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Abstract

Let G be a graph containing no component isomorphic to the path graph of
order 2. Denote by du the degree of an arbitrary vertex u of G. The augmented
Zagreb index (AZI) of G is the sum of the weights (du dv/(du + dv − 2))3 over all
edges uv of G. In this note, the unique graph with minimal AZI is characterized
from the class of all connected tricyclic graphs of order n for every n ≥ 6, where a
connected tricyclic graph of order n is a connected graph of order n and size n + 2
with n ≥ 4. The obtained result gives a partial solution to a problem posed in the
recent paper [W. Lin, D. Dimitrov, R. Škrekovski, Complete characterization of
trees with maximal augmented Zagreb index, MATCH Commun. Math. Comput.
Chem. 83 (2020) 167–178].

1 Introduction and statement of the main result

All the graphs discussed in this note are finite, and they contain neither any loop nor

multiple edges. The vertex set and edge set of a graph G are denoted by V (G) and

E(G), respectively. The degree of a vertex u ∈ V (G) is denoted by du. The edge of G,

connecting the vertices u and v is denoted by uv. An n-vertex graph is a graph of order

n. The minimum number of edges of a graph G whose removal makes G acyclic (graph

containing no cycle) is its cyclomatic number. If t is a positive integer then by a t-cyclic

graph, we mean a graph with cyclomatic number t. We call 1-cyclic, 2-cyclic and 3-cyclic
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graphs as unicyclic, bicyclic and tricyclic graphs, respectively. (It needs to be mentioned

here that according to some authors, unicyclic, bicyclic and tricyclic graphs are always

connected but according to some other authors (see for example [6,19]) and to our stated

definition of these graphs, such graphs may or may not be connected.) The (chemical)

graph theoretical notation and terminology that are not defined in this note can be found

in some standard relevant textbooks, like [4, 5, 12,20].

A graph invariant I is a numerical quantity associated with a graph G satisfying

the equation I(G) = I(G′) for every graph G′ isomorphic to G. The graph invariants

that found some applications in chemistry are usually known as the topological indices.

The augmented Zagreb index (AZI), introduced by Furtula et al. [8], is one of the graph

invariants that have found considerable chemical applications – see for example the ref-

erences [8, 9, 11, 13, 17] for the chemical applicability of AZI. For a graph G containing

no component isomorphic to the 2-vertex path graph, this topological index is defined as

AZI(G) =
∑

uv∈E(G)

(
du dv

du + dv − 2

)3

.

Because of the several chemical applications of AZI, its mathematical properties have

been studied extensively in many papers, see for example some recent ones [7,10,15,16,18],

recent review [3] (where the extremal results and bounds concerning this index have been

summarized) and relevant references listed therein.

Furtula et al. [8] proved that the start graph Sn is the unique graph with minimal AZI

among all n-vertex trees for every n greater than 3. In the papers [14, 21], it was shown

independently that the graph obtained from Sn by adding one edge or two nonadjacent

edges is the only graph having minimal AZI in the class of all n-vertex connected unicyclic

or bicyclic graphs, respectively, for every n greater than 5. Recently, Lin et al. [16] posed

a problem of finding graph(s) having minimal AZI among all n-vertex graphs of size m

for m ≥ n + 2. The main purpose of the present note is to solve the aforementioned

problem of Lin et al. for the n-vertex connected tricyclic graphs (that are actually the

n-vertex connected graphs of size n + 2) when n ≥ 6.

Note that most of the topological indices for which star Sn has maximal/minimal

values in the class of all n-vertex trees, their maximal/minimal values in the class of all n-

vertex connected unicyclic/bicyclic/tricyclic graphs are usually attained by the graph(s)

that can be deduced from Sn by adding one/two/three edge(s), respectively, in some
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specific way. Thus, at first sight, it was guessed that the graph with minimal AZI among

all n-vertex connected tricyclic graphs would be the graph deduced from Sn by adding

three edges in some specific way, but surprisingly that guess was wrong as it can be seen

from the following main result of this note.

Theorem 1. If n is a fixed integer greater than 5 then G∗n is the unique graph with min-

imal AZI among all n-vertex connected tricyclic graphs, where the graph G∗n is depicted

in Figure 1.

︷ ︸︸ ︷n− 6 ≥ 0

Figure 1. The n-vertex graph G∗n where n ≥ 6.

The following corollary is an immediate consequence of Theorem 1.

Corollary 1. For n ≥ 6, if G is an n-vertex connected tricyclic graph then

AZI(G) ≥ (n− 6)

(
n− 2

n− 3

)3

+ 64,

with equality if and only if G is isomorphic to the graph G∗n shown in Figure 1.

2 Proof of Theorem 1

In order to prove Theorem 1, we firstly prove some lemmas.

Lemma 2. If G is a graph of size m and minimum degree at least 2 such that it does not

contain any component isomorphic to the 2-vertex path graph, then

AZI(G) ≥ 8m,

with equality if and only if at least one end-vertex of every edge of G has degree 2.

