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Abstract

The augmented Zagreb index (AZI index) is a degree-based molecular structure

descriptor that can be used for modelling thermodynamic properties of organic

chemical compounds. Motivated by its applicable potential, a series of investigations

have been carried out in the past several years. In this paper, we present several

sharp upper bounds on the AZI index of graphs with fixed parameters such as

the independence number, edge-connectivity, chromatic number respectively, and

characterize the corresponding extremal graphs.

1 Introduction

Topological indices (molecular structure descriptors) are numbers associated with chemi-

cal structures derived from their hydrogen–depleted graphs as a tool for compact and effec-

tive description of structural formulas which are used to study and predict the structure–

property correlations of organic compounds. Molecules and molecular compounds are

often modeled by molecular graph. Topological indices of molecular graphs are one of the

oldest and most widely used descriptors in QSPR/QSAR research [12,16].
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Let G be a simple connected graph with vertex set V (G) and edge set E(G). For

u ∈ V (G), N(u) denotes the set of its neighbors in G, and the degree of u is du = |N(u)|.

The closed neighbourhood N [u] of vertex u is given by N [u] = N(u)∪{u}. A great variety

of topological indices have been and are currently considered in theoretical chemistry

[17, 21, 25, 26, 28, 29]. Among which the augmented Zagreb index (AZI index for short) is

defined as

AZI(G) =
∑

uv∈E(G)

f(du, dv),

where f(du, dv) = ( dudv
du+dv−2)3.

This graph invariant was firstly introduced by Furtula et al. [15] as a topological

index, and it has been proven to be a valuable predictive index in the study of the

heat of formation in octanes and heptanes (see [15]), whose prediction power is better

than atom–bond connectivity index (please refer to [11, 14] for its research background).

Moreover, Gutman and Tos̆ovic̆ [19] tested the correlation abilities of 20 vertex-degree-

based topological indices for the case of standard heats of formation and normal boiling

points of octane isomers, and they found that the augmented Zagreb index yield the best

results.

Furtula et al. [15] have studied extremal properties of AZI index of trees and chemical

trees, they proved that among all trees the star has the minimum AZI index value. Huang

et al. [20] and Wang et al. [30] gave sharp lower and upper bounds for various classes of

connected graphs (e.g. trees, unicyclic graphs, bicyclic graphs, etc.) and characterized

corresponding extremal graphs. Zhan et al. [31], determined the minimal and the second

minimal AZI indices of the n-vertex unicyclic graphs. Additionally, they obtained the

n-vertex bicyclic graphs in which the AZI index attains its minimal value. Cruz et al. [9]

gave the maximal AZI index of trees with at most three branching vertices. Ali et al. [3]

gave the maximum AZI index of graphs with given vertex connectivity and matching

number.

The bounds of a descriptor are important information of a molecular graph in the

sense that they establish the approximate range of the descriptor in terms of molecular

structural parameters and many results concerning this topic can be found in [3,4,6–8,10,

13, 18, 22–24, 27, 32]. So, we pay our attention to upper bounds for AZI index of graphs

with some given parameter.

This paper is organized as follows. We first give some basic properties of AZI index

in Section 2. In Section 3, we present sharp upper bounds for AZI index of connected
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graphs with given independence number, and determine graphs for which these bounds

are best possible. In section 4, sharp upper bounds on the AZI index for connected

graphs with given chromatic number are obtained, and the corresponding extremal graphs

are characterized. In section 5, we determine sharp upper bounds for the AZI index

for connected graphs with given edge-connectivity, and characterize the corresponding

extremal graphs.

2 Preliminaries

In this section, we recall some definitions, notations and lemmas which will be used

throughout the paper.

For any S ⊂ V (G), we use G[S] to denote the induced graph of graph G. A set

S ⊆ E(G) is an edge–cut set of G, if G − S is disconnected. The number of edges in a

smallest edge–cut set of G is called the edge connectivity of a graph G and denoted by

λ(G). The vertex connectivity (commonly referred to as connectivity) κ(G) of a graph G

is the minimum number of vertices whose removal gives rise to a disconnected or trivial

graph. Let Kn and Kn1,n2,...,nt denote the complete graph of order n, the complete t-partite

graph with n1, n2, . . . , nt vertices in its t partite sets, respectively. G+ e denote the graph

obtained from G by inserting an edge e /∈ E(G).

