# A Note on Minimal Augmented Zagreb Index of Tricyclic Graphs of Fixed Order 

Akbar Ali<br>Department of Mathematics, Faculty of Science, University of Ha'il, Ha'il, Saudi Arabia akbarali.maths@gmail.com

(Received June 11, 2020)


#### Abstract

Let $G$ be a graph containing no component isomorphic to the path graph of order 2. Denote by $d_{u}$ the degree of an arbitrary vertex $u$ of $G$. The augmented Zagreb index $(A Z I)$ of $G$ is the sum of the weights $\left(d_{u} d_{v} /\left(d_{u}+d_{v}-2\right)\right)^{3}$ over all edges $u v$ of $G$. In this note, the unique graph with minimal $A Z I$ is characterized from the class of all connected tricyclic graphs of order $n$ for every $n \geq 6$, where a connected tricyclic graph of order $n$ is a connected graph of order $n$ and size $n+2$ with $n \geq 4$. The obtained result gives a partial solution to a problem posed in the recent paper [W. Lin, D. Dimitrov, R. Škrekovski, Complete characterization of trees with maximal augmented Zagreb index, MATCH Commun. Math. Comput. Chem. 83 (2020) 167-178].


## 1 Introduction and statement of the main result

All the graphs discussed in this note are finite, and they contain neither any loop nor multiple edges. The vertex set and edge set of a graph $G$ are denoted by $V(G)$ and $E(G)$, respectively. The degree of a vertex $u \in V(G)$ is denoted by $d_{u}$. The edge of $G$, connecting the vertices $u$ and $v$ is denoted by $u v$. An $n$-vertex graph is a graph of order $n$. The minimum number of edges of a graph $G$ whose removal makes $G$ acyclic (graph containing no cycle) is its cyclomatic number. If $t$ is a positive integer then by a $t$-cyclic graph, we mean a graph with cyclomatic number $t$. We call 1-cyclic, 2-cyclic and 3-cyclic
graphs as unicyclic, bicyclic and tricyclic graphs, respectively. (It needs to be mentioned here that according to some authors, unicyclic, bicyclic and tricyclic graphs are always connected but according to some other authors (see for example $[6,19]$ ) and to our stated definition of these graphs, such graphs may or may not be connected.) The (chemical) graph theoretical notation and terminology that are not defined in this note can be found in some standard relevant textbooks, like $[4,5,12,20]$.

A graph invariant $I$ is a numerical quantity associated with a graph $G$ satisfying the equation $I(G)=I\left(G^{\prime}\right)$ for every graph $G^{\prime}$ isomorphic to $G$. The graph invariants that found some applications in chemistry are usually known as the topological indices. The augmented Zagreb index (AZI), introduced by Furtula et al. [8], is one of the graph invariants that have found considerable chemical applications - see for example the references $[8,9,11,13,17]$ for the chemical applicability of $A Z I$. For a graph $G$ containing no component isomorphic to the 2 -vertex path graph, this topological index is defined as

$$
A Z I(G)=\sum_{u v \in E(G)}\left(\frac{d_{u} d_{v}}{d_{u}+d_{v}-2}\right)^{3} .
$$

Because of the several chemical applications of $A Z I$, its mathematical properties have been studied extensively in many papers, see for example some recent ones [7,10,15,16,18], recent review [3] (where the extremal results and bounds concerning this index have been summarized) and relevant references listed therein.

Furtula et al. [8] proved that the start graph $S_{n}$ is the unique graph with minimal $A Z I$ among all $n$-vertex trees for every $n$ greater than 3 . In the papers [14, 21], it was shown independently that the graph obtained from $S_{n}$ by adding one edge or two nonadjacent edges is the only graph having minimal $A Z I$ in the class of all $n$-vertex connected unicyclic or bicyclic graphs, respectively, for every $n$ greater than 5. Recently, Lin et al. [16] posed a problem of finding graph(s) having minimal $A Z I$ among all $n$-vertex graphs of size $m$ for $m \geq n+2$. The main purpose of the present note is to solve the aforementioned problem of Lin et al. for the $n$-vertex connected tricyclic graphs (that are actually the $n$-vertex connected graphs of size $n+2$ ) when $n \geq 6$.

