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Abstract

For a given graph G, the Mostar index Mo(G) is the sum of absolute values of
the differences between nu(e) and nv(e) over all edges e = uv of G, where nu(e) and
nv(e) are, respectively, the number of vertices of G lying closer to u than to v and
the number of vertices of G lying closer to v than to u. A chemical tree is a tree
with the maximum degree at most 4. In this paper, the chemical trees of order n
with the greatest Mostar index are determined. And the chemical trees of order n
and diameter d with the greatest Mostar index are also determined. What is more,
general trees of order n and diameter d with the least Mostar index are identified.

1 Introduction

In this paper, all the graphs we considered are simple and undirected. Let G = (VG, EG)

be a graph with vertex set VG and edge set EG. If H = (VH , EH) satisfies VH ⊆ VG and

EH ⊆ EG (resp. VH ⊆ VG and EH $ EG), then denote by H 6 G (resp. H < G) the

relation between H and G. For a set X, denote by |X| its cardinality. Thus, |G| = |VG|

is called the order of G. For v ∈ VG, denote by dG(v) (or d(v) for short) the degree

of v. Denote by N(v) the set of vertices adjacent to v. And denote by E(v) the set of
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edges incident to v. A k-vertex is a vertex of degree k. Let Vk be the set of k-vertices in

G. A d-path is a path of length d (a path with d edges). The distance between u, v in

G is the least length among all u-v paths in G, which is denoted by dG(u, v) (or d(u, v)

for short). The distance between e = uv and w in G is defined as min{d(u,w), d(v, w)},

which is denoted by dG(e, w) or dG(w, e) (or d(e, w), d(w, e) for short). The diameter of

G is defined as dia(G) := max{d(u, v)|u, v ∈ VG}. For each edge e = uv ∈ EG, let

Nu
G(e) = {x ∈ VG|dG(x, u) < dG(x, v)}, N v

G(e) = {x ∈ VG|dG(x, v) < dG(x, u)},

N0
G(e) = {x ∈ VG|dG(x, v) = dG(x, u)}.

And let nyG(e) = |Ny
G(e)| (or put ny := nyG(e) for short), for y = u, v, 0. Note that

VG = Nu
G(e) ∪ N v

G(e) ∪ N0
G(e). And N0

G(e) = ∅ for each e ∈ EG if and only if G is

bipartite. Specially, a graph G is called distance-balanced if nu = nv for each edge

uv ∈ EG. One may be referred to [1, 5, 12,14,15] and the references cited therein, for the

study on distance-balanced graph invariants. Since there exist many graphs which are

not distance-balanced, to measure how far is a graph from being distance-balanced is a

natural problem. However, such measuring invariant was proposed only recently, in 2018,

by Došlić et al. [6], and was named by Mostar index, which is defined as

Mo(G) =
∑
uv∈EG

φ(uv) , (1)

where φ(uv) = |nu − nv| is called the contribution of the edge uv for Mo(G).

Clearly, a graph G is distance-balanced if and only if Mo(G) = 0. The Mostar index

produces a global measure of peripherality of G by calculating the sum of peripherality

contributions over all edges in G. In [6], Došlić et al. determined the extremal values of

the Mostar index among trees and unicyclic graphs, respectively. And they stated some

extremal problems on Mostar index. After that, Tepeh [17] characterized the bicyclic

graphs with extremal Mostar index. Hayat and Zhou [7] gave a sharp upper bound of

the Mostar index for cacti of order n with k cycles, and characterized all the cacti that

achieve this bound. And in [8], Hayat and Zhou studied the Mostar index of trees with

parameters. For example, they identified those trees with the least Mostar index with

fixed order and fixed maximum degree, and those trees with the greatest Mostar index

with fixed order and with fixed diameter.

This paper focuses on the following extremal problem proposed in [6] which involves

chemical graphs and trees.
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Problem 1.1 ( [6]). Find extremal chemical graphs and trees with respect to the Mostar

index.

A chemical graph is a connected graph with the maximum degree at most 4. A chemical

graph without any cycle is called a chemical tree. The study on the graph invariants of

chemical trees attracts much attention. One may be referred to [2–4,10,11,13,16,18] for

detailed information.