Proof. For x ≥ 2 and y ≥ 2, note that the function f defined by f(x, y) = (xy/x+y−2)3,

is increasing in both x and y in the interval [2,∞). Clearly, if x and y are integers greater

than 1 then the output value of f is equal to f(2, 2) if and only if at least one of x and

y is 2. Now, the desired result follows from the definition of AZI.
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Lemma 3. For n ≥ 6, if G is an n-vertex connected tricyclic graph of minimum degree

at least 2 then

AZI(G) ≥ (n− 6)

(
n− 2

n− 3

)3

+ 64,

with equality if and only if G is isomorphic to the graph G∗n depicted in Figure 1.

Proof. Firstly, we assume that n > 6. Since the size of G is n + 2, from Lemma 2 it

follows that

AZI(G) ≥ 8(n + 2) . (1)

Since n > 6, it holds that

(n− 6)

(
8−

(
n− 2

n− 3

)3
)

> 0 ,

which is equivalent to

8(n + 2) > (n− 6)

(
n− 2

n− 3

)3

+ 64 ,

and hence from (1) it follows that

AZI(G) > (n− 6)

(
n− 2

n− 3

)3

+ 64.

64.0000 71.6250 79.0386 73.2146 74.9630 80.9531

77.5625 75.6480 79.0386 77.5625 77.5625

Figure 2. All non-isomorphic 6-vertex connected tricyclic graphs of minimum de-
gree at least 2 together with their approximated AZI.

This completes the proof when n > 6. The required result, for the case n = 6, follows from

Figure 2 where all the non-isomorphic 6-vertex connected tricyclic graphs of minimum

degree at least 2, together with their approximated AZI, are depicted.

Lemma 4. For n ≥ 6, if G is an n-vertex connected tricyclic graph of maximum degree

n− 1 then

AZI(G) > (n− 6)

(
n− 2

n− 3

)3

+ 64.
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︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷︷ ︸︸ ︷n− 7 ≥ 0 n− 6 ≥ 0 n− 5 ≥ 0 n− 5 ≥ 0 n− 4 ≥ 0

G1 G2 G3 G4 G5

Figure 3. All possible non-isomorphic connected tricyclic graphs of order n and
maximum degree n−1, where n ≥ 6 (this figure is taken from [1]). Note
that G1 exists if and only if n ≥ 7.

Proof. For n ≥ 6, note that the graphs G1, G2, · · · , G5 depicted in Figure 3 are the only

possible non-isomorphic connected tricyclic graphs of order n and maximum degree n−1.

Simple calculations yield

AZI(G1) = (n− 7)

(
n− 1

n− 2

)3

+ 72, (if n ≥ 7)

AZI(G2) = (n− 6)

(
n− 1

n− 2

)3

+ 27

(
n− 1

n

)3

+ 56,

AZI(G3) = (n− 5)

(
n− 1

n− 2

)3

+ 54

(
n− 1

n

)3

+
2777

64
,

AZI(G4) = (n− 5)

(
n− 1

n− 2

)3

+ 64

(
n− 1

n + 1

)3

+ 48,

and

AZI(G5) = (n− 4)

(
n− 1

n− 2

)3

+ 81

(
n− 1

n

)3

+
2187

64
.

After simple comparison, one has

AZI(Gi) > (n− 6)

(
n− 2

n− 3

)3

+ 64.

for i = 1, 2, · · · , 5.

Lemma 5. [2] For a fixed real number p, let

f(x, y) =

(
xy

x + y − 2

)3

−
(

y(x− p)

x + y − p− 2

)3

,

where x ≥ 2, x > p ≥ 1 and y ≥ 2. The function f is increasing in y in the interval

[2,∞).

A pendent vertex of a graph is a vertex of degree 1. A vertex adjacent to a vertex

u ∈ V (G) is called a neighbor of u.
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Lemma 6. For n ≥ 6, let G be an n-vertex connected tricyclic graph of maximum degree

at most n − 2 and minimum degree 1. If G is not isomorphic to any of the graphs

H1, H2, · · · , H6 shown in Figure 4, then

AZI(G) ≥ (n− 6)

(
n− 2

n− 3

)3

+ 64,

with equality if and only if G is isomorphic to the graph G∗n depicted in Figure 1.

︷ ︸︸ ︷n− 6 ≥ 0

H2

︷ ︸︸ ︷n− 6 ≥ 0

H3

︷ ︸︸ ︷n− 6 ≥ 0

H4

︷ ︸︸ ︷n− 6 ≥ 0

H5

︷ ︸︸ ︷n− 6 ≥ 0

H6

︷ ︸︸ ︷n− 6 ≥ 0

H1

Figure 4. The graphs H1, H2, · · · , H6.

91.6439 90.3903

Figure 5. All non-isomorphic connected tricyclic graphs of order 6 satisfying the
constraints mentioned in the statement of Lemma 6, together with their
approximated AZI.

