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Abstract

Let Gn be the set of class of graphs of order n. The first Zagreb index M1(G)
is equal to the sum of squares of the degrees of the vertices, and the second Zagreb
index M2(G) is equal to the sum of the products of the degrees of pairs of adjacent
vertices of the underlying molecular graph G. The three set of graphs are as follows:

A =

{
G ∈ Gn :

M1(G)

n
>

M2(G)

m

}
, B =

{
G ∈ Gn :

M1(G)

n
=

M2(G)

m

}
and

C =

{
G ∈ Gn :

M1(G)

n
<

M2(G)

m

}
.

In this paper we prove that |A|+ |B| < |C|. Finally, we give a conjecture |A| < |B|.

1 Introduction

Let G = (V,E) be a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set

E(G) , where |V (G)| = n and |E(G)| = m. Let G be the complement of G. We denote

by di = dG(vi) the degree of vertex vi for i = 1, 2, . . . , n. Let Gn be the set of class of

graphs of order n. For S ⊆ Gn, let |S| be the number of graphs in the set S. For any two

nonadjacent vertices vi and vj in graph G, we use G+ vivj to denote the graph obtained
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from adding a new edge vivj to graph G. Similarly, for vivj ∈ E(G), we use G − vivj to

denote the graph obtained from deleting an edge vivj to graph G. The first Zagreb index

M1(G) and the second Zagreb index M2(G) is defined as follows:

M1(G) =
∑
vi∈V

d2i and M2(G) =
∑

vivj∈E(G)

di dj.

The Zagreb indices M1 and M2 were first introduced by Gutman and Trinajstić in 1972,

the quantities of the Zagreb indices were found to occur within certain approximate ex-

pressions for the total π-electron energy [12]. For more details of the mathematical theory

and chemical applications of the Zagreb indices, see [1, 4, 6, 10,11,15,20–22,28,29].

Let us consider the three sets A, B and C be as follows:

A =

{
G ∈ Gn :

M1(G)

n
>
M2(G)

m

}
, B =

{
G ∈ Gn :

M1(G)

n
=
M2(G)

m

}
and

C =

{
G ∈ Gn :

M1(G)

n
<
M2(G)

m

}
.

Thus we have |A|+ |B|+ |C| = |Gn| as A ∩B = ∅, B ∩ C = ∅ and C ∩ A = ∅.

Caporossi and Hansen [2] conjectured that A = ∅. Although this conjecture is dis-

proved for general graphs [13], it was the beginning of a long series of studies to charac-

terize the graphs G for which G ∈ A or G ∈ B or G ∈ C, see [3, 5, 7, 9, 16–19, 23–27] and

the references cited therein. For a more detailed discussion of the comparison between

the classical Zagreb indices we refer to the monograph [14].

In this paper, we prove that |A|+ |B| < |C|. Finally, we give a conjecture |A| < |B|.

2 Main result

In this section we compare three classes of graphs. For this we need the following results.

Lemma 1. Let G be a graph of order n > 1 and size m.

(i) If G ∈ A, then G ∈ C.

(ii) If G is irregular and G ∈ B, then G ∈ C.

Proof. From the results in [6, 8], we have

M2(G) =
n(n− 1)3

2
− 3m(n− 1)2 + 2m2 +

(
n− 3

2

)
M1(G)−M2(G) (1)
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and

M1(G) = n(n− 1)2 − 4m(n− 1) +M1(G). (2)

On the other hand, it is well known that

M1(G) ≥ 4m2

n
(3)

with equality if and only if G is a regular graph. Clearly, | V (G) |= n and | E(G) |=

n(n− 1)/2−m. Using (3), from (1) and (2), we obtain

|V (G)|M2(G)− |E(G)|M1(G) = nM2(G)− (n(n− 1)/2−m)M1(G)

= (n− 2)
(n

2
M1(G)− 2m2

)
− nM2(G) +mM1(G)

≥ mM1(G)− nM2(G) (4)

with equality if and only if G is regular.

(i) IfG ∈ A, thenmM1(G)−nM2(G) > 0. From (4), we have |V (G)|M2(G)−|E(G)|M1(G) >

0, that is, G ∈ C.

(ii) Similarly, if G is irregular and G ∈ B, then G ∈ C from the definition of B and (4).

Lemma 2. Let G be a regular graph of order n > 3. Then

(i) G− e ∈ C, where e = vivj ∈ E(G),

(ii) G+ e ∈ C, where e = vivj /∈ E(G).

Proof. Let r be the degree of the regular graph G. Then | E(G) |= nr/2.