For convenience, in this context, we denote by Tn (resp. T Gn ) the set of chemical trees

(resp. general trees) with n vertices. Let T = ∪∞n=1Tn and T G = ∪∞n=1T Gn . And denote

by Tn,d ⊆ Tn (resp. T Gn,d ⊆ T Gn ) the set of chemical trees (resp. general trees) of order n

and diameter d.

Let T ∈ T Gn . If there exits a vertex v∗, such that each component of T − v∗ contains

less than n/2 vertices, then T is called v∗-central (or central for short) and v∗ is called

the center of T ; see Fig. 1(a) for example. If there exits an edge e∗ = v∗1v
∗
2, such that

each of the two components of T − e∗ contains exactly n/2 vertices (so n is even), then T

is called e∗-edge central (or edge central for short), e∗ is called the edge center of T and

v∗1, v
∗
2 are called the twin centers of T ; see Fig. 1(b) for example. Note that each tree is

either central or edge central [9].

1
v* u1

e

v* v*2

*

4e*

3e*

2e*

1e*

(a) (b)

Figure 1. (a) An example of v∗-central chemical tree; (b) An example of e∗-edge
central chemical tree.

Let T ∈ T . Each 1-vertex (resp. 4-vertex) in T is called a leaf (resp. full vertex ). A

vertex is called hungry if it is not full. An edge e = uv is called a pendent edge if either u

or v is a leaf. Denote by ev the pendent edge incident to v if v is a leaf. T is complete if

each vertex is either a leaf or a full vertex. T is symmetry (resp. edge symmetry) if it is

central (resp. edge central) and all leaves have the same distance from the center (resp.

edge center).
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Denote by T cs(r) (resp. T ces(r)) the complete symmetry (resp. complete edge sym-

metry) chemical tree where the distance from each leaf to the center (resp. edge center)

is r (r > 1). Let T cs(r) = {T |T cs(r − 1) < T 6 T cs(r)}.

Denote by T cs(r, d) (where d > 2r) the graph obtained from T cs(r) and P = x1 · · ·xd+1,

by identifying a 2r-path of T cs(r) and the path xd(d+1)/2e−rxd(d+1)/2e−r+1 · · ·xd(d+1)/2e+r.

Denote by T ces(r, d) (where d > 2r + 1) the graph obtained from T ces(r) and P =

x1x2 · · · xdxd+1, by identifying a (2r+1)-path of T ces(r) and the path xbd/2c−rxbd/2c−r+1 · · ·

xbd/2c+r+1. T
cs(r, d) (resp. T ces(r, d)) is called a d-path complete symmetry (resp. d-path

complete edge symmetry) chemical tree. Let T cs(r, d) = {T |T cs(r− 1, d) < T 6 T cs(r, d)}

where d > 2r.

Let Xmin and Xmax be the set of graphs among X with the least and the greatest

Mostar index, respectively, for X ∈ {Tn, T Gn , Tn,d, T Gn,d}. For short, denote by Mo(X ′) the

Mostar index of each graph in X ′ for X ′ ∈ {Xmin,Xmax|X = Tn, T Gn , Tn,d, T Gn,d}.

In [6], it was shown that paths (denoted by Pn) and stars (denoted by Sn) are extremal

graphs among T Gn with respect to the Mostar index. And T Gmax
n,d was determined in [8].

Theorem 1.2 ( [6]). For n > 1, one has T Gmin
n = {Pn} and T Gmax

n = {Sn}, where

Mo(Pn) = (n− 1)2/2 and Mo(Sn) = (n− 1)(n− 2).

Let P (n, d) (n > d + 1) be the graph obtained from the path Pd = x1x2 · · ·xd+1 by

attaching n− d− 1 pendent edges at xb(d+1)/2c.

Theorem 1.3 ( [8]). For n > 2, one has T Gmax
n,d = {P (n, d)}.

The first aim of this paper is to determine Tmax
n for n > 6. Note that, since Pn (n > 1)

and Sm (1 6 m 6 5) are also chemical trees, by Theorems 1.2, one has T min
n = {Pn}

(n > 1) and T max
m = {Sm} (1 6 m 6 5). However, if n > 6, then Sn /∈ T max

n since

Sn /∈ Tn.

