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Abstract

Recently different entropy-based measures are employed to determine the com-
plexities of relational structures. In this paper, we investigate the extremal proper-
ties of the first degree-based graph entropy for general graphs and characterize the
structure of extremal graphs, which lead to a method of obtaining extremal graphs
for any given (n,m) graph. With this method, the minimum value of the entropy
for graphs with fewer cycles and the maximum value for general graphs are given.
Finally, we make a conjecture on the minimum value for any (n,m) graph.

1 Introduction

In many fields, including biology, computer science, and chemistry, graph entropy is a

powerful tool for the analysis of complexities of relational structures [14–16]. Since graph

entropy plays an increasingly important role in a variety of problem areas, different graph

measures based on Shannon entropy have been developed to characterize the structure of

graphs, involving basic invariants such as vertices, edges, degrees, and distances. More

information on the topic can be found in [8].

One of the highlights is Dehmer’s graph entropies [6, 7] based on information func-

tionals, which has inspired a lot of important research findings in information science,

graph theory, and network science. Cao, Dehmer, and Kang [2] introduced graph entropy

measures based on independent sets and matchings of graphs, and calculated the values
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of entropies of the complete graphs, star graphs, and complete bipartite graphs. Later

Wan et al. [17] established some upper and lower bounds for these information-theoretic

quantities. Distance is one of the most noticeable graph invariants. In [4], the number of

vertices with a fixed distance to a given vertex served as an information functional, and in

[10] eccentricity of a vertex, the maximum distance between the vertex and other vertices

of a graph, is used for developing a new version of graph entropy. Ilić and Dehmer proved

a sharp upper bound [13] for the distance-based graph entropies introduced in [4]. Simi-

lar information functionals also include the number of spanning forests of c-cyclic graphs

[18], in which the authors proved formulas of the entropy for certain graph families and

showed the maximal value of the entropy for some unicyclic graphs. The graph entropy

we are focusing on in this paper is based on degree powers, which is due to Dehmer

[6]. It is directly connected to the sum of powers of vertex degree known as the oldest

degree-based structure descriptor in mathematical chemistry [9, 11]. Cao, Dehmer, and

Shi proved some extremal values for trees, unicyclic graphs, bicyclic graphs, and other

special graphs for the first degree-based graph entropy and further proposed conjectures

for higher orders to determine extremal values in trees. In [12], Ilić proved one part of

the conjecture about upper and lower bounds of the graph entropy. Das and Shi gave

some extremal properties for trees [5]. These papers imply that it is intricate to determine

minimal values of graph entropies.

Inspired by the work of [3], we investigate the extremal properties of the first degree-

based graph entropy for general graphs and characterize the graphs attaining the extrema

in Section 3. Based on the results, a method for seeking the extrema for any given (n,m)

graph is proposed. As an application of the method, the minimum value of the entropy for

graphs with fewer cycles and the maximum value for general graphs are given in Section 4.

In the next section, we will start by introducing the basic concepts and notions concerning

graph theory that will be used in the paper. And then definitions of degree-based graph

entropies are reproduced.

2 Preliminaries

For all other terminologies, notations and concepts not mentioned here can be referred to

[3] and any graph theory textbook.
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2.1 Terminology and notation

A graph G is an ordered pair (V (G), E(G)) consisting of a non-empty set V (G) of vertices

and a set E(G) of edges, where E(G) is made up of unordered pair of vertices in G. If

vertices u and v form an edge e, then we say u and v are adjacent and e can be denoted by

uv; the two vertices are called the ends of the edge. For the sake of simplicity, we assume

that u 6= v. Obviously, no two different edges have the same ends in a graph. G − uv is

the graph obtained from G by deleting the edge uv. Similarly, the graph obtained from

G by adding uv is denoted by G+ uv.

A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). Let S be a non-

empty set of V (G). G[S] denotes the subgraph of G whose vertex set is S and whose edge

set is the set of those edges of G that have both ends in S, which is called the subgraph

of G induced by S.

Two graphs G and H are said to be isomorphic, written as G=̃H, if there is a bijection

φ : V (G)→ V (H) such that uv ∈ E(G) if and only if φ(u)φ(v) ∈ E(H) for all u, v ∈ V (G).