Note that most of the topological indices for which star $S_{n}$ has maximal/minimal values in the class of all $n$-vertex trees, their maximal/minimal values in the class of all $n$ vertex connected unicyclic/bicyclic/tricyclic graphs are usually attained by the graph(s) that can be deduced from $S_{n}$ by adding one/two/three edge(s), respectively, in some
specific way. Thus, at first sight, it was guessed that the graph with minimal $A Z I$ among all $n$-vertex connected tricyclic graphs would be the graph deduced from $S_{n}$ by adding three edges in some specific way, but surprisingly that guess was wrong as it can be seen from the following main result of this note.

Theorem 1. If $n$ is a fixed integer greater than 5 then $G_{n}^{*}$ is the unique graph with minimal AZI among all n-vertex connected tricyclic graphs, where the graph $G_{n}^{*}$ is depicted in Figure 1.


Figure 1. The $n$-vertex graph $G_{n}^{*}$ where $n \geq 6$.

The following corollary is an immediate consequence of Theorem 1.
Corollary 1. For $n \geq 6$, if $G$ is an $n$-vertex connected tricyclic graph then

$$
A Z I(G) \geq(n-6)\left(\frac{n-2}{n-3}\right)^{3}+64
$$

with equality if and only if $G$ is isomorphic to the graph $G_{n}^{*}$ shown in Figure 1.

## 2 Proof of Theorem 1

In order to prove Theorem 1, we firstly prove some lemmas.
Lemma 2. If $G$ is a graph of size $m$ and minimum degree at least 2 such that it does not contain any component isomorphic to the 2-vertex path graph, then

$$
A Z I(G) \geq 8 m
$$

with equality if and only if at least one end-vertex of every edge of $G$ has degree 2.
Proof. For $x \geq 2$ and $y \geq 2$, note that the function $f$ defined by $f(x, y)=(x y / x+y-2)^{3}$, is increasing in both $x$ and $y$ in the interval $[2, \infty)$. Clearly, if $x$ and $y$ are integers greater than 1 then the output value of $f$ is equal to $f(2,2)$ if and only if at least one of $x$ and $y$ is 2 . Now, the desired result follows from the definition of $A Z I$.

Lemma 3. For $n \geq 6$, if $G$ is an $n$-vertex connected tricyclic graph of minimum degree at least 2 then

$$
A Z I(G) \geq(n-6)\left(\frac{n-2}{n-3}\right)^{3}+64
$$

with equality if and only if $G$ is isomorphic to the graph $G_{n}^{*}$ depicted in Figure 1.
Proof. Firstly, we assume that $n>6$. Since the size of $G$ is $n+2$, from Lemma 2 it follows that

$$
\begin{equation*}
A Z I(G) \geq 8(n+2) \tag{1}
\end{equation*}
$$

Since $n>6$, it holds that

$$
(n-6)\left(8-\left(\frac{n-2}{n-3}\right)^{3}\right)>0
$$

which is equivalent to

$$
8(n+2)>(n-6)\left(\frac{n-2}{n-3}\right)^{3}+64
$$

and hence from (1) it follows that

$$
A Z I(G)>(n-6)\left(\frac{n-2}{n-3}\right)^{3}+64
$$


64.0000

71.6250

79.0386

73.2146

74.9630

80.9531

77.5625

75.6480

79.0386

77.5625

77.5625

Figure 2. All non-isomorphic 6-vertex connected tricyclic graphs of minimum degree at least 2 together with their approximated $A Z I$.

This completes the proof when $n>6$. The required result, for the case $n=6$, follows from Figure 2 where all the non-isomorphic 6 -vertex connected tricyclic graphs of minimum degree at least 2 , together with their approximated $A Z I$, are depicted.

Lemma 4. For $n \geq 6$, if $G$ is an n-vertex connected tricyclic graph of maximum degree $n-1$ then

$$
A Z I(G)>(n-6)\left(\frac{n-2}{n-3}\right)^{3}+64
$$



Figure 3. All possible non-isomorphic connected tricyclic graphs of order $n$ and maximum degree $n-1$, where $n \geq 6$ (this figure is taken from [1]). Note that $G_{1}$ exists if and only if $n \geq 7$.