Theorem 1.4. Let T be in Tn where n > 6 and 2 · 3r−1 − 1 < n 6 2 · 3r − 1 with r > 2.

Then

Mo(T ) 6 n2 − (2r + 1)n+ 2 · 3r − 2(r + 1)

with equality if and only if T ∈ T cs(r) ∩ Tn.

The second aim of this paper is to determine T max
n,d . Note that for T ∈ Tn,d, one has

d + 1 6 |T | 6 2 · 3d/2 − 1 if d is even, while d + 1 6 |T | 6 3(d+1)/2 − 1 if d is odd. By
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Theorem 1.3 one has T max
d+i,d = {P (d + i, d)} for i = 1, 2, 3. And it is easy to count that

Mo(P (d+ 2, d)) = bd2/2c+ 2d, Mo(P (d+ 3, d)) = bd2/2c+ 4d+ 2.

Theorem 1.5. Let T be in Tn,d where d > 3 and n > d+ 4.

(1) If d is odd and (2·3(d−1)/2−1)+1 < n 6 3(d+1)/2−1, then T max
n,d = T cs((d+1)/2)∩Tn,d.

(2) If (2 · 3r−1− 1) + [d− 2(r− 1)] < n 6 (2 · 3r− 1) + (d− 2r) with 2 6 r 6 bd/2c, then

Mo(T ) 6n2 − (2r + 1)n+ 2 · 3r − 2r2 + 2dr −
⌈
d2

2

⌉
− d− 2

with equality if and only if T ∈ T cs(r, d) ∩ Tn.

The third aim of this paper is to determine T Gmin
n,d . Let P̃ (n, d) (n > d + 1) be the

graph obtained from the path Pd = x1x2 · · ·xd+1 by attaching b(n − d − 1)/2c pendent

edges at x2 and d(n− d− 1)/2e pendent edges at xd.

Theorem 1.6. Let T be in T Gn,d with d > 3 and n > 6. Then

Mo(T ) >

{
(n− d+ 1)(n− 2) + 2bd

2
cbd−2

2
c, if n is even;

(n− d+ 1)(n− 2) + 2bd−1
2
c2, if n is odd.

with equality if and only if T∼=P̃ (n, d).

Theorems 1.4, 1.5 and 1.6 are proved in Sections 3, 4 and 5, respectively. The proofs

are based on the properties of moving operation which are stated in Section 2.

2 Properties of some graph transformations

In this section, some necessary definitions and preliminaries are given. Denote by [i, j] =

{i, i + 1, . . . , j} for integers i 6 j for short. By the definitions of T cs(r), T ces(r),

T cs(r, d) and T ces(r, d), one has

T cs(r − 1) < T ces(r − 1) < T cs(r), T cs(r − 1, d) < T ces(r − 1, d) < T cs(r, d).

That is, T ces(r − 1) ∈ T cs(r) and T ces(r − 1, d) ∈ T cs(r, d). It is also easy to count that

(1) |T cs(r))| = 2 · 3r − 1, |T ces(r)| = 3r+1 − 1;

(2) |T cs(r, d)| = (2 · 3r − 1) + (d− 2r), |T ces(r, d)| = (3r+1 − 1) + (d− 2r − 1) .
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For T ∈ T G and u, v ∈ VT , recall that there is a unique u-v path (denoted by Pu,v) in

T . Let Pu,e = Pu,v where e = wv and d(u, e) = d(u, v).

Let T ∈ T G. If T is v∗-central, let N(v∗) = {vi|i ∈ [1, d(v∗)]} and e∗i = viv
∗ for vi ∈

N(v∗). Then T − v∗ has exactly d(v∗) connected components. The connected component

containing vi is called the vi-branch of T , which is denoted by Tvi for vi ∈ N(v∗). And

Te∗i = T [VTvi ∪ v
∗] is called the vi-extended branch of T for for i ∈ [1, d(v∗)]. If T is

e∗-edge central where e∗ = v∗1v
∗
2, then T − e∗ has exactly two connected components. The

component containing v∗i is called the v∗i -extended branch of T , which is denoted by Tv∗i

for i ∈ {1, 2}. Let a = v∗ if T is central or a = e∗ if T is edge central. Let Rj(T ) (or Rj

for short) be the set of vertices of distance exactly j from a for j > 0 (where we suppose