Now, we introduce the concept of the complement of a graph.

Definition 2.1 [5] The complement of a graph G is a graph G on the same vertices such

that two vertices of G are adjacent if and only if they are not adjacent in G.

Definition 2.2 [5] For two vertex-disjoint graphs G and H, the join of G and H, denoted

by G+H, is a graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪E(H) ∪ {xy|x ∈

V (G), y ∈ V (H)}.

Lemma 2.3 [?] Let G be a connected graph of order n (n ≥ 3), and G � Kn. Then

AZI(G) < AZI(G+ e),

where e /∈ E(G).

Lemma 2.4 [?] Let G be a connected graph of order n (n ≥ 3). Then

AZI(G) ≤ n(n− 1)7

16(n− 2)3
,

with equality holding if and only if G ∼= Kn.
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Lemma 2.5 [?] Let G be a connected t-partite graph with n1, n2, . . . , nt vertices in its t

partite sets respectively, where n =
∑t

i=1 ni ≥ 3. Then

AZI(G) ≤
∑

1≤i<j≤t

ninj(n− ni)3(n− nj)3

(2n− ni − nj − 2)3
,

with equality holding if and only if G ∼= Kn1,n2,...,nt.

Lemma 2.6 Let

f(x, y) =

(
xy

x+ y − 2

)3

with positive integers x, y such that x+ y > 2, then f(x, y) is increasing with respect to x

if y ≥ 2; f(x, y) is increasing with respect to y if x ≥ 2.

Proof: If y ≥ 2 is fixed, then it is easily seen that

∂f(x, y)

∂x
= 3

(
xy

x+ y − 2

)2
y(y − 2)

(x+ y − 2)2
≥ 0,

and thus f(x, y) is increasing for x. By the symmetry of f(x, y), we can prove f(x, y) is

increasing with respect to y if x ≥ 2.

This completes the proof.

3 Sharp upper bounds for AZI index of graphs with

given independence number

Let us denote by Γn,α the collection of all connected graphs with n ≥ 3 vertices and

independence number α. In this section, we will present upper bounds on the AZI index

among all graphs in the collection Γn,α.

Firstly, we introduce the concept of the independence number of a graph.

Definition 3.1 [5] A subset S ⊂ V (G) is called an independent set of G if no two

vertices of S are adjacent in G. An independent set S is called a maximum independent

set if G has no independent set S ′ with |S ′| > |S|. The independence number of G, α(G),

is the number of vertices in a maximum independent set of G.

Theorem 3.2 Let G ∈ Γn,α. Then

AZI(G) ≤ α(n− α)

(
(n− α)(n− 1)

2n− α− 3

)3

+
(n− α)(n− α− 1)

16

(
(n− 1)2

n− 2

)3

,

the equality holds if and only if G ∼= Kα +Kn−α.
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Proof: Suppose that G∗ is the graph with the maximum AZI index among all graphs in

the collection Γn,α. Let S be a maximum independent set in G∗ satisfies that |S| = α.

By Lemmas 2.3, 2.4, we know that adding edges to a graph will increase its AZI index.

Then, each vertex in S is adjacent to every vertex in G∗ − S, and the induced graph

G[G∗ − S] is the complete graph Kn−α. Hence, we know that G∗ ∼= Kα + Kn−α. So, we

have

AZI(G∗) = α(n− α)f(n− 1, n− α) +
(n− α)(n− α− 1)

2
f(n− 1, n− 1)

= α(n− α)

(
(n− α)(n− 1)

2n− α− 3

)3

+
(n− α)(n− α− 1)

2

(
(n− 1)(n− 1)

2n− 4

)3

.

This completes the proof.

4 Sharp upper bounds for AZI index of graphs with

given chromatic number

Let us denote by Ωn,χ the collection of all connected graphs with n ≥ 3 vertices and

chromatic number χ(G) ≥ 1. In this section we consider the maximum AZI index of

graphs over the set Ωn,χ.

A (vertex) colouring of a graph G is a mapping c : V (G) → S. The elements of S

are called colours; the vertices of one colour form a colour class. If |S| = k, we say that

c is a k-colouring (often we use S = {1, 2, · · · , k}). A colouring is proper if adjacent

vertices have different colours. A graph is k-colourable if it has a proper k-colouring. The

chromatic number χ(G) is the least k such that G is k–colourable. A p-clique in G is a

complete subgraph of G on p vertices.

