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Abstract

The first Zagreb index M1(G) of a graph G is defined as the sum of squares of
the degrees of the vertices. In this paper various bounds for the first Zagreb index
are obtained.

1 Introduction

In this paper we are concerned with simple graphs, that is graphs without multiple,

directed, or weighted edges, and without self-loops. Let G = G(V,E) be a graph with

vertex set V (G) and edge set E(G). Denote by n and m the number of vertices and edges of

G, respectively. For i = 1, 2, . . . , n the degree of a vertex vi ∈ V (G) is denoted by di and it

is defined as the number of edges incident with vi. We denote by ∆ = ∆(G) and δ = δ(G)

the maximum and the minimum degrees, respectively, of vertices of G. Topological index

is a real number related to a graph. It must be a structural invariant, i.e., it preserves by

every graph automorphisms. Among the oldest and most studied topological indices, there

are two classical vertex-degree based topological indicesthe first Zagreb index and second

Zagreb index. The Zagreb indices were first introduced by Gutman et al. in [12, 13];

they present an important molecular descriptor closely correlated with many chemical
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properties. The first Zagreb index M1(G) and the second Zagreb index M2(G) of a graph

G are defined, respectively, as

M1(G) =
n∑

i=1

d2i = d21 + d22 + . . .+ d2n,

and

M2(G) =
∑

vi,vj∈E(G)

didj.

During the past decades, numerous results concerning Zagreb indices have been published,

see in [1, 2, 4–7,17].

In 2004 and 2005, Li et al. [14, 15], introduced the generalized version of the first

Zagreb index, defined as

Zp(G) = Mp
1 (G) = dp1 + dp2 + . . .+ dpn

where p is a real number. This graph invariant is nowadays known under the name general

first Zagreb index, and has also been much investigated.

In this paper we focus on the first Zagreb index. In addition, we list known results

concerning the bounds of M1. In [4] the following result that determines the lower bound

of M1 in terms of m,n, d1(∆) and dn(δ) was proved.

Theorem 1.1 [4] Let G be a simple graph with n ≥ 3 vertices and m edges. Then

M1 ≥ d21 + d2n +
(2m− d1 − dn)

2

n− 2
,

with equality if and only if G is regular or with the property d2 = d3 = . . . = dn−1.

The following lower bound of M1 in terms of parameters n,m, d1, d2 and dn was ob-

tained in [8].

Theorem 1.2 [8] Let G be a simple graph with n ≥ 3 vertices and m edges. Then

M1 ≥ d21 +
(2m− d1)

2

n− 1
+

1

2
(d2 − dn)

2.

Equality holds if and only if G is regular graph or with property d2 = d3 = . . . = dn.

In [9] the lower bound for M1 in terms of n and m was determined.
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Theorem 1.3 [9] Let G be a simple connected graph with n vertices and m edges. Then

M1 ≥
4m2

n
. (1)

Equality holds if and only if G is regular.

The clique number of a graph G, denoted ω(G), is the order of a maximum clique of

G. Zhou [17] proved the following upper bound for M1 as a function of ω(G).

Theorem 1.4 [17] Let G be a simple graph with n vertices and m edges. Then

M1 ≤
ω − 1

ω
2nm.

A lower bound for the first Zagreb index in terms of the number of vertices and the clique

number is given in [18].

Theorem 1.5 [18]

M1 ≥ ω3 − 2ω2 − ω + 4n− 4

with equality holding if and only if G is isomorphic to the kite graph Kk((n− k)1).

In Section 2 of this paper we derive a lower bound for the first Zagreb index of G

which is better than the bound 4m2

n
, Theorem 2.2. Moreover we give a relation between

the first Zagreb index M1 and the general Zagreb index Z4(G), Theorem 2.4. The results

in Section 3 address the first Zagreb index in terms of n, δ,∆ and ω.

2 Results

Let G be a graph with n vertices, m edges and vertex degrees ∆ = d1 ≥ d2 ≥ . . . ≥

dn = δ. Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of G. The energy of G is defined as

E(G) = |λ1|+ . . .+ |λn|.

Our first main result involves the parameter λ1d1 + . . . + λndn. We start with an easy

observation concerning its upper bound.