R0 = {v∗} if T is central or R0 = {v∗1, v∗2} if T is edge central). Let Ej be the set of edges

between Rj−1 and Rj for j > 1. If T is central, let Ri,j = Rj ∩ VTvi and Ei,j = Rj ∩ ETvi
for i ∈ [1, d(v∗)] and j > 1. If T is edge central, let Ri,j = Rj ∩ VTv∗

i
and Ei,j = Ej ∩ETv∗

i

for i ∈ {1, 2} and j > 1. Let u, v be in the same extended branch of T , such that

d(u, a) > d(v, a) and v ∈ VPu,a . Then each vertex (resp. edge) in Pv,a is called an ancestor

(resp. ancestor edge) of v, while each vertex (resp. edge) in Pu,v is called a successor (resp.

successor edge) of v. Denote by AT (v) and ST (v) (resp. EAT (v) and EST (v)) the set of

all ancestors and successors (resp. ancestor edges and successor edges) of v, respectively

(or by A(v), S(v), EA(v) and ES(v) for short, respectively). Let σ(v) = |S(v)| for each

v ∈ VT (suppose v is not the center when T is central) and σ1(v) = σ(v)− 1. For an edge

e = uu1 with d(u1, a) > d(u, a), let ES(e) = ES(u1) ∪ {e}.

Let T ∈ T G with a being the center or edge center. Let e = uu1 ∈ ET where

d(u1, a) > d(u, a). Let v ∈ VT \ S(u1). Denote by T (e−, v+) the graph obtained from T

by deleting e and connecting u1 to v with a new edge (also denote the new edge by e); see

Fig. 2(1) for example. The operation from T to T (e−, v+) is called a moving operation on

(e, v). Note that if T is a chemical tree and v is hungry, then T (e−, v+) is also a chemical

tree. Denoted by T (u−, v+) the graph obtained from T by doing moving operation on

(ei, v) for each ei ∈ E(u) ∩ ES(u) at the same time; see Fig. 2(2) for example. The

operation from T to T (u−, v+) is called the moving operation on (u, v). Note that if T is

a chemical tree and d(u)+d(v)−1 6 4, then T (u−, v+) is also a chemical tree. Denote by

T (ES(e)−, v+) the graph obtained by adding σ(u1) pendent edges to T [VT \ S(u1)] (that

is do moving operations inductively on (ei, v) for ei ∈ ES(e) from Eα to Ed(u1,v∗) where
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α is the greatest distance from a leaf in S(u1) to the center or edge center); see Fig. 2(3)

for example. The operation from T to T (ES(e)−, v+) is called the moving operation on

(ES(e), v).

T

u

u1e

e

v

v

(1) ( )T e ,v
+-

T

u

u1
e

v

v

(2) ( )T u ,v
+-

1

e2

u

e1

e2

T

u

u1e

v

v

(3) ( ( ) )T ES e ,v
+-

e1
e2

e

e1

e2

u

Figure 2. Examples for the moving operation from T to T (e−, v+), T (u−, v+) and
T (ES(e)−, v+), respectively, where the vertices in white and their inci-
dent edges are moved.

Property 2.1. Let T be in T Gn with a being the center v∗ or edge center e∗ = v∗1v
∗
2. Choose

uu1 ∈ ET , v ∈ VT such that v /∈ S(u1) and d(u1, a) > d(u, a). Let T1 = T (uu−1 , v
+),

T2 = T (u−, v+) and T3 = T (ES(uu1)
−, v+).

(i) If u, v are in the same extended branch, then Mo(T1) = Mo(T ) + 2σ(u1)(d(u, a) −

d(v, a)).

(ii) Suppose T is v∗-central and u, v are in distinct branches Tv1 and Tv2, respectively.

– If σ(v2) 6 bn/2c − σ(u1), then Mo(T1) = Mo(T ) + 2σ(u1)(d(u, v∗)− d(v, v∗)).

– If n is odd and σ(v2) = (n − 1)/2 − σ(u1) + 1, then Mo(T1) = Mo(T ) +

2σ(u1)(d(u, v∗)− d(v, v∗) + 1).