Let Tn,l denote a complete l-partite graph of order n with |ni − nj| ≤ 1, where ti,

i = 1, 2, · · · , l is the number of vertices in the ith partition set of Tn,l.

The next inequality, known as Cauchy–Schwarz inequality [2], plays an important role

in the next section.

Lemma 4.1 (Cauchy–Schwarz inequality) [2] For all vectors −→x and −→y of a real inner

product space,

|〈−→x ,−→y 〉| ≤ ‖−→x ‖ · ‖−→y ‖

where 〈−→x ,−→y 〉 is the inner product. Equality hold if and only if the vectors −→x and −→y are

linearly dependent.
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Firstly, we give the sharp upper bound for AZI index of a graph with χ = 2.

Theorem 4.2 Let G ∈ Ωn,2 be a connected graph of order n with chromatic number

χ = 2. Then

(i) If n is even, then AZI(G) ≤ n2

4

(
n2

4(n−2)

)3
if and only if G ∼= Tn,2;

(ii) If n is odd, then AZI(G) ≤ n2−1
4

(
n2−1
4(n−2)

)3
if and only if G ∼= Tn,2.

Proof: Assume that G∗ is the graph with the maximum AZI index among all graphs

of order n with chromatic number χ = 2. It is obvious that the vertex set V (G∗) can

be divided into two independent sets V1 and V2. By Lemma 2.3, we know that adding

edges to a graph will increase its AZI index. Then, each vertex in V1 is adjacent to every

vertex in V2. Denote |V1| = n1, |V2| = n2, respectively. Consequently, we know that

G∗ ∼= Kn1 + Kn2 . Assuming, without loss of generality, that n2 ≥ n1 ≥ 1, we claim that

|n2 − n1| ≤ 1 (note that in this case G ∼= Tn,2).

Otherwise, if n2 ≥ n1 + 2, let graph G′ ∼= Kn1+1 +Kn2−1. Then

AZI(G′)− AZI(G∗) = (n1 + 1)(n2 − 1)f(n1 + 1, n2 − 1)− n1n2f(n1, n2)

=
((n1 + 1)(n2 − 1))4

(2n− n1 − n2 − 2)3
− (n1n2)

4

(2n− n1 − n2 − 2)3

=
[(n1 + 1)2(n2 − 1)2 − n2

1n
2
2][(n1 + 1)2(n2 − 1)2 + n2

1n
2
2]

(2n− n1 − n2 − 2)3
.

Combining the fact that (n1 + 1)(n2 − 1)− n1n2 = n2 − n1 − 1 > 0, we have

AZI(G′)− AZI(G∗) > 0,

a contradiction. So, G ∼= Tn,2.

This completes the proof.

In the following theorem, we give the maximum AZI index among all graphs of order

n with chromatic number χ ≥ 3 such that the order n is divisible by χ.

Theorem 4.3 Let G ∈ Ωn,χ, the chromatic number χ ≥ 3 and χ divides n. Then

AZI(G) ≤ n8(χ− 1)7

16χ4(nχ− n− χ)3
,

the equality holds if and only if G ∼= Tn,χ;
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Proof: Assume that G∗ is the graph with the maximum AZI index among all graphs of

order n with chromatic number χ ≥ 3 and χ divides n. Let c be a proper colouring of G∗

with colours 1, 2, · · · , χ. For 1 ≤ i ≤ χ, let Si be the independent set of vertices coloured

i and let ni = |Si|. From Lemma 2.3 it is apparent that the AZI index gets increased

if one adds edges between all pairs of nonadjacent vertices in the part of G∗ induced by

nonpendant vertices. Therefore, in this case the graph G∗ is necessarily isomorphic to

the connected χ-partite graph Kn1,n2,...,nχ with n1, n2, . . . , nχ vertices in its χ partite sets

respectively, where n =
∑χ

i=1 ni ≥ 3. Furthermore, by Lemma 2.5, we get

AZI(G) ≤ AZI(Kn1,n2,...,nχ)

=
∑

1≤i<j≤χ

ninj(n− ni)3(n− nj)3

(2n− ni − nj − 2)3

=
∑

1≤i<j≤χ

ninj
(2n− ni − nj − 2)3

(n− ni)3(n− nj)3.