Proof. This lemma is proved by induction on n. It is noted that there are only two

non-isomorphic connected tricyclic graphs of order 6 satisfying the constraints mentioned

in the lemma. These two graphs together with their approximated AZI are shown in

Figure 5, from which it follows that the lemma holds if n = 6, and hence the induction

starts. In what follows, it is assumed that n ≥ 7. Take a vertex u ∈ V (G) in such a

way that the number of pendent vertices adjacent with u is minimum. Suppose that the

pendent neighbors of u are v1, v2, · · · , vp and that the non-pendent neighbors of u are

vp+1, vp+2, · · · , vr. Clearly, r ≥ 2. Let G′ be the graph deduced from G by deleting the

vertices v1, v2, · · · , vp. Note that G′ has order n− p and size n− p + 2.

Figure 6. All non-isomorphic connected tricyclic graphs of order 5 and minimum
degree at least 2.
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If n − p = 5 then because of the choice of the vertex u and due to the assumption

n ≥ 7 minimum degree of G′ is at least 2 (more precisely, it is exactly 2), and so G′

must be isomorphic to one of the three graphs shown in Figure 6 and hence G must be

isomorphic to one of the six graphs given in Figure 4, which is a contradiction to the

definition of G. Thus, n − p ≥ 6 and hence by inductive hypothesis and Lemma 3, the

graph G′ satisfies the inequality

AZI(G′) ≥ (n− p− 6)

(
n− p− 2

n− p− 3

)3

+ 64. (2)

where the equality sign in (2) holds if and only if G′ is isomorphic to the graph G∗n−p (see

Figure 1). Now, if dvi denotes the degree of the vertex vi in G for i = p + 1, p + 2, · · · , r,

then by definition of AZI it holds that

AZI(G) =
r∑

i=p+1

[(
r dvi

dvi + r − 2

)3

−
(

(r − p)dvi
dvi + r − p− 2

)3
]

+ p

(
r

r − 1

)3

+ AZI(G′),

which gives the following inequality because of (2) and Lemma 5:

AZI(G) ≥ p

(
r

r − 1

)3

+ (n− p− 6)

(
n− p− 2

n− p− 3

)3

+ 64, (3)

where the equality sign in (3) holds if and only if G′ ∼= G∗n−p and dvi = 2 for every

i ∈ {p + 1, p + 2, · · · , r}. Note that the function f defined by f(x) =
(

x
x−1

)3
with x ≥ 2,

is strictly decreasing in the interval [2,∞). Thus, the inequality r ≤ n− 2 implies that

p

(
r

r − 1

)3

≥ p

(
n− 2

n− 3

)3

, (4)

where the equality sign in (4) holds if and only if r = n− 2. Also, one has

p

(
n− 2

n− 3

)3

+ (n− p− 6)

(
n− p− 2

n− p− 3

)3

+ 64

= AZI(G∗n) + (n− p− 6)

[(
n− p− 2

n− p− 3

)3

−
(
n− 2

n− 3

)3
]
. (5)

Since n− p ≥ 6, it holds that

(n− p− 6)

[(
n− p− 2

n− p− 3

)3

−
(
n− 2

n− 3

)3
]
≥ 0 (6)

with equality if and only if n− p = 6. Therefore, from (3), (4), (5) and (6) it follows that

AZI(G) ≥ AZI(G∗n) with equality if and only if G is isomorphic to the graph G∗n.
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Lemma 7. If G is isomorphic to one of the graphs H1, H2, · · · , H6, shown in Figure 4,

then

AZI(G) > (n− 6)

(
n− 2

n− 3

)3

+ 64.

Proof. By elementary calculations, one has

AZI(H1) = (n− 5)

(
n− 3

n− 4

)3

+ 128

(
n− 3

n− 1

)3

+
1376

27
,

AZI(H2) = (n− 5)

(
n− 3

n− 4

)3

+ 27

(
n− 3

n− 2

)3

+ 64

(
n− 3

n− 1

)3

+
440309

8000
,

AZI(H3) = (n− 5)

(
n− 3

n− 4

)3

+ 54

(
n− 3

n− 2

)3

+
3645

64
,

AZI(H4) = (n− 5)

(
n− 2

n− 3

)3

+ 27

(
n− 2

n− 1

)3

+ 64

(
n− 2

n

)3

+
5728

125
,

AZI(H5) = (n− 5)

(
n− 2

n− 3

)3

+ 54

(
n− 2

n− 1

)3

+
3211

64
,

and

AZI(H6) = (n− 5)

(
n− 2

n− 3

)3

+ 81

(
n− 2

n− 1

)3

+
1241

32
.

After simple comparison, one has

AZI(Hi) > (n− 6)

(
n− 2

n− 3

)3

+ 64.

for i = 1, 2, · · · , 6.

Proof of Theorem 1: The result follows directly from Lemmas 3, 4, 6 and 7.
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