On Zagreb Indices of Graphs

Batmend Horoldagva ${ }^{a}$, Kinkar Chandra Das ${ }^{b, *}$
${ }^{a}$ Department of Mathematics, Mongolian National University of Education, Baga toiruu-14, Ulaanbaatar, Mongolia horoldagva@msue.edu.mn
${ }^{b}$ Department of Mathematics, Sungkyunkwan University, Suwon 16419, Republic of Korea
kinkardas2003@gmail.com

(Received June 14, 2020)

Abstract

Let \mathcal{G}_{n} be the set of class of graphs of order n. The first Zagreb index $M_{1}(G)$ is equal to the sum of squares of the degrees of the vertices, and the second Zagreb index $M_{2}(G)$ is equal to the sum of the products of the degrees of pairs of adjacent vertices of the underlying molecular graph G. The three set of graphs are as follows: $$
A=\left\{G \in \mathcal{G}_{n}: \frac{M_{1}(G)}{n}>\frac{M_{2}(G)}{m}\right\}, B=\left\{G \in \mathcal{G}_{n}: \frac{M_{1}(G)}{n}=\frac{M_{2}(G)}{m}\right\}
$$ and $$
C=\left\{G \in \mathcal{G}_{n}: \frac{M_{1}(G)}{n}<\frac{M_{2}(G)}{m}\right\} .
$$

In this paper we prove that $|A|+|B|<|C|$. Finally, we give a conjecture $|A|<|B|$.

1 Introduction

Let $G=(V, E)$ be a simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$, where $|V(G)|=n$ and $|E(G)|=m$. Let \bar{G} be the complement of G. We denote by $d_{i}=d_{G}\left(v_{i}\right)$ the degree of vertex v_{i} for $i=1,2, \ldots, n$. Let \mathcal{G}_{n} be the set of class of graphs of order n. For $S \subseteq \mathcal{G}_{n}$, let $|S|$ be the number of graphs in the set S. For any two nonadjacent vertices v_{i} and v_{j} in graph G, we use $G+v_{i} v_{j}$ to denote the graph obtained

[^0]from adding a new edge $v_{i} v_{j}$ to graph G. Similarly, for $v_{i} v_{j} \in E(G)$, we use $G-v_{i} v_{j}$ to denote the graph obtained from deleting an edge $v_{i} v_{j}$ to graph G. The first Zagreb index $M_{1}(G)$ and the second Zagreb index $M_{2}(G)$ is defined as follows:
$$
M_{1}(G)=\sum_{v_{i} \in V} d_{i}^{2} \quad \text { and } \quad M_{2}(G)=\sum_{v_{i} v_{j} \in E(G)} d_{i} d_{j}
$$

The Zagreb indices M_{1} and M_{2} were first introduced by Gutman and Trinajstić in 1972, the quantities of the Zagreb indices were found to occur within certain approximate expressions for the total π-electron energy [12]. For more details of the mathematical theory and chemical applications of the Zagreb indices, see $[1,4,6,10,11,15,20-22,28,29]$.

Let us consider the three sets A, B and C be as follows:

$$
A=\left\{G \in \mathcal{G}_{n}: \frac{M_{1}(G)}{n}>\frac{M_{2}(G)}{m}\right\}, B=\left\{G \in \mathcal{G}_{n}: \frac{M_{1}(G)}{n}=\frac{M_{2}(G)}{m}\right\}
$$

and

$$
C=\left\{G \in \mathcal{G}_{n}: \frac{M_{1}(G)}{n}<\frac{M_{2}(G)}{m}\right\} .
$$

Thus we have $|A|+|B|+|C|=\left|\mathcal{G}_{n}\right|$ as $A \cap B=\emptyset, B \cap C=\emptyset$ and $C \cap A=\emptyset$.
Caporossi and Hansen [2] conjectured that $A=\emptyset$. Although this conjecture is disproved for general graphs [13], it was the beginning of a long series of studies to characterize the graphs G for which $G \in A$ or $G \in B$ or $G \in C$, see [3, 5, 7, 9, 16-19,23-27] and the references cited therein. For a more detailed discussion of the comparison between the classical Zagreb indices we refer to the monograph [14].

In this paper, we prove that $|A|+|B|<|C|$. Finally, we give a conjecture $|A|<|B|$.

