.  

 

For two graphs J1 and J2 with disjoint vertex sets, J1 U J2 denotes the disjoint union of graphs 

J1 and J2. The join J1 V J2 of graphs J1 and J2 is the graph obtained from J1 U J2 by joining 

every vertex of J1 with every vertex of J2.  

Lemma 12 [43]: Consider simple connected regular graphs GR and GS. Let GR be an R-

regular graphs with n(R) vertices and GS an S-regular graph with n(S) vertices with adjacency 

eigenvalues denoted by α1, α 2,…,αn(R)-1, αn(R)=R and β1, β2,..., βn(S)-1, βn(S ) = S, respectively. 

Then the corresponding adjacency eigenvalues of join graph GR V GS will be  
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2

1 2 n(R) 1 1 2 n(S) 1

1
, ,..., , , ,..., , R S (R S) 4n(R)n(S)

2
− −

       +  − +
 

. 

Proposition 1 There exist A-cospectral 2-walk linear graphs belonging to the family of 

complete split-like graphs.  

Proof. Consider the two non-isomorphic 10-vertex, A-cospectral 4-regular graphs depicted in 

Fig. 4 [3].  

 

       GA         GB           

Figure 4. Four-regular A-cospectral graphs with 10 vertices.  

 

Denote by GCA = K1 V GA and GCB = K1 V GB the corresponding 11-vertex cone graphs of 4-

regular graphs GA and GB depicted in Fig. 4. Based on Remark 1, it is easy to see that non-

isomorphic cone graphs GCA and GCB are 2-walk (a,b) linear graphs with identical parameters 

a=4 and b=10. More exactly, they belong to the family of complete split-like graphs of type 

KSL(11,1,5). By Lemma 12 it follows that 11-vertex bidegreed cone graphs GCA and GCB are 

A-cospectral. From above considerations it can be concluded that 2-walk linear graphs 

(including complete split-like graphs) are not determined by their adjacency spectra.  

Proposition 2 [42]: There exist non-isomorphic A-cospectral tree graphs TA and TB which are 

characterized by the same adjacency spectrum, and TA is a 2-walk linear graph while TB does 

not belong to the family of 2-walk linear graphs.  

Proof. In Fig. 5 two A-cospectral 8-vertex trees are depicted [42]. 

 

 

        TA   TB 

Figure 5. A-cospectral 8-vertex trees. 
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It is easy to check that the tree shown on the left is a 2-walk (a,b) linear graph with parameters 

a=1 and b=3, but the graph demonstrated on the right is not a 2-walk linear graph. 

Proposition 3 [44]: There exist connected Laplacian cospectral graphs LA and LB 

characterized by the same Laplacian spectrum, and between them only LA is a 2-walk linear 

graph. 

Proof. In Fig. 6 two 7-vertex connected graphs are depicted [44]. 

 

 

     LA          LB 

Figure 6. Laplacian cospectral 7-vertex graphs.  

 

Graph LA isomorphic to the 7-vertex wheel graph is a 2-walk linear graph with parameter a= 

2 and b=6, while LB is not a 2-walk linear graph.  

It has been proved in [44] that graph LA and graph LB are Laplacian cospectral graphs having 

the same integral Laplacian spectrum (7, 5, 4, 4, 2, 2, 0). It follows that the 2-walk linear 

graph LA is not determined by its Laplacian spectrum.  

 

4 Zagreb indices inequality for 2-walk (a,b) linear graphs 
 

Proposition 4 [45]: Let G be a connected n-vertex graph. Then  

 

2
2 1

u V(G)

M (G)
S (u)

n

          (3) 

 

2
2 2

u V(G) 1

4M (G)
S (u)

M (G)

         (4)

  

In Eq.(3) equality holds if G is regular or semiregular graph, while in Eq.(4) equality holds if 

G is a harmonic graph. 
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Proposition 5 Let G be a 2-walk (a,b) linear graph. Then the following equalities hold: 

 

(i)  
u V(G) u V(G) u V(G)

S(u) 1
t(u) an b 0

d(u) d(u)  

= = +         (5)  

 

(ii) 1

u V(G) u V(G)

S(u) d(u)t(u) M (G) 2ma nb
 

= = = +       (6) 

 

(iii) 2

2 1

u V(G) u V(G)

d(u)S(u) d (u)t(u) 2M (G) aM (G) 2mb
 

= = = +     (7) 

 

(iv) 2 2 2

1

u V(G)

S (u) a M (G) 4mab nb


= + +        (8) 

 

Proof. The above equalities can be deduced from Eq. 2 and Lemma 8. 

 

Remark 3 [46]: Let G be a strictly harmonic graph with spectral radius ρ. Because b=0, from 

Eq.(6), Eq.(7) and Lemma 9 one obtains that  

 

2 1 2

u V(G) uv E(G)1

2M (G) M (G) M (G) 1 1 d(u) d(v)
a t(u)

M (G) 2m m n n d(v) d(u) 

 
 = = = = = = + 

 
  .   

 

Let G be an irregular connected graph G with n vertices and m edges. Consider the 

topological index αG(n, m) defined by 

( )
G

Z G2m
(n,m)

n Var(G)

 
 =  

 
        (9) 

where Var(G) is the Bell‘s graph irregularity index formulated as [47] 

 

 

2 2

1

u V(G)

M (G)1 2m 2m
Var(G) d(u)

n n n n

   
= − = −   

   
 . 