Proposition 2.1 Let G be a graph with n vertices and vertex degrees ∆ = d1 ≥ d2 ≥

. . . ≥ dn = δ. Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of G and let E(G) be its energy.

Then

λ1d1 + . . .+ λndn ≤ E(G)(∆− δ)

2
.
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Proof. Let λ1, . . . , λp be the positive and let λp+1, . . . , λn be the negative eigenvalues

of G. Since di ≤ ∆ for each i = 1, . . . , p, we obtain

λ1d1 + . . .+ λpdp ≤ (λ1 + . . .+ λp)∆. (2)

Similarly, since di ≥ δ for each i = p+ 1, . . . , n, we get

λp+1dp+1 + . . .+ λndn ≤ (λp+1 + . . .+ λn)δ. (3)

Now, from (λ1+ . . .+λp)+ (λp+1+ . . .+λn) = 0 we get λ1+ . . .+λp = −(λp+1+ . . .+λn)

and

E(G) = |λ1|+ . . .+ |λn| = (λ1 + . . .+ λp)− (λp+1 + . . .+ λn) = 2(λ1 + . . .+ λp). (4)

By using (2), (3) and (4) we have

λ1d1 + . . . λndn ≤ (λ1 + . . .+ λp)∆ + (λp+1 + . . .+ λn)δ =

= (λ1 + . . .+ λp)(∆− δ) =
E(G)(∆− δ)

2
.

Theorem 2.2 Let G be a graph with n vertices and m edges. Let d1 ≥ d2 ≥ . . . ≥ dn be

vertex degrees and let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of G. Then

M1 ≥
4m2

n
+

(λ1d1 + . . .+ λndn)
2

2m
. (5)

Proof. The required inequality in (5) is equivalent to the inequality

n

4m2
≥ 2m

2mM1 − (λ1d1 + . . .+ λndn)2
. (6)

By using d21 + . . .+ d2n = M1 and λ2
1 + . . .+ λ2

n = 2m we get
n∑

i=1

(2mdi − (λ1d1 + . . .+ λndn)λi)
2 =

=

n∑
i=1

(4m2d2i − 4mdi(λ1d1 + . . .+ λndn)λi + (λ1d1 + . . .+ λndn)
2λ2

i ) =

= 4m2
n∑

i=1

d2i − 4m(λ1d1 + . . .+ λndn)

n∑
i=1

λidi + (λ1d1 + . . .+ λndn)
2

n∑
i=1

λ2
i =

= 4m2M1−4m(λ1d1+ . . .+λndn)
2+2m(λ1d1+ . . .+λndn)

2 = 2m(2mM1−(λ1d1+ . . .+λndn)
2).
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Thus we obtain the identity

2m

2mM1 − (λ1d1 + . . .+ λndn)2
=

n∑
i=1

(
2mdi − (λ1d1 + . . .+ λndn)λi

2mM1 − (λ1d1 + . . .+ λndn)2

)2

. (7)

On the other hand, from λ1 + . . .+ λn = 0 and d1 + . . .+ dn = 2m we get
n∑

i=1

(2mdi − (λ1d1 + . . .+ λndn)λi) = 2m
n∑

i=1

di − (λ1d1 + . . .+ λndn)
n∑

i=1

λi = 4m2.

Thus

2m

2mM1 − (λ1d1 + . . .+ λndn)2
=

n∑
i=1

1

2m
· 2mdi − (λ1d1 + . . .+ λndn)λi

2mM1 − (λ1d1 + . . .+ λndn)2
. (8)

The identities in (7) and (8) yield
n∑

i=1

(
2mdi − (λ1d1 + . . .+ λndn)λi

2mM1 − (λ1d1 + . . .+ λndn)2

)2

=
1

2m

n∑
i=1

2mdi − (λ1d1 + . . .+ λndn)λi

2mM1 − (λ1d1 + . . .+ λndn)2
. (9)