We define a neighbor set N(v) of a vertex v in G to be the set of all vertices adjacent

to v. The degree dG(v) of v in G is just the size of N(v). ∆(G) and δ(G) denote

the maximum and minimum degrees of vertices in G, respectively. When vertices are

distinguished by subscripts, to simplify the notation, we often write d1, d2, ..., dn instead of

dG(v1), dG(v2), ..., dG(vn) for V (G) = {v1, v2, ..., vn}. (d
ai1
i1
, d

ai2
i1
, . . . , d

aik
ik

) is called a degree

sequence of G, where aij denotes the number of vertices with degree dij for j = 1, 2, . . . , k

and
k∑

j=1

aij = n.

A path P in G is a finite non-empty vertex sequence v1, v2, ..., vk such that vi and vi+1

are adjacent, for 1 ≤ i ≤ k− 1, where vi are all distinct. We say that P is a path from v1

to vk and the vertices v1 and vk are called the origin and terminus of P , respectively. A

cycle is defined as a path with the same origin and terminus. Sometimes the term ‘cycle’

refers to a graph corresponding to a cycle. If there exists a path between any vertices in

graph G, then G is connected. If G is a connected graph with n vertices and n + c − 1

edges, then G is called c-cycle graph. Particularly, when c = 0, G is called acyclic, also

known as a tree; when c = 1, 2, G is called unicyclic and bicyclic, respectively. A star is

a tree with n − 1 vertices of degree 1, denoted by Sn. A complete graph Kn is a graph

with n vertices such that all the vertices are pairwise adjacent.

To simplify the notation, we often use an ordered pair of integers (n,m) to denote a
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graph with n vertices and m edges. All graphs considered in this paper are connected

and finite.

2.2 Degree–based graph entropy

As we have seen, there are competing notions of graph entropy. In fact, graph entropy

in one form or another plays an important role in a variety of problem areas. The vertex

degree sequence is one of the most important graph invariants, which seems relatively

easy to calculate in large-scale networks. It has also been proven useful in information

theory, social networks, and mathematical chemistry [1, 3]. Cao, Dehmer, and Shi in [3]

introduced the following degree-based graph entropy, in which degree powers are used as

the information functionals:

Ik(G) = log

(
n∑

i=1

di
k

)
−

n∑
i=1

di
k∑n

j=1 dj
k

log di
k

= log

(
n∑

i=1

di
k

)
− 1∑n

j=1 dj
k

∑n

i=1
di

k log di
k

where G is an (n,m) graph, V (G) = {v1, v2, ..., vn} and k is an arbitrary real number.

Note that logarithms are always taken to the base two in this paper.

Since
n∑

i=1

di is the constant 2m, I1(G) = log(2m) − 1
2m

n∑
i=1

di log di, which is called the

first degree-based graph entropy. Let h(G) =
n∑

i=1

di log di. The extremal values of I1(G)

can be easily obtained from extremal values of h(G).

3 Topological structures of extremal graphs for h(G)

We are first going to present the following important lemma, which is necessary to get

the main results of this paper.

Lemma 1 Let vi, vj, and vk be three vertices in a graph G. Then dG(vi) ≥ dG(vj) if and

only if h(G+ vivk − vkvj) > h(G).

Proof. Let G′ = G+ vivk − vkvj. Clearly, V (G) = V (G′), dG′(vi) = dG(vi) + 1, dG′(vj) =

dG(vj)−1 and other vertices in G′ have the same degrees as in G. Therefore, by dG(vi) ≥
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dG(vj), we have

h(G′)− h(G) = [(di + 1) log(di + 1))− di log di] + [(dj − 1) log(dj − 1)− dj log dj]

= log

(
(di + 1)(di+1)

di
di

· (dj − 1)(dj−1)

dj
dj

)
(1)

≥ log
(dj + 1)(dj+1)(dj − 1)(dj−1)

dj
2dj

We have to show that the function f(x) = (x+1)(x+1)(x−1)(x−1)

x2x > 1 over the set of natural

numbers. By a simple calculation, we have

df

dx
= (x− 1)(x−1)x(−2x)(x+ 1)(x+1)(log(x− 1)− 2 log x+ log(x+ 1)).

It is easy to see that df
dx

< 0, so f(x) is a monotonously decreasing function. Since

lim
x→∞

f(x) = 1, f(x) > 1. Thus h(G′) > h(G).

Conversely, suppose h(G′) > h(G). Then, by equality (1), we have

(di + 1)(di+1)

di
di

>
dj

dj

(dj − 1)(dj−1)

It follows that dG(vi) ≥ dG(vj). �

For the sake of brevity, let G∗ and G always denote graphs attaining the maximum

and minimum values of h in (n,m) graphs, respectively. Next, the properties of G∗ and

G will be discussed to characterize extremal graphs.

Property 2 Let vi and vj be two vertices in G∗. Then di ≥ dj if and only if N(vj) ⊆

N(vi).

Proof. The sufficiency is obvious. We shall prove the necessity by contradiction. Suppose

that vi and vj satisfy the hypotheses, but N(vj) 6⊆ N(vi). Let vk ∈ N(vj) and vk 6∈ N(vi).

Then by Lemma 1, h(G∗ + vivk − vkvj) > h(G∗), contradicting the definition of G∗. �

From Property 2 we can see that two vertices with the same degree have the same

neighbor set in G∗, and ∆(G∗) = n− 1 as well.

Property 3 Let vi and vj be adjacent vertices in G∗ with di ≥ dj, and S the set of all

vertices of degree not less than di. Then G∗[S] is a complete graph.

Proof. Suppose, to the contrary, that there are two disadjacent vertices vk and vl in

G∗[S]. Clearly dl ≥ di, and therefore N(vi) ⊆ N(vl) by Property 2. Because vi and vj are
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adjacent, vj ∈ N(vi). Thus, vj and vl are adjacent. Since dk ≥ dj, it follows from Lemma

1 that h(G∗ + vkvl − vlvj) > h(G∗), a contradiction. �

Before presenting the structure of G∗, we shall find it convenient to adopt the following

notion and notation in our description.

Definition 1 A KaT graph is one whose vertex set can be partitioned into two disjoint

sets S and T , where |S| = a, so that each pair of distinct vertices in S is joint by an edge,

no edge has both ends in T and if d(u) ≥ d(v) for u, v ∈ T , then N(v) ⊆ N(u).

By the definition of KaT graph, it is easy to see that S induces the complete graph

Ka.

Theorem 4 There must exist a KaT graph such that G∗=̃KaT .

Proof. Let u ∈ V (G∗) with d(u) = min
e∈E(G∗)

{max
e=uv
{d(u), d(v)}}, and let S be the set of all

vertices of degree not less than d(u) and T = V − S. Then, by Property 3, S induces the

complete graph Ka, where a is the size of S. We say that there is no edge between any

two vertices in T . Otherwise, it contradicts the choice of u. Furthermore, by Property 2,

N(v) ⊆ N(u) for any vertices u, v with d(u) ≥ d(v) in T . We conclude that G∗=̃KaT . �

The next result suggests the structure of graphs attaining the minimum value of h.

Theorem 5 ∆(G) = δ(G) or ∆(G) = δ(G) + 1.

Proof. By contradiction. Suppose ∆(G) ≥ δ(G)+2. Let vi and vj be two vertices inG with

di = δ(G), dj = ∆(G). By the hypotheses, di < dj. Clearly, there exists another vertex vk

such that vkvj ∈ E(G) but vivk 6∈ E(G). Then, by Lemma 1, h(G+ vivk − vkvj) < h(G).

This contradiction establishes the theorem. �

4 Extrema of the first degree–based entropy

By Theorem 4, we know that G∗ must be isomorphic to some KaT graph. As an appli-

cation for the result, we shall discuss the maximum value of h(G) for a c-cycle graph G

with n vertices.
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n-4n-1 n-3

Figure 1. Graphs maximizing h(G) of c−cycle graphs G with n vertices

Case: c = 0. Since there is no cycle in KaT , a = 1 and d(v) = 1 for all v ∈ T . Clearly,

KaT =̃Sn=̃G∗, see Figure 1 (a).

Case: c = 1. A cycle in KaT graphs can only lie in Ka or between Ka and T . So if the

unique cycle lies in Ka, then a = 3 and d(v) = 1 for all v ∈ T ; otherwise, a = 2 and each

vertex in T has degree 1 except one of degree 2. Thus, there is a unique KaT graph with

degree sequence: (n− 1, 22, 1n−3). Figure 1 (b) shows the graph isomorphic to G∗.

Case: c = 2. When the same ideas are applied here, we get a unique degree sequence of

KaT : (n− 1, 3, 22, 1n−4). Then G∗ is isomorphic to Figure 1 (c).

As c gets larger, the number of non-isomorphic KaT graphs is increased. Therefore,

we have to find all possible KaT graphs and compare the values of h among these KaT

graphs to obtain the largest one. Table 1 lists the results for each c from 3 to 6.

In this way, we can get extremal graphs for any given (n,m) graph. However, it is

impractical because the enumeration of all possible sequences will get more difficult with

the increase of m. So we hope to find a further connection between the maximum value

and the structure of KaT graphs. Lots of examples show that the maximum graphs are

isomorphic to the KaT graphs such that a = 2 and d(v) ≤ 2 for each v ∈ T as m ≥ n+ 9,

but we still lack the appropriate methods to prove it, see the following conjecture.

Conjecture 6 Let G be an (m,n) graph, where m ≥ n + 9. Then h(G) ≤ h(G∗) if and

only if and the degree sequence of G∗ is (n− 1,m− n+ 2, 2m−n+1, 12n−m−3).
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Table 1. The maximum graphs of h values for c-cycle graphs.

c KaT graph degree sequence maximum

3

4

n-4 n-5

(d) c=3

n-4 n-6

(e) c=4
n-6 n-5 5n-7

(c) c=5
n-7

(b) c=6

n-6n-5 6n-8

6n-8

(a) c=7

n-6 n-8 n-7

(n− 1, 33, 1n−4)
(n− 1, 4, 23, 1n−5)

(n− 1, 33, 1n−4)

4

4

n-4 n-5

(e) c=3

n-5 n-6

(f) c=4
n-6 n-5 5n-7

(d) c=5
n-7

(c) c=6

n-6n-5 6n-8

6n-8

(b) c=7

n-6 n-8 n-7

(n− 1, 4, 32, 2, 1n−5)
(n− 1, 5, 24, 1n−6)

(n− 1, 5, 24, 1n−6)

5

4

n-4 n-5

(d) c=3

n-4 n-6

(e) c=4
n-6 n-5 5n-7

(c) c=5
n-7

(b) c=6

n-6n-5 6n-8

6n-8

(a) c=7

n-6 n-8 n-7

(n− 1, 5, 32, 22, 1n−6)
(n− 1, 42, 32, 1n−5)
(n− 1, 6, 25, 1n−7)

(n− 1, 42, 32, 1n−5)
(n− 1, 6, 25, 1n−7)

6

4

n-4 n-5

(d) c=3

n-4 n-6

(e) c=4
n-6 n-5 5n-7

(c) c=5
n-7

(b) c=6

n-6n-5 6n-8

6n-8

(a) c=7

n-6 n-8 n-7

(n− 1, 44, 1n−5)
(n− 1, 6, 32, 23, 1n−7)
(n− 1, 5, 4, 32, 2, 1n−6)

(n− 1, 7, 26, 1n−8)

(n− 1, 44, 1n−5)

Finally, we close this section by giving graphs that minimize h(G) for (n,m) graph G.

Theorem 7 Let G be an (n,m) graph. Then h(G) ≥ h(G) if and only if the degree

sequence of G is (2n−2, 12) for m = n − 1 and ((a + 3)2m−(a+2)n, (a + 2)(a+3)n−2m) for

(a+2)n
2

< m ≤ (a+3)n
2

, where a is a natural number from 0 to n− 4.

Proof. It follows directly from Theorem 5. �

5 Conclusion

In this paper, we have explored the extremal properties of the first degree-based graph

entropy and further characterized the structure of extremal graphs. As a direct result of

the structural characteristic, a method of seeking extremal results for any (n,m) graph

was given. In fact, this is only feasible in theory. With the increase of the graph size,

this enumeration for all possible KaT graphs isomorphic to the maximum graph seems

impractical. Obviously, we still need to have a deeper insight into the extremal properties

of the graph entropy. Also, similar structural features should be investigated for the

higher-order graph entropies.
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