 

As it is known, Var(G)≥0 and Var(G)=0 if and only if G is a regular graph. 
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For an irregular graph G, the topological index αG(n,m) is determined primarily by the actual 

value of Z(G). It follows that αG(n,m) can be either a positive number or a negative number or 

zero. 

Proposition 6 Let G be a connected 2-walk (a,b) linear graph, and let 

2

1 2(G) M (G) 4mM (G) = −  by definition. 

Then  

( )
G

Z G2m
a (n,m) 0

n Var(G)

 
= =   
 

 and  
2

(G)
b

n Var(G)


= .  

Consequently, for a 2-walk (a,b) linear graph G, the Zagreb indices inequality holds. 

 

Proof. If G is a 2-walk (a,b) linear graph, then a ≥ 0 and Var(G) > 0 are fulfilled. 

From Eq.(6) and Eq.(7) one obtains that  

( ) ( )
2 1

2 1

G2 2

1 1

M M
2nm

2 nM mM Z G2mm n
a (n,m)

nM 4m nM 4m n Var(G)

 
− −   = = = =  

− −  
 (10)  

and  

 
2

1 2

2 2

1

M 4mM (G)
b

nM 4m n Var(G)

− 
= =

−
. 

 

It is easy to see that Ω(G) can be either a positive number or a negative number or zero. This 

implies that for a 2-walk (a,b) linear graph parameter b can be positive or negative numbers or 

zero. 

Remark 4 There exist connected irregular graphs, for which Z(G)= M2 /(G)/m – M1 /(G)/n is 

equal to 0 or less than 0 [30, 31, 32]. If Z(G) < 0 is fulfilled, then G cannot be a 2-walk (a,b) 

linear graph. For a 2-walk (a,b) linear graph Z(G) = 0 holds if and only if G is a semiregular 

graph with parameter a=0.  

 

In what follows it will be demonstrated that formulas represented by Eqs.10 and 11 can be 

deduced by using an alternative concept.  
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Let G be a connected irregular graph with n vertices and m edges. For arbitrary real numbers 

A and B consider the two-variable function QG(A,B) defined as 

 

 ( ) ( )
2 2

G

u V u V

1 1
Q (A,B) S(u) Ad(u) B d(u)t(u) Ad(u) B

n n 

= − − = − −  . (11) 

It is easy to see that there exist a uniquely defined (AL, BL) parameter pair which minimizes 

the function QG(A,B). These parameters (AL, BL) can be determined by solving the following 

system composed of two linear equations  

 

  2 2

2 1

u V(G) u V u V(G)

d (u)t(u) 2M (G) A d (u) B d(u) AM (G) 2mB
  

= = + = +    

  1

u V(G) u V(G)

d(u)t(u) M (G) A d(u) nB 2mA nB
 

= = + = +   

 

One obtains that 

 

 
( )2 1

2

1

2 nM mM 2m Z(G)
AL

nM 4m n Var(G)

−  
= =  

−  
     (12) 

and  

 
2

1 2

2 2

1

M 4mM (G)
BL

nM 4m n Var(G)

− 
= =

−
      (13) 

 

From previous considerations the following proposition can be obtained. 

 

Proposition 7 Let G be an n-vertex connected irregular graph. Then QG(AL,BL) is a 

topological index for which  QG(AL,BL) ≥ 0 holds. If QG(AL,BL) > 0 is fulfilled  then G does 

not belong to the class of  2-walk linear graphs. If QG(AL,BL) = 0  holds then G is a 2-walk 

(a, b) linear graphs with parameters a = AL and b = BL. Consequently, the topological index 

QG(AL,BL) characterizes quantitatively the structural difference between graph G and a 

possible 2-walk (a,b) linear graph. 
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5 Additional remarks  
 

Let G be a connected graph with m edges and a spectral radius ρ(G). Graph G is said to be a 

Z2 graph if the following identity holds [6, 7] 

 

2M (G)
(G)

m
 = . 

There are several 2-walk linear graphs belonging to the family of Z2 graphs [6, 7]. But there 

exist infinitely many Z2 graphs not belonging to the class of 2-walk linear graphs.  

Proposition 8 A Z2 graph satisfies the Zagreb indices inequality. 

Proof. Because for a connected Z2 graph G with n vertices and m edges and a spectral radius 

ρ, M2(G)= mρ2 is valid, then from Lemma 7 one obtains that  

 

22 1 1M (G) M (G) M (G)
Z(G) 0

m n n
= − =  −    

where equality holds if and only if G is a regular or a semiregular graph. As an example, 

small Z2 graphs are depicted in Fig. 7. These graphs are not 2-walk linear graphs, yet all of 

them satisfy the Zagreb indices inequality. 

 

 
 

Figure 7. Four Z2 graphs satisfying the Zagreb indices inequality. 

 

It should be noted that path P5, and graphs G9, G11 are not semiregular graphs. They belong to 

the class of bipartite pseudo-semiregular graphs. Graph G7 with 7 vertices and 9 edges is a 

non-bipartite sporadic graph. Because for graph G7, M2(G7)=81 holds, this implies 
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that 7 2 7(G ) M (G ) / m 9 3. = = =  It should be emphasized that all these graphs are 

molecular graphs, consequently, they satisfy the Zagreb indices inequality.  

 

Acknowledgement: The authors would like to thank Dr László Horváth for extensive help 

with computer graphics.  
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