(4.1)

Let

xij =
ninj

(2n− ni − nj − 2)3
, yij = (n− ni)3(n− nj)3

Note that the right-hand side of equation (4.1) is equivalent to the inner product

〈−→x ,−→y 〉 of vectors −→x := (xij)i<j and −→y := (yij)i<j of dimension (χ2 ). Thus, by the

Cauchy–Schwarz inequality,

AZI(G) ≤ |〈−→x ,−→y 〉| ≤ ‖−→x ‖ · ‖−→y ‖, (4.2)

and the equality |〈−→x ,−→y 〉| = ‖−→x ‖ · ‖−→y ‖ in (4.2) holds if and only if −→x and −→y are linearly

dependent, that is, if and only if −→x = µ−→y holds for some scalar µ 6= 0. Hence, if and

only if

µ =
xij
yij

=
ninj

(2n− ni − nj − 2)3
· 1

(n− ni)3(n− nj)3

for each pair of indices i < j.

So, for any i, j, k such that 1 ≤ i < j < k ≤ χ, it follows from µ =
xij
yij

= xik
yik

that

nj(n− nk)3(2n− ni − nk − 2)3 = nk(n− nj)3(2n− ni − nj − 2)3. (4.3)

We claim that nj = nk must hold. If not, without loss of generality, we assume that

nj > nk, we have n− nk > n− nj and

2n− ni − nk − 2 > 2n− ni − nj − 2.

Hence, the left-hand side of (4.3) is strictly greater than the right-hand side of it, a

contradiction.

-263-



Since i, j, k were chosen arbitrarily, it follows that n1 = n2 = . . . = nχ. Combining

the fact that n =
∑χ

i=1 ni, we know that ni = n
χ

for all i = 1, 2, · · · , χ. In this case, we

compute ‖−→x ‖, ‖−→y ‖ at ni = n
χ
.

‖−→y ‖ =

√ ∑
1≤i<j≤χ

(n− ni)6(n− nj)6 =

√ ∑
1≤i<j≤χ

(n− n

χ
)12

=

√
(χ2 )

(
n− n

χ

)12

=
n6(χ− 1)6

χ6

√
χ(χ− 1)

2
.

‖−→x ‖ =

√√√√ ∑
1≤i<j≤χ

(
ninj

(2n− ni − nj − 2)3

)2

=

√√√√ ∑
1≤i≤j≤χ

(n
χ
)4

(2n− 2n
χ
− 2)6

=

√
(χ2 )

(n
χ
)4

(2n− 2n
χ
− 2)6

=
n2χ

8(nχ− n− χ)3

√
χ(χ− 1)

2
.

Thus,

AZI(G) ≤ ‖−→x ‖ · ‖−→y ‖ =
n8(χ− 1)7

16χ4(nχ− n− χ)3
,

as desired.

This completes the proof.

Next, we fix our attention on finding upper bound for AZI index of graphs with n

vertices and any arbitrary chromatic number χ ≥ 3. To proceed, we need some known

results.

Lemma 4.4 [20] Let G be a connected graph with m ≥ 2 edges and maximum degree

∆ ≥ 2. Then

AZI(G) ≤ m∆6

8(∆− 1)3

with equality holding if and only if G is a path or a ∆-regular graph.

Lemma 4.5 (Turán’s theorem) [1] Let G be a graph of order n, size m, without p-clique,

p ≥ 2. Then

m ≤ (1− 1

p− 1
)
n2

2
.

Theorem 4.6 Let G be a connected graph of order n with chromatic number χ ≥ 3, and

the maximum degree ∆ ≥ 2. Then

AZI(G) ≤ n2∆6(χ− 1)

16(∆− 1)3χ
.
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Proof: Using Lemma 4.5 on the maximum size of a graph with chromatic number χ ≥ 3,

we get

m ≤ n2(χ− 1)

2χ
.

Combing the above inequality and Lemma 4.4, we deduce

AZI(G) ≤ n2∆6(χ− 1)

16(∆− 1)3χ
.

This completes the proof.

5 Sharp upper bounds for AZI index of graphs with

given edge-connectivity

For convenience, we use Λn,λ to denote the set of connected graphs of order n ≥ 3 and

edge-connectivity λ ≥ 1. In this section, we determine the maximal values of AZI indices

of graphs over the collection of graphs Λn,λ.