Proof. For $n \geq 6$, note that the graphs $G_{1}, G_{2}, \cdots, G_{5}$ depicted in Figure 3 are the only possible non-isomorphic connected tricyclic graphs of order $n$ and maximum degree $n-1$. Simple calculations yield

$$
\begin{gathered}
A Z I\left(G_{1}\right)=(n-7)\left(\frac{n-1}{n-2}\right)^{3}+72, \quad(\text { if } n \geq 7) \\
A Z I\left(G_{2}\right)=(n-6)\left(\frac{n-1}{n-2}\right)^{3}+27\left(\frac{n-1}{n}\right)^{3}+56, \\
A Z I\left(G_{3}\right)=(n-5)\left(\frac{n-1}{n-2}\right)^{3}+54\left(\frac{n-1}{n}\right)^{3}+\frac{2777}{64}, \\
A Z I\left(G_{4}\right)=(n-5)\left(\frac{n-1}{n-2}\right)^{3}+64\left(\frac{n-1}{n+1}\right)^{3}+48,
\end{gathered}
$$

and

$$
A Z I\left(G_{5}\right)=(n-4)\left(\frac{n-1}{n-2}\right)^{3}+81\left(\frac{n-1}{n}\right)^{3}+\frac{2187}{64} .
$$

After simple comparison, one has

$$
A Z I\left(G_{i}\right)>(n-6)\left(\frac{n-2}{n-3}\right)^{3}+64 .
$$

for $i=1,2, \cdots, 5$.

Lemma 5. [2] For a fixed real number p, let

$$
f(x, y)=\left(\frac{x y}{x+y-2}\right)^{3}-\left(\frac{y(x-p)}{x+y-p-2}\right)^{3}
$$

where $x \geq 2, x>p \geq 1$ and $y \geq 2$. The function $f$ is increasing in $y$ in the interval $[2, \infty)$.

A pendent vertex of a graph is a vertex of degree 1. A vertex adjacent to a vertex $u \in V(G)$ is called a neighbor of $u$.

Lemma 6. For $n \geq 6$, let $G$ be an n-vertex connected tricyclic graph of maximum degree at most $n-2$ and minimum degree 1. If $G$ is not isomorphic to any of the graphs $H_{1}, H_{2}, \cdots, H_{6}$ shown in Figure 4, then

$$
A Z I(G) \geq(n-6)\left(\frac{n-2}{n-3}\right)^{3}+64
$$

with equality if and only if $G$ is isomorphic to the graph $G_{n}^{*}$ depicted in Figure 1.


Figure 4. The graphs $H_{1}, H_{2}, \cdots, H_{6}$.


Figure 5. All non-isomorphic connected tricyclic graphs of order 6 satisfying the constraints mentioned in the statement of Lemma 6 , together with their approximated $A Z I$.

Proof. This lemma is proved by induction on $n$. It is noted that there are only two non-isomorphic connected tricyclic graphs of order 6 satisfying the constraints mentioned in the lemma. These two graphs together with their approximated $A Z I$ are shown in Figure 5, from which it follows that the lemma holds if $n=6$, and hence the induction starts. In what follows, it is assumed that $n \geq 7$. Take a vertex $u \in V(G)$ in such a way that the number of pendent vertices adjacent with $u$ is minimum. Suppose that the pendent neighbors of $u$ are $v_{1}, v_{2}, \cdots, v_{p}$ and that the non-pendent neighbors of $u$ are $v_{p+1}, v_{p+2}, \cdots, v_{r}$. Clearly, $r \geq 2$. Let $G^{\prime}$ be the graph deduced from $G$ by deleting the vertices $v_{1}, v_{2}, \cdots, v_{p}$. Note that $G^{\prime}$ has order $n-p$ and size $n-p+2$.


Figure 6. All non-isomorphic connected tricyclic graphs of order 5 and minimum degree at least 2.