(iii) If T is v∗1v
∗
2-edge central, u ∈ VTv∗1

, v ∈ VTv∗2
and u1 is a leaf, then Mo(T1) =

Mo(T ) + 2(d(u, v∗1)− d(v, v∗2) + 1).

(iv) If T is v∗-central, u and v are in distinct branches Tv1 and Tv2, respectively, satisfying

σ(v2) 6 bn/2c − σ1(u), then Mo(T2) = Mo(T ) + 2σ1(u)(d(u, v∗)− d(v, v∗)).

(v) If T is v∗1v
∗
2-edge central, u ∈ VTv∗1

, v ∈ VTv∗2
, and d(u, v∗1) > d(v, v∗2) − 1, then

Mo(T2) >Mo(T ) + 2σ1(u)(d(u, v∗1)− d(v, v∗2) + 1).

(vi) Assume that uu1, v are in the same extended branch satisfying d(u, a) < d(v, a) and

d(e, a) 6 d(v, a) for each edge in ES(u1). Then Mo(T3) < Mo(T ).
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Proof. Let φ(e) (resp. φi(e) for i ∈ {1, 2, 3}) be the contribution of e to T (resp. Ti

for i ∈ {1, 2, 3}), for e ∈ ET (resp. e ∈ ETi for i ∈ {1, 2, 3}). One has φi(e) = φ(e)

(i ∈ {1, 2, 3}) for each e ∈ ET \ EPu,v .

(i) Note that T1 is also v∗-central (resp. e∗-edge central) if T is v∗-central (resp. e∗-

edge central). If u, v, a are in the same path and v ∈ Pu,a, then φ1(e) = φ(e) + 2σ(u1)

for each e ∈ EPu,v . So Mo(T1) = Mo(T ) + 2σ(u1)(d(u, a) − d(v, a)). If u, v, a are in the

same path and u ∈ Pv,a, then φ1(e) = φ(e) − 2σ(u1) for each e ∈ EPu,v . So Mo(T1) =

Mo(T )−2σ(u1)(d(v, a)−d(u, a)) = Mo(T )+2σ(u1)(d(u, a)−d(v, a)). If u, v, a are not in

the same path, then VPu,a ∩ VPv,a = VPw,a for some w in the same extended branch. Then

φ(e1) = φ(e) + 2σ(u1) for each e ∈ EPu,w . And φ1(e) = φ(e)− 2σ(u1) for each e ∈ EPv,w .

One also has Mo(T1) = Mo(T ) + 2σ(u1)(d(u, a)− d(v, a)). Thus, (i) holds.

(ii) Note that T1 is v∗-central when n is odd or σ(v2) 6 bn/2c − σ(u1)− 1, while T1 is

v2v
∗-edge central when n is even and σ(v2) = n/2 − σ(u1). Then φ1(e) = φ(e) + 2σ(u1)

for each e ∈ EPu,v∗ . And φ1(e) = φ(e) − 2σ(u1) for each e ∈ EPv,v∗ . So Mo(T1) =

Mo(T ) + 2σ(u1)(d(u, v∗)− d(v, v∗)). Thus, the first part of (ii) holds.

Note that T1 is v2-central. Then φ1(e) = φ(e) + 2σ(u1) for each e ∈ EPu,v∗ ; φ1(e) =

φ(e) − 2σ(u1) for each e ∈ EPv,v2 . And φ1(v
∗v2) = φ(v∗v2). So Mo(T1) = Mo(T ) +

2σ(u1)(d(u, v∗)− d(v, v2) + 1). Thus, the second part of (ii) holds.

(iii) Note that T1 is v∗2-central if dT (v∗2) > 3, or T1 is v∗2w2-edge central if dT (v∗2) = 2

(where w2 is the neighbor of v∗2 other than v∗1). Then φ1(e) = φ(e) + 2 for each e ∈ EPu,v∗2 .

And φ1(e) = φ(e)−2 for each e ∈ EPv,v∗2 . So Mo(T1) = Mo(T )+2(d(u, v∗1)−d(v, v∗2)+1).

Thus, (iii) holds.

(iv) Recall the moving operation on (u, v) is the combination of moving operations

on (ei, v)’s over all ei’s in E(u) ∩ ES(u). So (iv) holds since (ii) holds and σ1(u) =∑
w∈N(u)∩S(u) σ(w).