For positive integers n(n ≥ 3) and k(k ≥ 1), let Kn(k) be the graph on n vertices

obtained by attaching one vertex to exactly k vertices of Kn−1. It is easy to see that

Kn(k) has edge-connectivity k. An illustration of K7(3) is depicted in Figure 5.1.

Figure 5.1. Graph K7(3) with edge-connectivity 3.

Firstly, we give a lemma which will be useful in our main result.

Lemma 5.1 Let

l(n, x) = λf(x, n− 1) +
x(x− 1)

2
f(n− 1, n− 1) + x(n− x− 1)f(n− 1, n− 2)

+
(n− x− 1)(n− x− 2)

2
f(n− 2, n− 2)

be a function with positive integers n(n ≥ 6) and x such that 2 ≤ x ≤ n
2
− 1. Then

l(n, x) ≥ l(n, 2) = 16 +
(n− 1)6

2(n− 2)3
+

2(n− 3)(n− 1)3(n− 2)3

(2n− 5)3
+

(n− 4)(n− 2)6

16(n− 3)2
.
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Proof: For fixed n(n ≥ 6), it is easily seen that

∂l(n, x)

∂x
=
x3(4n+ x− 12)(n− 1)3

(n+ x− 3)4
+

(2x− 1)(n− 1)6

16(n− 2)3

+
(n− 2x− 1)(n− 1)3(n− 2)3

(2n− 5)3
+

(3 + 2x− 2n)(n− 2)6

16(n− 3)3
,

and
∂2l(n, x)

∂x2
=

12x2(n− 3)2(n− 1)3

(n+ x− 3)5

+
1

8(n− 2)3(n− 3)3(2n− 5)3
((n− 1)6(n− 3)3(2n− 5)3

−16(n− 1)3(n− 2)6(n− 3)3 + (n− 2)9(2n− 5)3)

>
1

8(n− 2)3(n− 3)3(2n− 5)3
((n− 1)6(n− 3)3(2n− 5)3

−16(n− 1)3(n− 2)6(n− 3)3 + (n− 2)9(2n− 5)3) > 0.

Thus ∂l(n,x)
∂x

is increasing for x, i.e.,

∂l(n, x)

∂x
≥ ∂l(n, x)

∂x
|x=2 =

16(2n− 5)

n− 1
+

3(n− 1)6

16(n− 2)3

+
(n− 5)(n− 1)3(n− 2)3

(2n− 5)3
− (2n− 7)(n− 2)6

16(n− 3)3

=
1

16(n− 1)(n− 2)3(n− 3)3(2n− 5)3
(28(2n− 5)4(n− 2)3(n− 3)3+

3(n− 1)7(n− 3)3(2n− 5)3 + 16(n− 5)(n− 1)4(n− 2)6(n− 3)3

−(n− 1)(n− 2)9(2n− 5)3(2n− 7)) > 0,

and thus l(n, x) is increasing for x. So, we have

l(n, x) ≥ l(n, 2) = 16 +
(n− 1)6

8(n− 2)3
+

2(n− 3)(n− 1)3(n− 2)3

(2n− 5)3

+
(n− 4)(n− 2)6

16(n− 3)2
.

This completes the proof.

Theorem 5.2 Let G ∈ Λn,λ. Then

AZI(G) ≤ λ4
(

n− 1

n+ λ− 3

)3

+ λ(n− λ− 1)

(
(n− 1)(n− 2)

2n− 5

)3

+
λ(λ− 1)

16

(
(n− 1)2

n− 2

)3

+
(n− λ− 1)(n− λ− 2)

16

(
(n− 2)2

n− 3

)3

,

the equality holds if and only if G ∼= Kn(λ).
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Proof: Many thanks to the reviewer of this paper pointed out that this bound about the

edge-connectivity is a special case of a more general result of Theorem 3.6 and Corollary

3.7 in [7]. We note the authors in [7] obtained the maximum AZI index of graphs with

given λ(G) via the well-known inequality that κ(G) ≤ λ(G) for any connected graph

G. And we give a different way to get the maximum AZI index of graphs with given

edge-connectivity λ(G) ≥ 1, so, we here would like to retain the whole proof.