If $n-p=5$ then because of the choice of the vertex $u$ and due to the assumption $n \geq 7$ minimum degree of $G^{\prime}$ is at least 2 (more precisely, it is exactly 2 ), and so $G^{\prime}$ must be isomorphic to one of the three graphs shown in Figure 6 and hence $G$ must be isomorphic to one of the six graphs given in Figure 4, which is a contradiction to the definition of $G$. Thus, $n-p \geq 6$ and hence by inductive hypothesis and Lemma 3, the graph $G^{\prime}$ satisfies the inequality

$$
\begin{equation*}
A Z I\left(G^{\prime}\right) \geq(n-p-6)\left(\frac{n-p-2}{n-p-3}\right)^{3}+64 \tag{2}
\end{equation*}
$$

where the equality sign in (2) holds if and only if $G^{\prime}$ is isomorphic to the graph $G_{n-p}^{*}$ (see Figure 1). Now, if $d_{v_{i}}$ denotes the degree of the vertex $v_{i}$ in $G$ for $i=p+1, p+2, \cdots, r$, then by definition of $A Z I$ it holds that

$$
\begin{aligned}
A Z I(G) & =\sum_{i=p+1}^{r}\left[\left(\frac{r d_{v_{i}}}{d_{v_{i}}+r-2}\right)^{3}-\left(\frac{(r-p) d_{v_{i}}}{d_{v_{i}}+r-p-2}\right)^{3}\right] \\
& +p\left(\frac{r}{r-1}\right)^{3}+A Z I\left(G^{\prime}\right)
\end{aligned}
$$

which gives the following inequality because of (2) and Lemma 5 :

$$
\begin{equation*}
A Z I(G) \geq p\left(\frac{r}{r-1}\right)^{3}+(n-p-6)\left(\frac{n-p-2}{n-p-3}\right)^{3}+64 \tag{3}
\end{equation*}
$$

where the equality sign in (3) holds if and only if $G^{\prime} \cong G_{n-p}^{*}$ and $d_{v_{i}}=2$ for every $i \in\{p+1, p+2, \cdots, r\}$. Note that the function $f$ defined by $f(x)=\left(\frac{x}{x-1}\right)^{3}$ with $x \geq 2$, is strictly decreasing in the interval $[2, \infty)$. Thus, the inequality $r \leq n-2$ implies that

$$
\begin{equation*}
p\left(\frac{r}{r-1}\right)^{3} \geq p\left(\frac{n-2}{n-3}\right)^{3} \tag{4}
\end{equation*}
$$

where the equality sign in (4) holds if and only if $r=n-2$. Also, one has

$$
\begin{gather*}
p\left(\frac{n-2}{n-3}\right)^{3}+(n-p-6)\left(\frac{n-p-2}{n-p-3}\right)^{3}+64 \\
=A Z I\left(G_{n}^{*}\right)+(n-p-6)\left[\left(\frac{n-p-2}{n-p-3}\right)^{3}-\left(\frac{n-2}{n-3}\right)^{3}\right] . \tag{5}
\end{gather*}
$$

Since $n-p \geq 6$, it holds that

$$
\begin{equation*}
(n-p-6)\left[\left(\frac{n-p-2}{n-p-3}\right)^{3}-\left(\frac{n-2}{n-3}\right)^{3}\right] \geq 0 \tag{6}
\end{equation*}
$$

with equality if and only if $n-p=6$. Therefore, from (3), (4), (5) and (6) it follows that $A Z I(G) \geq A Z I\left(G_{n}^{*}\right)$ with equality if and only if $G$ is isomorphic to the graph $G_{n}^{*}$.

Lemma 7. If $G$ is isomorphic to one of the graphs $H_{1}, H_{2}, \cdots, H_{6}$, shown in Figure 4, then

$$
A Z I(G)>(n-6)\left(\frac{n-2}{n-3}\right)^{3}+64
$$

Proof. By elementary calculations, one has

$$
\begin{gathered}
A Z I\left(H_{1}\right)=(n-5)\left(\frac{n-3}{n-4}\right)^{3}+128\left(\frac{n-3}{n-1}\right)^{3}+\frac{1376}{27} \\
A Z I\left(H_{2}\right)=(n-5)\left(\frac{n-3}{n-4}\right)^{3}+27\left(\frac{n-3}{n-2}\right)^{3}+64\left(\frac{n-3}{n-1}\right)^{3}+\frac{440309}{8000} \\
A Z I\left(H_{3}\right)=(n-5)\left(\frac{n-3}{n-4}\right)^{3}+54\left(\frac{n-3}{n-2}\right)^{3}+\frac{3645}{64} \\
A Z I\left(H_{4}\right)=(n-5)\left(\frac{n-2}{n-3}\right)^{3}+27\left(\frac{n-2}{n-1}\right)^{3}+64\left(\frac{n-2}{n}\right)^{3}+\frac{5728}{125} \\
A Z I\left(H_{5}\right)=(n-5)\left(\frac{n-2}{n-3}\right)^{3}+54\left(\frac{n-2}{n-1}\right)^{3}+\frac{3211}{64}
\end{gathered}
$$

and

$$
A Z I\left(H_{6}\right)=(n-5)\left(\frac{n-2}{n-3}\right)^{3}+81\left(\frac{n-2}{n-1}\right)^{3}+\frac{1241}{32}
$$

After simple comparison, one has

$$
A Z I\left(H_{i}\right)>(n-6)\left(\frac{n-2}{n-3}\right)^{3}+64 .
$$

for $i=1,2, \cdots, 6$.

Proof of Theorem 1: The result follows directly from Lemmas 3, 4, 6 and 7.

Acknowledgment: The author would like to thank professor Ivan Gutman for his helpful comments and suggestions, which led to a number of improvements in the earlier version of this note.

## References

[1] A. Ali, An alternative but short proof of a result of Zhu and Lu concerning general sum-connectivity index, Asian-Eur. J. Math. 11 (2018) \#1850030.
[2] A. Ali, A. A. Bhatti, A note on augmented Zagreb index of cacti with fixed number of vertices and cycles, Kuwait J. Sci. 43 (2016) 11-17.
[3] A. Ali, B. Furtula, I. Gutman, D. Vukičević Augmented Zagreb index: Extremal results and bounds, MATCH Commun. Math. Comput. Chem. 85 (2021) 211-244.
[4] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, London, 2008.
[5] G. Chartrand, L. Lesniak, P. Zhang, Graphs 8 Digraphs, CRC Press, Boca Raton, 2016.
[6] L. Chen, X. Li, M. Liu, Tricyclic graphs with maximal revised Szeged index, Discr. Appl. Math. 177 (2014) 71-79
[7] R. Cruz, J. D. Monsalve, J. Rada, Maximal augmented Zagreb index of trees with at most three branching vertices IEEE Access 7 (2019) 146652-146661.
[8] B. Furtula, A. Graovac, D. Vukičević, Augmented Zagreb index, J. Math. Chem. 48 (2010) 370-380.
[9] B. Furtula, I. Gutman, M. Dehmer, On structure-sensitivity of degree-based topological indices, Appl. Math. Comput. 219 (2013) 8973-8978.
[10] B. Furtula, I. Gutman, M. Matejić, E. Milovanović, I. Milovanović, Some new lower bounds for augmented Zagreb index, J. Appl. Math. Comput. 61 (2019) 405-415.
[11] I. Gutman, B. Furtula, C. Elphick, Three new/old vertex-degree-based topological indices, MATCH Commun. Math. Comput. Chem. 72 (2014) 617-632.
[12] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
[13] I. Gutman, J. Tošović, Testing the quality of molecular structure descriptors: Vertex-degree-based topological indices, J. Serb. Chem. Soc. 78 (2013) 805-810.
[14] Y. Huang, B. Liu, Ordering graphs by the augmented Zagreb indices, J. Math. Res. Appl. 35 (2015) 119-129.
[15] W. Lin, A. Ali, H. Huang, Z. Wu, J. Chen, On the trees with maximal augmented Zagreb index, IEEE Access 6 (2018) 69335-69341.
[16] W. Lin, D. Dimitrov, R. Škrekovski, Complete characterization of trees with maximal augmented Zagreb index, MATCH Commun. Math. Comput. Chem. 83 (2020) 167178.
[17] M. Rakić, B. Furtula, A novel method for measuring the structure sensitivity of molecular descriptors, J. Chemom. 33 (2019) \#e3138.
[18] X. Sun, Y. Gao, J. Du, L. Xu, Augmented Zagreb index of trees and unicyclic graphs with perfect matchings, Appl. Math. Comput. 335 (2018) 75-81.
[19] I. Tomescu, Unicyclic and bicyclic graphs having minimum degree distance, Discr. Appl. Math. 156 (2008) 125-130.
[20] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, 1992.
[21] F. Zhan, Y. Qiao, J. Cai, Unicyclic and bicyclic graphs with minimal augmented Zagreb index, J. Ineq. Appl. 2015 (2015) \#126.