(i) By the definition of the Zagreb indices, we have

M1(G− e) = (n− 2)r2 + 2(r − 1)2 = nr2 − 4r + 2

and

M2(G− e) = 2(r − 1)r(r − 1) +
(nr

2
− 2r + 1

)
r2 =

nr3

2
− 3r2 + 2r.

Then from the above, we get

nM2(G− e)− (nr/2− 1)M1(G− e) = (n− 4)r + 2 > 0

as n > 3. Therefore G− e ∈ C because | E(G− e) |= nr/2− 1.

(ii) For e = vivj /∈ E(G), by the definition of the Zagreb indices, we have

M1(G+ e) = (n− 2)r2 + 2(r + 1)2 = nr2 + 4r + 2
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and

M2(G+ e) = 2r(r + 1)r +
(nr

2
− 2r

)
r2 + (r + 1)2 =

nr3

2
+ 3r2 + 2r + 1.

Then from the above, we get

nM2(G+ e)− (nr/2 + 1)M1(G+ e) = (n− 4)(r + 1) + 2 > 0

as n > 3. Therefore G+ e ∈ C because | E(G+ e) |= nr/2 + 1.

We now give our main result as follows:

Theorem 1. Let Gn be the set of class of graphs of order n > 3. Let the three sets

A, B, C ⊆ Gn be defined before. Then |A|+ |B| < |C|.

Proof. First we assume that G is an irregular graph. If G ∈ A ∪ B, then by Lemma

1, G ∈ C. Next we assume that G is a regular graph. Then by Lemma 2, we obtain

G− e ∈ C (e ∈ E(G)) and G+ e ∈ C (e /∈ E(G)). Thus we conclude that if any graph G

in A ∪ B then there exists a graph H (∼= G or G− e or G + e) in C, that is, G ∈ A ∪ B

implies that H ∈ C.

Let G1 and G2 (G1 � G2) be any two graphs in A ∪ B. Again let H1 and H2 be the

graphs in C such that G1 corresponds to H1 and G2 corresponds to H2. We have to prove

that H1 and H2 are not isomorphic. When G1 and G2 are both irregular, then by Lemma

1, we obtain

H1
∼= G1 � G2

∼= H2.

When G1 and G2 are both regular, then by Lemma 2, H1 and H2 are not isomorphic.

Otherwise, one of them (G1 or G2) is regular and the other one is irregular. Without loss

of generality, we can assume that G1 is regular and G2 is irregular. Then H1
∼= G1− e for

some e ∈ E(G1) and H2
∼= G2. On the contrary, suppose that H1 and H2 are isomorphic.

Then G2
∼= G1 − e and it follows that

G2
∼= G1 − e ∼= G1 + e.

Therefore by Lemma 2 (ii), we have G2 ∈ C since G1 is regular. This contradicts the

fact that G2 ∈ A ∪B. Therefore H1 and H2 are not isomorphic. Hence we conclude that

|A|+ |B| ≤ |C|.

We now prove that the inequality is strict. For this letH ∼= Kn−e (e is an edge in Kn),
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n > 3. Then H ∼= K2 ∪ (n− 2)K1. Thus we have

M1(H) = (n− 2)(n− 1)2 + 2(n− 2)2, M2(H) =
n(n− 1)3

2
− (n− 1)(3n− 5),

and

M1(H) = 2, M2(H) = 1.

One can easily check that

M1(H)

n
<
M2(H)

m
and

M1(H)

n
<

M2(H)
n(n−1)

2
−m

as m = n(n−1)
2
− 1. Hence H, H ∈ C. If there is no graph in A ∪ B correspondence to H

in C, then we have |A|+ |B| < |C|. Otherwise, there is a graph G in A ∪ B corresponds

to H in C. Then by Lemma 1, we have G ∼= H, that is, G ∼= H ∈ C, a contradiction as

G ∈ A ∪B. This completes the proof.

Corollary 3. Let Gn be the set of class of graphs of order n > 3. Also let the three sets

A, B, C ⊆ Gn be defined before. Then |A| < |C| and |B| < |C|.

Corollary 4. Let Gn be the set of class of graphs of order n > 3. Also let C be the set

defined before. Then |C| > |Gn|
2

.

Proof. From the definitions of A, B and C, we have |A|+ |B|+ |C| = |Gn|. By Theorem

1 with the above result, we obtain

2|C| > |Gn|, that is, |C| > |Gn|
2
.

Now we would like to end this paper with the following relevant conjecture.

Conjecture 5. Let A and B be the two sets defined before. Then |A| < |B|.
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