(v) Note that the center or edge center of T2 is in Pv,v∗2 . Then φ2(e) = φ(e) + 2σ1(u)

for each e ∈ EPu,v∗2 . And φ2(e) = |φ(e)− 2σ1(u)| > φ(e)− 2σ1(u) for each e ∈ EPv,v∗2 . So

Mo(T2) >Mo(T ) + 2σ1(u)(d(u, v∗1)− d(v, v∗2) + 1). Thus, (v) holds.

(vi) The conclusion in (vi) holds since (i) holds, by the definition of T3 = T (S(uu1)
−,

v+) and by the fact that d(uu1) < d(v) and d(e, v∗) 6 d(v, v∗) for each edge in ES(u1).

If the moving operation in (i), (ii), (iii) or (iv) of Property 2.1 does no change the
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Mostar index, then it is called an equivalent moving operation. Two trees are equivalent

if they can be obtained from each other by some equivalent moving operations.

3 Greatest Mostar index in Tn

In this section, we prove our first main result, which characterizes all the chemical trees

of order n having the largest Mostar index. At first we need some preliminary lemmas.

Lemma 3.1. Let T be a v∗-central tree in T max
n where n > 6. Let α be the greatest

distance from a leaf in T to v∗. Then T ∈ T cs(α).

Proof. Let e ∈ Eα. Suppose there exits a hungry vertex v in ∪α−2j=0Rj. Then we can do

moving operation on (e, v) to increase the Mostar index by Property 2.1(i) or Property

2.1(ii), a contradiction. So each vertex in ∪α−2j=0Rj is full. Thus, T ∈ T cs(α).

Lemma 3.2. Let T be a v∗1v
∗
2-edge central tree in T max

n with n > 6. Let α be the greatest

distance from a leaf to v∗1v
∗
2. Then T

∼= T ces(α).

Proof. Let αi be the greatest distance from a leaf in Tv∗i to v∗i for i ∈ {1, 2}. Without loss

of generality, suppose α = α1 > α2. Suppose there exits a hungry vertex v ∈ ∪α−1j=0R2,j.

Let e ∈ E1,α. Then we can do moving operation on (e, v) to increase the Mostar index

by Property 2.1(iii), a contradiction. So each vertex in ∪α−1j=0R2,j is full, and α2 = α = α1.

Similarly, suppose there exits a hungry vertex v ∈ ∪α−1j=0R1,j. Let e ∈ E2,α. Then we

can do moving operation on (e, v) to increase the Mostar index by Property 2.1(iii), a

contradiction. So each vertex in ∪α−1j=0R1,j is also full. Thus, T∼=T ces(α).

We are now in the position to prove our first main result.

Proof of Theorem 1.4. Let T ∈ T max
n , where

|T cs(r − 1)| = 2 · 3r−1 − 1 < n 6 2 · 3r − 1 = |T cs(r)|

for some r > 2. If T is v∗-central, then let α be the greatest distance from a leaf to v∗.

By Lemma 3.1, one has T ∈ T cs(α). So T ∈ T cs(r), since |T cs(r − 1)| < n 6 |T cs(r)|.

Recall that T ces(r − 1) is the unique complete edge symmetry tree with the number of

vertices in [|T cs(r − 1)| + 1, |VT cs(r)|]. If T is v∗1v
∗
2-edge central, then by Lemma 3.2 one

also has T ∼= T ces(r − 1) ∈ T cs(r). On the other hand, note that the trees in T cs(r) ∩ Tn
are equivalent to each other. So T max

n = T cs(r) ∩ Tn.
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Let T1 = T cs(r − 1). Suppose n = |T1| + t where 1 6 t 6 4 · 3r−1. Let w∗ be the

center of T1. Let x1 and x2 be two leaves in distinct branches of T1. Let T2 be the graph

obtained from T1 by attaching bt/2c pendent edges {ei|i ∈ [1, bt/2c]} to x1 and attaching

dt/2e pendent edges {e′j|j ∈ [1, dt/2e]} to x2. Then T2 is w∗-central which is equivalent

to T .

Let φi(e) be the contribution of e to Ti for i ∈ {1, 2}. Then φ2(e) = φ1(e) + t for

each e ