New Bounds for the First Zagreb Index
 Slobodan Filipovski*a,b

${ }^{\text {a }}$ Department of Algebra and Geometry, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 842 48, Bratislava, Slovakia
${ }^{\text {b }}$ FAMNIT, University of Primorska, Glagoljaka 8, 6000 Koper, Slovenia, slobodan.filipovski@famnit.upr.si

(Received July 2, 2020)

Abstract

The first Zagreb index $M_{1}(G)$ of a graph G is defined as the sum of squares of the degrees of the vertices. In this paper various bounds for the first Zagreb index are obtained.

1 Introduction

In this paper we are concerned with simple graphs, that is graphs without multiple, directed, or weighted edges, and without self-loops. Let $G=G(V, E)$ be a graph with vertex set $V(G)$ and edge set $E(G)$. Denote by n and m the number of vertices and edges of G, respectively. For $i=1,2, \ldots, n$ the degree of a vertex $v_{i} \in V(G)$ is denoted by d_{i} and it is defined as the number of edges incident with v_{i}. We denote by $\Delta=\Delta(G)$ and $\delta=\delta(G)$ the maximum and the minimum degrees, respectively, of vertices of G. Topological index is a real number related to a graph. It must be a structural invariant, i.e., it preserves by every graph automorphisms. Among the oldest and most studied topological indices, there are two classical vertex-degree based topological indicesthe first Zagreb index and second Zagreb index. The Zagreb indices were first introduced by Gutman et al. in [12,13]; they present an important molecular descriptor closely correlated with many chemical

[^0]properties. The first Zagreb index $M_{1}(G)$ and the second Zagreb index $M_{2}(G)$ of a graph G are defined, respectively, as
$$
M_{1}(G)=\sum_{i=1}^{n} d_{i}^{2}=d_{1}^{2}+d_{2}^{2}+\ldots+d_{n}^{2},
$$
and
$$
M_{2}(G)=\sum_{v_{i}, v_{j} \in E(G)} d_{i} d_{j}
$$

During the past decades, numerous results concerning Zagreb indices have been published, see in $[1,2,4-7,17]$.

In 2004 and $2005, \mathrm{Li}$ et al. $[14,15]$, introduced the generalized version of the first Zagreb index, defined as

$$
Z_{p}(G)=M_{1}^{p}(G)=d_{1}^{p}+d_{2}^{p}+\ldots+d_{n}^{p}
$$

where p is a real number. This graph invariant is nowadays known under the name general first Zagreb index, and has also been much investigated.

In this paper we focus on the first Zagreb index. In addition, we list known results concerning the bounds of M_{1}. In [4] the following result that determines the lower bound of M_{1} in terms of $m, n, d_{1}(\Delta)$ and $d_{n}(\delta)$ was proved.

Theorem 1.1 [4] Let G be a simple graph with $n \geq 3$ vertices and m edges. Then

$$
M_{1} \geq d_{1}^{2}+d_{n}^{2}+\frac{\left(2 m-d_{1}-d_{n}\right)^{2}}{n-2}
$$

with equality if and only if G is regular or with the property $d_{2}=d_{3}=\ldots=d_{n-1}$.

The following lower bound of M_{1} in terms of parameters n, m, d_{1}, d_{2} and d_{n} was obtained in [8].

Theorem 1.2 [8] Let G be a simple graph with $n \geq 3$ vertices and m edges. Then

$$
M_{1} \geq d_{1}^{2}+\frac{\left(2 m-d_{1}\right)^{2}}{n-1}+\frac{1}{2}\left(d_{2}-d_{n}\right)^{2}
$$

Equality holds if and only if G is regular graph or with property $d_{2}=d_{3}=\ldots=d_{n}$.

In [9] the lower bound for M_{1} in terms of n and m was determined.

Theorem 1.3 [9] Let G be a simple connected graph with n vertices and m edges. Then

$$
\begin{equation*}
M_{1} \geq \frac{4 m^{2}}{n} \tag{1}
\end{equation*}
$$

Equality holds if and only if G is regular.
The clique number of a graph G, denoted $\omega(G)$, is the order of a maximum clique of G. Zhou [17] proved the following upper bound for M_{1} as a function of $\omega(G)$.

Theorem 1.4 [17] Let G be a simple graph with n vertices and m edges. Then

$$
M_{1} \leq \frac{\omega-1}{\omega} 2 n m .
$$

A lower bound for the first Zagreb index in terms of the number of vertices and the clique number is given in [18].

Theorem 1.5 [18]

$$
M_{1} \geq \omega^{3}-2 \omega^{2}-\omega+4 n-4
$$

with equality holding if and only if G is isomorphic to the kite graph $K_{k}\left((n-k)^{1}\right)$.

In Section 2 of this paper we derive a lower bound for the first Zagreb index of G which is better than the bound $\frac{4 m^{2}}{n}$, Theorem 2.2. Moreover we give a relation between the first Zagreb index M_{1} and the general Zagreb index $Z_{4}(G)$, Theorem 2.4. The results in Section 3 address the first Zagreb index in terms of n, δ, Δ and ω.

2 Results

Let G be a graph with n vertices, m edges and vertex degrees $\Delta=d_{1} \geq d_{2} \geq \ldots \geq$ $d_{n}=\delta$. Let $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ be the eigenvalues of G. The energy of G is defined as

$$
E(G)=\left|\lambda_{1}\right|+\ldots+\left|\lambda_{n}\right| .
$$

Our first main result involves the parameter $\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}$. We start with an easy observation concerning its upper bound.

Proposition 2.1 Let G be a graph with n vertices and vertex degrees $\Delta=d_{1} \geq d_{2} \geq$ $\ldots \geq d_{n}=\delta$. Let $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ be the eigenvalues of G and let $E(G)$ be its energy. Then

$$
\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n} \leq \frac{E(G)(\Delta-\delta)}{2}
$$

Proof. Let $\lambda_{1}, \ldots, \lambda_{p}$ be the positive and let $\lambda_{p+1}, \ldots, \lambda_{n}$ be the negative eigenvalues of G. Since $d_{i} \leq \Delta$ for each $i=1, \ldots, p$, we obtain

$$
\begin{equation*}
\lambda_{1} d_{1}+\ldots+\lambda_{p} d_{p} \leq\left(\lambda_{1}+\ldots+\lambda_{p}\right) \Delta \tag{2}
\end{equation*}
$$

Similarly, since $d_{i} \geq \delta$ for each $i=p+1, \ldots, n$, we get

$$
\begin{equation*}
\lambda_{p+1} d_{p+1}+\ldots+\lambda_{n} d_{n} \leq\left(\lambda_{p+1}+\ldots+\lambda_{n}\right) \delta \tag{3}
\end{equation*}
$$

Now, from $\left(\lambda_{1}+\ldots+\lambda_{p}\right)+\left(\lambda_{p+1}+\ldots+\lambda_{n}\right)=0$ we get $\lambda_{1}+\ldots+\lambda_{p}=-\left(\lambda_{p+1}+\ldots+\lambda_{n}\right)$ and

$$
\begin{equation*}
E(G)=\left|\lambda_{1}\right|+\ldots+\left|\lambda_{n}\right|=\left(\lambda_{1}+\ldots+\lambda_{p}\right)-\left(\lambda_{p+1}+\ldots+\lambda_{n}\right)=2\left(\lambda_{1}+\ldots+\lambda_{p}\right) \tag{4}
\end{equation*}
$$

By using (2), (3) and (4) we have

$$
\begin{gathered}
\lambda_{1} d_{1}+\ldots \lambda_{n} d_{n} \leq\left(\lambda_{1}+\ldots+\lambda_{p}\right) \Delta+\left(\lambda_{p+1}+\ldots+\lambda_{n}\right) \delta= \\
=\left(\lambda_{1}+\ldots+\lambda_{p}\right)(\Delta-\delta)=\frac{E(G)(\Delta-\delta)}{2} .
\end{gathered}
$$

Theorem 2.2 Let G be a graph with n vertices and m edges. Let $d_{1} \geq d_{2} \geq \ldots \geq d_{n}$ be vertex degrees and let $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ be the eigenvalues of G. Then

$$
\begin{equation*}
M_{1} \geq \frac{4 m^{2}}{n}+\frac{\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right)^{2}}{2 m} \tag{5}
\end{equation*}
$$

Proof. The required inequality in (5) is equivalent to the inequality

$$
\begin{equation*}
\frac{n}{4 m^{2}} \geq \frac{2 m}{2 m M_{1}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right)^{2}} \tag{6}
\end{equation*}
$$

By using $d_{1}^{2}+\ldots+d_{n}^{2}=M_{1}$ and $\lambda_{1}^{2}+\ldots+\lambda_{n}^{2}=2 m$ we get

$$
\begin{gathered}
\sum_{i=1}^{n}\left(2 m d_{i}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right) \lambda_{i}\right)^{2}= \\
=\sum_{i=1}^{n}\left(4 m^{2} d_{i}^{2}-4 m d_{i}\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right) \lambda_{i}+\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right)^{2} \lambda_{i}^{2}\right)= \\
=4 m^{2} \sum_{i=1}^{n} d_{i}^{2}-4 m\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right) \sum_{i=1}^{n} \lambda_{i} d_{i}+\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right)^{2} \sum_{i=1}^{n} \lambda_{i}^{2}= \\
=4 m^{2} M_{1}-4 m\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right)^{2}+2 m\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right)^{2}=2 m\left(2 m M_{1}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right)^{2}\right) .
\end{gathered}
$$

Thus we obtain the identity

$$
\begin{equation*}
\frac{2 m}{2 m M_{1}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right)^{2}}=\sum_{i=1}^{n}\left(\frac{2 m d_{i}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right) \lambda_{i}}{2 m M_{1}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right)^{2}}\right)^{2} \tag{7}
\end{equation*}
$$

On the other hand, from $\lambda_{1}+\ldots+\lambda_{n}=0$ and $d_{1}+\ldots+d_{n}=2 m$ we get

$$
\sum_{i=1}^{n}\left(2 m d_{i}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right) \lambda_{i}\right)=2 m \sum_{i=1}^{n} d_{i}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right) \sum_{i=1}^{n} \lambda_{i}=4 m^{2}
$$

Thus

$$
\begin{equation*}
\frac{2 m}{2 m M_{1}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right)^{2}}=\sum_{i=1}^{n} \frac{1}{2 m} \cdot \frac{2 m d_{i}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right) \lambda_{i}}{2 m M_{1}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right)^{2}} \tag{8}
\end{equation*}
$$

The identities in (7) and (8) yield

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\frac{2 m d_{i}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right) \lambda_{i}}{2 m M_{1}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right)^{2}}\right)^{2}=\frac{1}{2 m} \sum_{i=1}^{n} \frac{2 m d_{i}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right) \lambda_{i}}{2 m M_{1}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right)^{2}} \tag{9}
\end{equation*}
$$

In the end we have

$$
\begin{gathered}
\quad \frac{n}{4 m^{2}}-\frac{2 m}{2 m M_{1}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right)^{2}}=\sum_{i=1}^{n} \frac{1}{(2 m)^{2}}-\sum_{i=1}^{n}\left(\frac{2 m d_{i}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right) \lambda_{i}}{2 m M_{1}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right)^{2}}\right)^{2} \\
=\sum_{i=1}^{n} \frac{1}{(2 m)^{2}}-2 \sum_{i=1}^{n}\left(\frac{2 m d_{i}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right) \lambda_{i}}{2 m M_{1}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right)^{2}}\right)^{2}+\sum_{i=1}^{n}\left(\frac{2 m d_{i}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right) \lambda_{i}}{2 m M_{1}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right)^{2}}\right)^{2} \\
=\sum_{i=1}^{n} \frac{1}{(2 m)^{2}}-2 \cdot \frac{1}{2 m} \sum_{i=1}^{n} \frac{2 m d_{i}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right) \lambda_{i}}{2 m M_{1}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right)^{2}}+\sum_{i=1}^{n}\left(\frac{2 m d_{i}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right) \lambda_{i}}{2 m M_{1}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right)^{2}}\right)^{2} \\
=\sum_{i=1}^{n}\left(\frac{1}{2 m}-\frac{2 m d_{i}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right) \lambda_{i}}{2 m M_{1}-\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right)^{2}}\right)^{2} \geq 0 .
\end{gathered}
$$

Remark 2.3 Since $\frac{\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right)^{2}}{2 m} \geq 0$ we obtain

$$
M_{1} \geq \frac{4 m^{2}}{n}+\frac{\left(\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}\right)^{2}}{2 m} \geq \frac{4 m^{2}}{n}
$$

If G is a regular graph, then $\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n}=0$. In this case $M_{1}=\frac{4 m^{2}}{n}$.
Otherwise, if $\lambda_{1} d_{1}+\ldots+\lambda_{n} d_{n} \neq 0$, then the bound in (5) is better than the bound in (1).
In the following theorem we give a relation between M_{1} and $Z_{4}(G)$. This result follows similar reasoning as Theorem 2.1 in [10].

Theorem 2.4 Let G be a graph with n vertices, m edges and vertex degrees $\Delta=d_{1} \geq$ $d_{2} \geq \ldots \geq d_{n}=\delta$. Then

$$
\begin{equation*}
Z_{4}(G) \leq \frac{M_{1}^{2}}{n}+\frac{8 \sqrt{n} \Delta^{4}}{\delta}\left(\sqrt{M_{1}}-\frac{2 m}{\sqrt{n}}\right) \tag{10}
\end{equation*}
$$

Equality holds if G is a regular graph.
Proof. In [10] was proven that for any two positive real numbers a and b it holds

$$
\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}+\frac{a b}{a^{2}+b^{2}} \geq \frac{5}{2}
$$

that is,

$$
\begin{equation*}
a+b \geq\left(2+\frac{(a-b)^{2}}{2\left(a^{2}+b^{2}\right)}\right) \sqrt{a b} \tag{11}
\end{equation*}
$$

Setting $a=\frac{d_{i}^{2}}{M_{1}}$ and $b=\frac{1}{n}$ in (11) we obtain the following inequality

$$
\begin{equation*}
\frac{d_{i}^{2}}{M_{1}}+\frac{1}{n} \geq\left(2+\frac{\left(n d_{i}^{2}-M_{1}\right)^{2}}{2\left(n^{2} d_{i}^{4}+M_{1}^{2}\right)}\right) \frac{d_{i}}{\sqrt{n \cdot M_{1}}} \tag{12}
\end{equation*}
$$

From (12) we deduce

$$
\begin{equation*}
\frac{1}{M_{1}} \sum_{i=1}^{n} d_{i}^{2}+\sum_{i=1}^{n} \frac{1}{n} \geq \frac{2}{\sqrt{n \cdot M_{1}}} \sum_{i=1}^{n} d_{i}+\sum_{i=1}^{n} \frac{\left(n d_{i}^{2}-M_{1}\right)^{2}}{2\left(n^{2} d_{i}^{4}+M_{1}^{2}\right)} \frac{d_{i}}{\sqrt{n \cdot M_{1}}} . \tag{13}
\end{equation*}
$$

Since $\sum_{i=1}^{n} d_{i}^{2}=M_{1}$ and $\sum_{i=1}^{n} d_{i}=2 m$, the inequality in (13) becomes

$$
2 \geq \frac{4 m}{\sqrt{n \cdot M_{1}}}+\frac{1}{\sqrt{n \cdot M_{1}}} \sum_{i=1}^{n} \frac{\left(n d_{i}^{2}-M_{1}\right)^{2}}{2\left(n^{2} d_{i}^{4}+M_{1}^{2}\right)} d_{i}
$$

Since $d_{i} \leq \Delta$ for each $i=1,2, \ldots, n$ we have $M_{1} \leq n \Delta^{2}$. Therefore $\frac{1}{n^{2} d_{i}^{4}+M_{1}^{2}} \geq \frac{1}{2 n^{2} \Delta^{4}}$. The previous inequality is equivalent to

$$
\sqrt{M_{1}} \geq \frac{2 m}{\sqrt{n}}+\frac{\delta}{8 \sqrt{n} \Delta^{4}} \sum_{i=1}^{n}\left(d_{i}^{2}-\frac{M_{1}}{n}\right)^{2}=\frac{2 m}{\sqrt{n}}+\frac{\delta}{8 \sqrt{n} \Delta^{4}}\left(Z_{4}(G)-\frac{M_{1}^{2}}{n}\right) .
$$

Thus we have

$$
Z_{4}(G) \leq \frac{M_{1}^{2}}{n}+\frac{8 \sqrt{n} \Delta^{4}}{\delta}\left(\sqrt{M_{1}}-\frac{2 m}{\sqrt{n}}\right) .
$$

The inequality (10) becomes equality if in (11) holds equality. It is possible when $a=b$, which implies $M_{1}=n d_{i}^{2}$ for each $i=1, \ldots, n$. These identities occur only if $d_{1}=\ldots=d_{n}$, that is, if G is a regular graph.

Remark 2.5 From the inequality between quadratic and arithmetic mean for the numbers $d_{1}^{2}, \ldots, d_{n}^{2}$ it follows

$$
Z_{4}(G)=d_{1}^{4}+\ldots+d_{n}^{4} \geq \frac{\left(d_{1}^{2}+\ldots+d_{n}^{2}\right)^{2}}{n}=\frac{M_{1}^{2}}{n} .
$$

Hence

$$
Z_{4}(G) \in\left[\frac{M_{1}^{2}}{n}, \frac{M_{1}^{2}}{n}+\frac{8 \sqrt{n} \Delta^{4}}{\delta}\left(\sqrt{M_{1}}-\frac{2 m}{\sqrt{n}}\right)\right]
$$

3 New bounds for M_{1} for graphs with given clique number

As shown by Caro [3] and Wei [19], the degree sequence $d_{1}, d_{2}, \ldots, d_{n}$ of a graph G of order n gives rise to a lower bound on the clique number ω of G :

$$
\begin{equation*}
\omega(G) \geq \frac{1}{n-d_{1}}+\frac{1}{n-d_{2}}+\ldots+\frac{1}{n-d_{n}} . \tag{14}
\end{equation*}
$$

Taking advantage of this result, in the next result we obtain a lower bound for M_{1} in terms of n, m and ω.

Theorem 3.1 Let G be a graph with n vertices, m edges and clique number ω. Then

$$
M_{1} \geq 4 m n+\frac{n^{3}}{w^{2}}-n^{3}
$$

Equality holds if and only if G is a regular graph of degree k and $\omega=\frac{n}{n-k}$.
Proof. Using the inequality between quadratic and harmonic mean for the positive numbers $n-d_{1}, n-d_{2}, \ldots, n-d_{n}$ we have

$$
\begin{equation*}
\sqrt{\frac{\left(n-d_{1}\right)^{2}+\left(n-d_{2}\right)^{2}+\ldots+\left(n-d_{n}\right)^{2}}{n}} \geq \frac{n}{\frac{1}{n-d_{1}}+\frac{1}{n-d_{2}}+\ldots+\frac{1}{n-d_{n}}} . \tag{15}
\end{equation*}
$$

From (15) and $\omega=\omega(G) \geq \frac{1}{n-d_{1}}+\frac{1}{n-d_{2}}+\ldots+\frac{1}{n-d_{n}}$ we have

$$
\sqrt{\frac{n^{3}-4 m n+M_{1}}{n}} \geq \frac{n}{w}
$$

which leads to

$$
M_{1} \geq 4 m n+\frac{n^{3}}{w^{2}}-n^{3}
$$

The equality in (15) holds if and only if $n-d_{1}=\ldots=n-d_{n}$, that is, if and only if $d_{1}=d_{2}=\ldots=d_{n}=k$. Moreover, equality in the inequality $\omega \geq \frac{1}{n-d_{1}}+\frac{1}{n-d_{2}}+\ldots+\frac{1}{n-d_{n}}$ holds if $\omega=\frac{n}{n-k}$.

Similarly as in the previous result, we derive a lower bound for the first Zagreb index in terms of n, m, ω and Δ.

Theorem 3.2 Let G be a graph with n vertices, m edges, clique number ω and maximum degree Δ. Then

$$
M_{1} \geq 2 n(2 m-\Delta)+\Delta^{2}+\frac{(n-1)^{3}}{\left(w-\frac{1}{n-\Delta}\right)^{2}}-n^{2}(n-1)
$$

Equality holds if $d_{2}=\ldots=d_{n}=\frac{2 m-\Delta}{n-1}$ and $\omega=\frac{1}{n-\Delta}+\frac{(n-1)^{2}}{n^{2}-n-2 m+\Delta}$.
Proof. We proceed similarly as in the previous proof. Using the inequality between quadratic and harmonic mean for the positive numbers $n-d_{2}, \ldots, n-d_{n}$ we have

$$
\begin{equation*}
\sqrt{\frac{\left(n-d_{2}\right)^{2}+\ldots+\left(n-d_{n}\right)^{2}}{n-1}} \geq \frac{n-1}{\frac{1}{n-d_{2}}+\ldots+\frac{1}{n-d_{n}}} . \tag{16}
\end{equation*}
$$

From (16) and $\omega-\frac{1}{n-d_{1}} \geq \frac{1}{n-d_{2}}+\ldots+\frac{1}{n-d_{n}}$ we have

$$
\sqrt{\frac{(n-1) n^{2}-2 n(2 m-\Delta)+M_{1}-\Delta^{2}}{n-1}} \geq \frac{n-1}{w-\frac{1}{n-\Delta}}
$$

which leads to the required inequality.
The inequality (16) becomes equality if $n-d_{2}=\ldots=n-d_{n}$, that is, if $d_{2}=\ldots=d_{n}=$ $\frac{2 m-\Delta}{n-1}$. The equality in $\omega-\frac{1}{n-d_{1}} \geq \frac{1}{n-d_{2}}+\ldots+\frac{1}{n-d_{n}}$ holds when $\omega=\frac{1}{n-\Delta}+\frac{(n-1)^{2}}{n^{2}-n-2 m+\Delta}$.

A graph which does not contain triangles is called triangle-free graph. In [16] Zhou obtained the following bound:

Theorem 3.3 [16] Let G be a triangle free (n, m)-graph. Then

$$
\begin{equation*}
M_{1}(G) \leq m n \tag{17}
\end{equation*}
$$

and equality holds if and only if G is a complete bipartite graph.
Based on Theorem 3.3 we are in a position to obtain an upper bound for M_{1} for trianglefree graphs in terms of n and Δ.

Theorem 3.4 Let G be a triangle-free graph with n vertices and maximum degree Δ. Then

$$
\begin{equation*}
M_{1} \leq \frac{n\left(n^{2}-n+\Delta\right)}{2}-\frac{n(n-1)^{2}(n-\Delta)}{4(n-\Delta)-2} \tag{18}
\end{equation*}
$$

Proof. Since G is a triangle-free graph we get $\omega \leq 2$. From the inequality (14) we obtain

$$
2-\frac{1}{n-\Delta} \geq \frac{1}{n-d_{2}}+\ldots+\frac{1}{n-d_{n}}
$$

By applying Cauchy-Schwarz inequality to the numbers $\frac{1}{n-d_{2}}, \ldots, \frac{1}{n-d_{n}}$ we have

$$
\begin{equation*}
\frac{2(n-\Delta)-1}{n-\Delta}=2-\frac{1}{n-\Delta} \geq \frac{(1+1+\ldots+1)^{2}}{n-d_{2}+\ldots+n-d_{n}}=\frac{(n-1)^{2}}{n(n-1)-(2 m-\Delta)} \tag{19}
\end{equation*}
$$

From (19) we obtain

$$
m \leq \frac{n^{2}-n+\Delta}{2}-\frac{(n-\Delta)(n-1)^{2}}{4(n-\Delta)-2}
$$

The bound in (18) follows directly from (17).

References

[1] A. Ali, I. Gutman, E. Milovanović, I. Milovanović, Sum of powers of the degrees of graphs: Extremal results and bounds, MATCH Commun. Math. Comput. Chem. 80 (2018) 5-84.
[2] B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem. 78 (2017) 17-100.
[3] Y. Caro, New results on the independence number, Technical report, Tel Aviv Univ., 1979.
[4] K. C. Das, Sharp bounds for the sum of the squares of degrees of a graph, Kragujevac J. Math. 25 (2003) 31-49.
[5] K. C. Das, Maximizing the sum of the squares of the degrees of a graph, Discr. Math. 285 (2004) 57-66.
[6] K. C. Das, On comparing Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem. 63 (2010) 433-440.
[7] K. C. Das, I. Gutman, B. Zhou, New upper bounds on Zagreb indices, J. Math. Chem. 46 (2009) 514-521.
[8] K. C. Das, K. Xu, J. Nam, On Zagreb indices of graphs, Front. Math. China 10 (2015) 567-582.
[9] C. S. Edwards, The largest vertex degree sum for a triangle in a graph, Bull. London Math. Soc. 9 (1977) 203-208.
[10] S. Filipovski, R. Jajcay, New upper bounds for the energy and spectral radius of graphs, MATCH Commun. Math. Comput. Chem. 84 (2020) 335-343.
[11] G. H. Fath-Tabar, Old and new zagreb indices of graphs, MATCH Commun. Math. Comput. Chem. 64 (2011) 79-84.
[12] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[13] I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.
[14] X. Li, H. Zhao, Trees with the first three smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem. 50 (2004) 57-62.
[15] X. Li, J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195-208.
[16] B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52 (2004) 113-118.
[17] B. Zhou, Remarks on Zagreb indices, MATCH Commun. Math. Comput. Chem. 57 (2007) 591-596.
[18] K. Xu, The Zagreb indices of graphs with a given clique number, App. Math. Lett. 24 (2011) 1026-1030.
[19] V. K. Wei, A lower bound on the stability number of a simple graph, Technical Report 81-11217-9, Bell Laboratories, 1981.

[^0]: *Corresponding author. Partially supported by VEGA 1/0423/20