Assume that G∗ is the graph with the maximum AZI index over the set Λn,λ. We

distinguish two cases:

Case 1 If λ = 1, First, suppose G∗ contains a vertex of degree 1, say v. Let G′ :=

G∗ − {v}. Then by Lemma 2.3 and by the assumption of G∗, we see that G′ is the

complete graph on n − 1 vertices; for otherwise, there must exist two nonadjacent

vertices x, y in G′ such that the graph G∗ + {xy} has edge-connectivity 1 and

AZI(G∗ + {xy}) > AZI(G∗), a contradiction. This implies that G∗ ∼= Kn(1),

and hence the assertion holds.

So we may assume that every vertex in G∗ has degree at least 2. Let e be a cut-edge

in G∗. Then G∗ − {e} has exactly two components, say G1 and G2. By Lemma 2.3

and by the assumption of G∗, we have both G1 and G2 as complete graphs. Let ni

be the number of vertices in Gi (for i = 1, 2), then n = n1 + n2. Without loss of

generality, we may assume n2 ≥ n1. Since G∗ has minimum degree at least 2, we

have n2 ≥ n1 ≥ 3 and hence n ≥ 6. We now show that the maximum AZI index

cannot be achieved in this case.

On one hand, by Lemma 2.6 and combining the fact that n2 ≥ n1 ≥ 3, we have

AZI(G∗) = (n1 − 1)f(n1, n1 − 1) +
(n1 − 1)(n1 − 2)

2
f(n1 − 1, n1 − 1)

+(n2 − 1)f(n2, n2 − 1) +
(n2 − 1)(n2 − 2)

2
f(n2 − 1, n2 − 1) + f(n1, n2)

≤ n1(n1 − 1)

2
f(n1, n1 − 1) +

n2(n2 − 1)

2
f(n2, n2 − 1) + f(n1, n2)

≤ n2(n2 − 1)

2
f(n2, n2 − 1) +

n2(n2 − 1)

2
f(n2, n2 − 1) + f(n1, n2)

= n2(n2 − 1)

(
n2(n2 − 1)

2n2 − 3

)3

+ f(n1, n2)

≤ n4
2(n2 − 1)4

(2n2 − 3)3
+

n6
2

(n− 2)3
.
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On the other hand, from Lemma 2.6, we have

AZI(Kn(1)) = f(1, n− 1) + (n− 2)f(n− 1, n− 2) +
(n− 2)(n− 3)

2
f(n− 2, n− 2)

≥ f(1, n− 1) + (n− 2)f(n− 2, n− 2) +
(n− 2)(n− 3)

2
f(n− 2, n− 2)

= f(1, n− 1) +
(n− 1)(n− 2)

2
f(n− 2, n− 2)

=

(
n− 1

n− 2

)3

+
(n− 1)(n− 2)7

16(n− 3)3
.

In the next, we will prove that the inequality(
n− 1

n− 2

)3

+
(n− 1)(n− 2)7

16(n− 3)3
>
n4
2(n2 − 1)4

(2n2 − 3)3
+

n6
2

(n− 2)3
,

holds for 3 ≤ n2 ≤ n
2

and n ≥ 6.

Let

h(n, n2) =

(
n− 1

n− 2

)3

+
(n− 1)(n− 2)7

16(n− 3)3
− n4

2(n2 − 1)4

(2n2 − 3)3
− n6

2

(n− 2)3

with 3 ≤ n2 ≤ n
2
. Since

∂h(n, n2)

∂n2

= −2n3
2(n2 − 1)3(5n3

2 − 13n2 + 6)

(2n2 − 3)4
− 6n5

2

(n− 2)3
< 0,

we know that h(n, n2) is decreasing with respect to n2 for n ≥ 6 and 3 ≤ n2 ≤ n
2
.

We now discuss two subcases to finish the proof.

Subcase 1.1 If n(n ≥ 6) is even, then

h(n, n2) ≥ h(n,
n

2
) =

1

28(n− 2)3(n− 3)3
(28(n− 1)3(n− 3)3+

16(n− 1)(n− 2)10 − 4n6(n− 3)3 − n4(n− 2)7) > 0.

As a consequence we have

AZI(Kn(1))− AZI(G∗) ≥ h(n, n2) > 0,

a contradiction.

Subcase 1.2 If n(n ≥ 6) is odd, then

h(n, n2) ≥ h(n,
n− 1

2
) =

1

28(n− 2)3(n− 3)3(n− 4)3
(28(n− 1)3(n− 3)3

(n− 4)3 + 16(n− 1)(n− 2)10(n− 3)3(n− 4)3 − (n− 1)3(n− 3)7
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−4(n− 1)6(n− 3)3(n− 4)3) > 0.