In the end we have

n

4m2
− 2m

2mM1 − (λ1d1 + . . .+ λndn)2
=

n∑
i=1

1

(2m)2
−

n∑
i=1

(
2mdi − (λ1d1 + . . .+ λndn)λi

2mM1 − (λ1d1 + . . .+ λndn)2

)2

=

n∑
i=1

1

(2m)2
−2

n∑
i=1

(
2mdi − (λ1d1 + . . .+ λndn)λi

2mM1 − (λ1d1 + . . .+ λndn)2

)2

+

n∑
i=1

(
2mdi − (λ1d1 + . . .+ λndn)λi

2mM1 − (λ1d1 + . . .+ λndn)2

)2

=

n∑
i=1

1

(2m)2
−2 · 1

2m

n∑
i=1

2mdi − (λ1d1 + . . .+ λndn)λi

2mM1 − (λ1d1 + . . .+ λndn)2
+

n∑
i=1

(
2mdi − (λ1d1 + . . .+ λndn)λi

2mM1 − (λ1d1 + . . .+ λndn)2

)2

=
n∑

i=1

(
1

2m
− 2mdi − (λ1d1 + . . .+ λndn)λi

2mM1 − (λ1d1 + . . .+ λndn)2

)2

≥ 0.

Remark 2.3 Since (λ1d1+...+λndn)2

2m
≥ 0 we obtain

M1 ≥
4m2

n
+

(λ1d1 + . . .+ λndn)
2

2m
≥ 4m2

n
.

If G is a regular graph, then λ1d1 + . . .+ λndn = 0. In this case M1 =
4m2

n
.

Otherwise, if λ1d1 + . . .+λndn 6= 0, then the bound in (5) is better than the bound in (1).

In the following theorem we give a relation between M1 and Z4(G). This result follows

similar reasoning as Theorem 2.1 in [10].
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Theorem 2.4 Let G be a graph with n vertices, m edges and vertex degrees ∆ = d1 ≥

d2 ≥ . . . ≥ dn = δ. Then

Z4(G) ≤ M2
1

n
+

8
√
n∆4

δ

(√
M1 −

2m√
n

)
. (10)

Equality holds if G is a regular graph.

Proof. In [10] was proven that for any two positive real numbers a and b it holds√
a

b
+

√
b

a
+

ab

a2 + b2
≥ 5

2
,

that is,

a+ b ≥
(
2 +

(a− b)2

2(a2 + b2)

)√
ab. (11)

Setting a =
d2i
M1

and b = 1
n

in (11) we obtain the following inequality

d2i
M1

+
1

n
≥

(
2 +

(nd2i −M1)
2

2(n2d4i +M2
1 )

)
di√

n ·M1

. (12)

From (12) we deduce

1

M1

n∑
i=1

d2i +
n∑

i=1

1

n
≥ 2√

n ·M1

n∑
i=1

di +
n∑

i=1

(nd2i −M1)
2

2(n2d4i +M2
1 )

di√
n ·M1

. (13)

Since
∑n

i=1 d
2
i = M1 and

∑n
i=1 di = 2m, the inequality in (13) becomes

2 ≥ 4m√
n ·M1

+
1√

n ·M1

n∑
i=1

(nd2i −M1)
2

2(n2d4i +M2
1 )
di.

Since di ≤ ∆ for each i = 1, 2, . . . , n we have M1 ≤ n∆2. Therefore 1
n2d4i+M2

1
≥ 1

2n2∆4 . The

previous inequality is equivalent to

√
M1 ≥

2m√
n
+

δ

8
√
n∆4

n∑
i=1

(d2i −
M1

n
)2 =

2m√
n
+

δ

8
√
n∆4

(
Z4(G)− M2

1

n

)
.

Thus we have

Z4(G) ≤ M2
1

n
+

8
√
n∆4

δ

(√
M1 −

2m√
n

)
.

The inequality (10) becomes equality if in (11) holds equality. It is possible when a = b,

which implies M1 = nd2i for each i = 1, . . . , n. These identities occur only if d1 = . . . = dn,

that is, if G is a regular graph.
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Remark 2.5 From the inequality between quadratic and arithmetic mean for the numbers

d21, . . . , d
2
n it follows

Z4(G) = d41 + . . .+ d4n ≥ (d21 + . . .+ d2n)
2

n
=

M2
1

n
.

Hence

Z4(G) ∈
[
M2

1

n
,
M2

1

n
+

8
√
n∆4

δ

(√
M1 −

2m√
n

)]
.