2 Main result

In this section we compare three classes of graphs. For this we need the following results.
Lemma 1. Let G be a graph of order $n>1$ and size m.
(i) If $G \in A$, then $\bar{G} \in C$.
(ii) If G is irregular and $G \in B$, then $\bar{G} \in C$.

Proof. From the results in $[6,8]$, we have

$$
\begin{equation*}
M_{2}(\bar{G})=\frac{n(n-1)^{3}}{2}-3 m(n-1)^{2}+2 m^{2}+\left(n-\frac{3}{2}\right) M_{1}(G)-M_{2}(G) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{1}(\bar{G})=n(n-1)^{2}-4 m(n-1)+M_{1}(G) \tag{2}
\end{equation*}
$$

On the other hand, it is well known that

$$
\begin{equation*}
M_{1}(G) \geq \frac{4 m^{2}}{n} \tag{3}
\end{equation*}
$$

with equality if and only if G is a regular graph. Clearly, $|V(\bar{G})|=n$ and $|E(\bar{G})|=$ $n(n-1) / 2-m$. Using (3), from (1) and (2), we obtain

$$
\begin{align*}
|V(\bar{G})| M_{2}(\bar{G})-|E(\bar{G})| M_{1}(\bar{G}) & =n M_{2}(\bar{G})-(n(n-1) / 2-m) M_{1}(\bar{G}) \\
& =(n-2)\left(\frac{n}{2} M_{1}(G)-2 m^{2}\right)-n M_{2}(G)+m M_{1}(G) \\
& \geq m M_{1}(G)-n M_{2}(G) \tag{4}
\end{align*}
$$

with equality if and only if G is regular.
(i) If $G \in A$, then $m M_{1}(G)-n M_{2}(G)>0$. From (4), we have $|V(\bar{G})| M_{2}(\bar{G})-|E(\bar{G})| M_{1}(\bar{G})>$ 0 , that is, $\bar{G} \in C$.
(ii) Similarly, if G is irregular and $G \in B$, then $\bar{G} \in C$ from the definition of B and (4).

Lemma 2. Let G be a regular graph of order $n>3$. Then
(i) $G-e \in C$, where $e=v_{i} v_{j} \in E(G)$,
(ii) $G+e \in C$, where $e=v_{i} v_{j} \notin E(G)$.

Proof. Let r be the degree of the regular graph G. Then $|E(G)|=n r / 2$.
(i) By the definition of the Zagreb indices, we have

$$
M_{1}(G-e)=(n-2) r^{2}+2(r-1)^{2}=n r^{2}-4 r+2
$$

and

$$
M_{2}(G-e)=2(r-1) r(r-1)+\left(\frac{n r}{2}-2 r+1\right) r^{2}=\frac{n r^{3}}{2}-3 r^{2}+2 r
$$

Then from the above, we get

$$
n M_{2}(G-e)-(n r / 2-1) M_{1}(G-e)=(n-4) r+2>0
$$

as $n>3$. Therefore $G-e \in C$ because $|E(G-e)|=n r / 2-1$.
(ii) For $e=v_{i} v_{j} \notin E(G)$, by the definition of the Zagreb indices, we have

$$
M_{1}(G+e)=(n-2) r^{2}+2(r+1)^{2}=n r^{2}+4 r+2
$$

and

$$
M_{2}(G+e)=2 r(r+1) r+\left(\frac{n r}{2}-2 r\right) r^{2}+(r+1)^{2}=\frac{n r^{3}}{2}+3 r^{2}+2 r+1
$$

Then from the above, we get

$$
n M_{2}(G+e)-(n r / 2+1) M_{1}(G+e)=(n-4)(r+1)+2>0
$$

as $n>3$. Therefore $G+e \in C$ because $|E(G+e)|=n r / 2+1$.
We now give our main result as follows:
Theorem 1. Let \mathcal{G}_{n} be the set of class of graphs of order $n>3$. Let the three sets $A, B, C \subseteq \mathcal{G}_{n}$ be defined before. Then $|A|+|B|<|C|$.

Proof. First we assume that G is an irregular graph. If $G \in A \cup B$, then by Lemma $1, \bar{G} \in C$. Next we assume that G is a regular graph. Then by Lemma 2, we obtain $G-e \in C(e \in E(G))$ and $G+e \in C(e \notin E(G))$. Thus we conclude that if any graph G in $A \cup B$ then there exists a graph $H(\cong \bar{G}$ or $G-e$ or $G+e)$ in C, that is, $G \in A \cup B$ implies that $H \in C$.

Let G_{1} and $G_{2}\left(G_{1} \nexists G_{2}\right)$ be any two graphs in $A \cup B$. Again let H_{1} and H_{2} be the graphs in C such that G_{1} corresponds to H_{1} and G_{2} corresponds to H_{2}. We have to prove that H_{1} and H_{2} are not isomorphic. When G_{1} and G_{2} are both irregular, then by Lemma 1, we obtain

$$
H_{1} \cong \overline{G_{1}} \not \equiv \overline{G_{2}} \cong H_{2}
$$

When G_{1} and G_{2} are both regular, then by Lemma $2, H_{1}$ and H_{2} are not isomorphic. Otherwise, one of them $\left(G_{1}\right.$ or $\left.G_{2}\right)$ is regular and the other one is irregular. Without loss of generality, we can assume that G_{1} is regular and G_{2} is irregular. Then $H_{1} \cong G_{1}-e$ for some $e \in E\left(G_{1}\right)$ and $H_{2} \cong \overline{G_{2}}$. On the contrary, suppose that H_{1} and H_{2} are isomorphic. Then $\overline{G_{2}} \cong G_{1}-e$ and it follows that

$$
G_{2} \cong \overline{G_{1}-e} \cong \overline{G_{1}}+e .
$$

Therefore by Lemma 2 (ii), we have $G_{2} \in C$ since $\overline{G_{1}}$ is regular. This contradicts the fact that $G_{2} \in A \cup B$. Therefore H_{1} and H_{2} are not isomorphic. Hence we conclude that $|A|+|B| \leq|C|$.

We now prove that the inequality is strict. For this let $H \cong K_{n}-e\left(e\right.$ is an edge in $\left.K_{n}\right)$,
$n>3$. Then $\bar{H} \cong K_{2} \cup(n-2) K_{1}$. Thus we have

$$
M_{1}(H)=(n-2)(n-1)^{2}+2(n-2)^{2}, \quad M_{2}(H)=\frac{n(n-1)^{3}}{2}-(n-1)(3 n-5),
$$

and

$$
M_{1}(\bar{H})=2, \quad M_{2}(\bar{H})=1
$$

One can easily check that

$$
\frac{M_{1}(H)}{n}<\frac{M_{2}(H)}{m} \quad \text { and } \quad \frac{M_{1}(\bar{H})}{n}<\frac{M_{2}(\bar{H})}{\frac{n(n-1)}{2}-m}
$$

as $m=\frac{n(n-1)}{2}-1$. Hence $H, \bar{H} \in C$. If there is no graph in $A \cup B$ correspondence to H in C, then we have $|A|+|B|<|C|$. Otherwise, there is a graph G in $A \cup B$ corresponds to H in C. Then by Lemma 1 , we have $\bar{G} \cong H$, that is, $G \cong \bar{H} \in C$, a contradiction as $G \in A \cup B$. This completes the proof.

Corollary 3. Let \mathcal{G}_{n} be the set of class of graphs of order $n>3$. Also let the three sets $A, B, C \subseteq \mathcal{G}_{n}$ be defined before. Then $|A|<|C|$ and $|B|<|C|$.

Corollary 4. Let \mathcal{G}_{n} be the set of class of graphs of order $n>3$. Also let C be the set defined before. Then $|C|>\frac{\left|\mathcal{G}_{n}\right|}{2}$.

Proof. From the definitions of A, B and C, we have $|A|+|B|+|C|=\left|\mathcal{G}_{n}\right|$. By Theorem 1 with the above result, we obtain

$$
2|C|>\left|\mathcal{G}_{n}\right|, \quad \text { that is, }|C|>\frac{\left|\mathcal{G}_{n}\right|}{2}
$$

Now we would like to end this paper with the following relevant conjecture.
Conjecture 5. Let A and B be the two sets defined before. Then $|A|<|B|$.

References

[1] B. Bollobás, P. Erdős, A. Sarkar, Extremal graphs for weights, Discr. Math. 200 (1999) 5-19.
[2] G. Caporossi, P. Hansen, Variable neighborhood search for extremal graphs. 5. Three ways to automate finding conjectures, Discr. Math. 276 (2004) 81-94.
[3] G. Caporossi, P. Hansen, D. Vukičević, Comparing Zagreb indices of cyclic graphs, MATCH Commun. Math. Comput. Chem. 63 (2010) 441-451.
[4] K. C. Das, Maximizing the sum of the squares of the degrees of a graph, Discr. Math. 285 (2004) 57-66.
[5] K. C. Das, On comparing Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem. 63 (2010) 433-440.
[6] K. C. Das, I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52 (2004) 103-112.
[7] K. C. Das, I. Gutman, B. Horoldagva, Comparison between Zagreb indices and Zagreb coindices of trees, MATCH Commun. Math. Comput. Chem. 68 (2012) 189-198.
[8] K. C. Das, K. Xu, J. Nam, On Zagreb indices of graphs, Front. Math. China 10 (2015) 567-582.
[9] B. Furtula, I. Gutman, S. Ediz, On difference of Zagreb indices, Discr. Appl. Math. 178 (2014) 83-88.
[10] I. Gutman, K. C. Das, The first Zagreb indices 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92.
[11] I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox, Graph theory and molecular orbitals, XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.
[12] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1971) 535-538.
[13] P. Hansen, D. Vukičević, Comparing the Zagreb indices, Croat. Chem. Acta 80 (2007) 165-168.
[14] B. Horoldagva, Relations between the first and second Zagreb indices of graphs, in: I. Gutman, B. Furtula, K. C. Das, E. Milovanović, I. Milovanović (Eds.), Bounds in Chemical Graph Theory - Mainstreams, Univ. Kragujevac, Kragujevac, 2017, pp. 69-81.
[15] B. Horoldagva, L. Buyantogtokh, K. C. Das, S. G. Lee, On general reduced second Zagreb index of graphs, Hacet. J. Math. Stat. 48 (2019) 1046-1056.
[16] B. Horoldagva, K. C. Das, On comparing Zagreb indices of graphs, Hacet. J. Math. Stat. 41 (2012) 223-230.
[17] B. Horoldagva, K. C. Das, Sharp lower bounds for the Zagreb indices of unicyclic graphs, Turk. J. Math. 39 (2015) 595-603.
[18] B. Horoldagva, K. C. Das, T. Selenge, Complete characterization of graphs for direct comparing Zagreb indices, Discr. Appl. Math. 215 (2016) 146-154.
[19] B. Horoldagva, S. G. Lee, Comparing Zagreb indices for connected graphs, Discr. Appl. Math. 158 (2010) 1073-1078.
[20] S. Nikolić, G. Kovačević, A. Milićević, N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113-124.
[21] U. N. Peled, R. Petreschi, A. Sterbini, (n, e)-graphs with maximum sum of squares of degrees, J. Graph Theory 31 (1999) 283-295.
[22] T. Selenge, B. Horoldagva, Maximum Zagreb indices in the class of k-apex trees, Korean J. Math. 23 (2015) 401-408.
[23] T. Selenge, B. Horoldagva, K. C. Das, Direct comparison of the variable Zagreb indices of cyclic graphs, MATCH Commun. Math. Comput. 78 (2017) 351-360.
[24] D. Stevanović, M. Milanič, Improved inequality between Zagreb indices of trees, MATCH Commun. Math. Comput. Chem. 68 (2012) 147-156.
[25] L. Sun, T. Chen, Comparing the Zagreb indices for graphs with small difference between the maximum and minimum degrees, Discr. Appl. Math. 157 (2009) 16501654.
[26] D. Vukičević, A. Graovac, Comparing Zagreb M_{1} and M_{2} indices for acyclic molecules, MATCH Commun. Math. Comput. Chem. 57 (2007) 587-590.
[27] D. Vukičević, J. Sedlar, D. Stevanović, Comparing Zagreb indices for almost all graphs, MATCH Commun. Math. Comput. Chem. 78 (2017) 323-336.
[28] K. Xu, K. C. Das, S. Balachandran, Maximizing the Zagreb indices of (n, m)-graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) 641-654.
[29] H. Wang, S. Yuan, On the sum of squares of degrees and products of adjacent degrees, Discr. Math. 339 (2016) 1212-1220.

[^0]: *Corresponding author