So, we have

AZI(Kn(1))− AZI(G∗) ≥ h(n, n2) > 0,

a contradiction.

From above discussions, we know that G∗ ∼= Kn(1).

Case 2 If λ ≥ 2, There exists an edge-cut set S = {e1, e2, · · · , nλ} in G∗. Let G1, G2 be

the two components in G∗ − S. By Lemmas 2.3, 2.4, we know that G1 and G1 are

both complete graphs. Let ni = |V (Gi)|, i = 1, 2, then n1 + n2 = n.

Without loss of generality, let n2 ≥ n1. If n1 = 1, then G∗ ∼= Kn. Otherwise,

n2 ≥ n1 ≥ λ since G∗ has minimum degree at least λ.

First, suppose G∗ contains a vertex of degree λ, say v. Let N(v) = {v1, v2, · · · , vλ}.
Denote A = V (G∗) − N [v]. If the induced subgraph G[N(v) ∪ A] is the complete

graph Kn−1, then G ∼= Kn(λ) as claimed. Otherwise, there must exist two nonad-

jacent vertices x, y ∈ V (G∗) such that xy ∈ E(G[N(v) ∪ A]) and the graph G∗+ xy

has edge–connectivity λ, by Lemma 2.3, we know that AZI(G∗ + xy) > AZI(G∗),

a contradiction.

So we may assume that every vertex in G∗ has degree at least λ + 1. Then n2 ≥
n1 ≥ λ + 1 ≥ 3. We now prove that maximum AZI index cannot be obtained in

this case.

On one hand, by Lemma 2.6, we have

AZI(G∗) <
n1(n1 − 1)

2
f(n1 − 1, n1 − 1) +

n2(n2 − 1)

2
f(n2 − 1, n2 − 1)

+λf(n1, n2)

≤ n1(n1 − 1)

2
f(n1, n1 − 1) +

n2(n2 − 1)

2
f(n2, n2 − 1) + λf(n1, n2)

≤ n2(n2 − 1)

2
f(n2, n2 − 1) +

n2(n2 − 1)

2
f(n2, n2 − 1) + λf(n1, n2)

= n2(n2 − 1)

(
n2(n2 − 1)

2n2 − 3

)3

+ λf(n1, n2)

≤ n4
2(n2 − 1)4

(2n2 − 3)3
+

λn6
2

(n− 2)3
.

On the other hand, by Lemma 5.1 we have

AZI(Kn(λ)) = λf(λ, n− 1) +
λ(λ− 1)

2
f(n− 1, n− 1)

+λ(n− λ− 1)f(n− 1, n− 2) +
(n− λ− 1)(n− λ− 2)

2
f(n− 2, n− 2)
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= l(n, λ) ≥ l(n, 2)

= 16 +
(n− 1)6

8(n− 2)3
+

2(n− 3)(n− 1)3(n− 2)3

(2n− 5)3
+

(n− 4)(n− 2)6

16(n− 3)2
.

By the assumption of G∗, to derive a contradiction, it suffices to show the inequality

l(n, 2) >
n4
2(n2 − 1)4

(2n2 − 3)3
+

λn6
2

(n− 2)3
(5.1)

holds for 3 ≤ λ+ 1 ≤ n2 ≤ n
2
, 2 ≤ λ ≤ n

2
− 1.

Let

g(n, λ, n2) =
n4
2(n2 − 1)4

(2n2 − 3)3
+

λn6
2

(n− 2)3

with 2 ≤ λ ≤ n
2
− 1. Since

∂g(n, λ, n2)

∂λ
=

n6
2

(n− 2)3
> 0,

we know that g(n, λ, n2) is increasing with respect to λ for n ≥ 6 and 2 ≤ λ ≤ n
2
−1.

We distinguish two subcases.

Subcase 2.1 If n(n ≥ 6) is even,

g(n, λ, n2) ≤ g(n,
n

2
− 1, n2) =

n4
2(n2 − 1)4

(2n2 − 3)3
+

n6
2

2(n− 2)2
.

Since

∂g(n, n
2
− 1, n2)

∂n2

=
2n3

2(n2 − 1)3(5n2
2 − 13n2 + 6)

(2n2 − 3)4
+

6n5
2

2(n− 2)2
> 0,

we know that g(n, n
2
− 1, n2) is increasing with respect to n2 for 3 ≤ λ+ 1 ≤ n2 ≤ n

2

and n ≥ 6. It means that

g(n,
n

2
− 1, n2) ≤ g(n,

n

2
− 1,

n

2
) =

n4(n− 2)4

28(n− 3)3
+

n6

27(n− 2)2
.

It is easy to check that

l(n, 2)− g(n,
n

2
− 1,

n

2
) =

1

28(n− 2)2(n− 3)3(2n− 5)3

(212(n− 2)2(n− 3)3(2n− 5)3 + 25(n− 1)6(n− 3)3(2n− 5)3

+29(n− 3)4(n− 1)3(n− 2)6 + 16(n− 4)(n− 3)(n− 2)9(2n− 5)3

−n4(n− 2)7(2n− 5)3 − 2n6(n− 2)(n− 3)3(2n− 5)3) > 0.

The above inequality implies that

l(n, λ) ≥ l(n, 2) > g(n,
n

2
− 1,

n

2
) ≥ g(n, λ, n2).

Hence, we have

AZI(Kn(λ))− AZI(G∗) ≥ l(n, λ)− g(n, λ, n2) > 0,

a contradiction.
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Subcase 2.2 If n(n ≥ 6) is odd, as the same in the case 2.1, we know that g(n, λ, n2) is

increasing with respect to λ for n ≥ 6 and 2 ≤ λ ≤ n−1
2
− 1, i.e.,

g(n, λ, n2) ≤ g(n,
n− 1

2
− 1, n2) =

n4
2(n2 − 1)4

(2n2 − 3)3
+

(n− 3)n6
2

2(n− 2)3
.

It is shown that g(n, n−1
2
− 1, n2) is increasing with respect to n2 for 3 ≤ λ + 1 ≤

n2 ≤ n−1
2

and n ≥ 6 from the fact that

∂g(n, n−1
2
− 1, n2)

∂n2

=
2n3

2(n2 − 1)3(5n2
2 − 13n2 + 6)

(2n2 − 3)4
+

6(n− 3)n5
2

2(n− 2)2
> 0,

i.e.,

g(n,
n− 1

2
− 1, n2) ≤ g(n,

n− 1

2
− 1,

n− 1

2
) =

(n− 1)4(n− 3)4

28(n− 4)3
+

(n− 3)(n− 1)6

27(n− 2)2
.

It is easy to check that

l(n, 2)− g(n,
n− 1

2
− 1,

n− 1

2
) =

1

28(n− 2)3(n− 3)3(n− 4)3(2n− 5)3

((n− 4)3(212(n− 2)2(n− 3)3(2n− 5)3 + 25(n− 1)6(n− 3)3(2n− 5)3

+29(n− 3)4(n− 1)3(n− 2)6 + 16(n− 4)(n− 3)(n− 2)9(2n− 5)3)

−(n− 1)4(n− 2)3(n− 3)7(2n− 5)3− 2(n− 1)6(n− 2)(n− 3)4(n− 4)3(2n− 5)3) > 0.

As a consequence we have

l(n, λ) ≥ l(n, 2) > g(n,
n− 1

2
− 1,

n− 1

2
) ≥ g(n, λ, n2),

and hence

AZI(Kn(λ))− AZI(G∗) ≥ l(n, λ)− g(n, λ, n2) > 0,

a contradiction.

From above two cases, we know that G∗ ∼= Kn(λ), λ ≥ 1.

This completes the proof.

It is well known that the class of k–vertex–connected graphs is a subclass of the class

of k–edge–connected graphs where k ≥ 1, and it is obvious that Kn(k) is a k–vertex–

connected graph, it can be concluded from Theorem 5.2 that a graph that maximizes the

AZI index among all k–edge–connected graphs also maximizes the AZI index among all

k–vertex–connected graphs.

Corollary 5.3 Let G be a graph with the maximum AZI index among all graphs with n

vertices and vertex–connectivity κ ≥ 1. Then, G ∼= Kn(κ).
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6 Conclusion

In this paper, we give the sharp upper bounds for the AZI indices of graphs in terms

of their fixed parameters such as independence number, chromatic number and edge-

connectivity. As future work, it would be interesting to find the sharp upper bounds for

AZI index among all graphs of order n with chromatic number χ ≥ 3 where n is not

divisible by χ.
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