3 New bounds for M1 for graphs with given clique
number

As shown by Caro [3] and Wei [19], the degree sequence d1, d2, . . . , dn of a graph G of

order n gives rise to a lower bound on the clique number ω of G:

ω(G) ≥ 1

n− d1
+

1

n− d2
+ . . .+

1

n− dn
. (14)

Taking advantage of this result, in the next result we obtain a lower bound for M1 in

terms of n,m and ω.

Theorem 3.1 Let G be a graph with n vertices, m edges and clique number ω. Then

M1 ≥ 4mn+
n3

w2
− n3.

Equality holds if and only if G is a regular graph of degree k and ω = n
n−k

.

Proof. Using the inequality between quadratic and harmonic mean for the positive

numbers n− d1, n− d2, . . . , n− dn we have√
(n− d1)2 + (n− d2)2 + . . .+ (n− dn)2

n
≥ n

1
n−d1

+ 1
n−d2

+ . . .+ 1
n−dn

. (15)

From (15) and ω = ω(G) ≥ 1
n−d1

+ 1
n−d2

+ . . .+ 1
n−dn

we have√
n3 − 4mn+M1

n
≥ n

w

which leads to

M1 ≥ 4mn+
n3

w2
− n3.

The equality in (15) holds if and only if n − d1 = . . . = n − dn, that is, if and only if

d1 = d2 = . . . = dn = k. Moreover, equality in the inequality ω ≥ 1
n−d1

+ 1
n−d2

+ . . .+ 1
n−dn

holds if ω = n
n−k

.

Similarly as in the previous result, we derive a lower bound for the first Zagreb index
in terms of n,m, ω and ∆.
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Theorem 3.2 Let G be a graph with n vertices, m edges, clique number ω and maximum

degree ∆. Then

M1 ≥ 2n(2m−∆) +∆2 +
(n− 1)3(
w − 1

n−∆

)2 − n2(n− 1).

Equality holds if d2 = . . . = dn = 2m−∆
n−1

and ω = 1
n−∆

+ (n−1)2

n2−n−2m+∆
.

Proof. We proceed similarly as in the previous proof. Using the inequality between

quadratic and harmonic mean for the positive numbers n− d2, . . . , n− dn we have√
(n− d2)2 + . . .+ (n− dn)2

n− 1
≥ n− 1

1
n−d2

+ . . .+ 1
n−dn

. (16)

From (16) and ω − 1
n−d1

≥ 1
n−d2

+ . . .+ 1
n−dn

we have√
(n− 1)n2 − 2n(2m−∆) +M1 −∆2

n− 1
≥ n− 1

w − 1
n−∆

which leads to the required inequality.

The inequality (16) becomes equality if n− d2 = . . . = n− dn, that is, if d2 = . . . = dn =

2m−∆
n−1

. The equality in ω − 1
n−d1

≥ 1
n−d2

+ . . . + 1
n−dn

holds when ω = 1
n−∆

+ (n−1)2

n2−n−2m+∆
.

A graph which does not contain triangles is called triangle-free graph. In [16] Zhou

obtained the following bound:

Theorem 3.3 [16] Let G be a triangle free (n,m)-graph. Then

M1(G) ≤ mn (17)

and equality holds if and only if G is a complete bipartite graph.

Based on Theorem 3.3 we are in a position to obtain an upper bound for M1 for triangle-

free graphs in terms of n and ∆.

Theorem 3.4 Let G be a triangle-free graph with n vertices and maximum degree ∆.

Then

M1 ≤
n(n2 − n+∆)

2
− n(n− 1)2(n−∆)

4(n−∆)− 2
. (18)

Proof. Since G is a triangle-free graph we get ω ≤ 2. From the inequality (14) we

obtain

2− 1

n−∆
≥ 1

n− d2
+ . . .+

1

n− dn
.
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By applying Cauchy-Schwarz inequality to the numbers 1
n−d2

, . . . , 1
n−dn

we have

2(n−∆)− 1

n−∆
= 2− 1

n−∆
≥ (1 + 1 + . . .+ 1)2

n− d2 + . . .+ n− dn
=

(n− 1)2

n(n− 1)− (2m−∆)
. (19)

From (19) we obtain

m ≤ n2 − n+∆

2
− (n−∆)(n− 1)2

4(n−∆)− 2
.

The bound in (18) follows directly from (17).
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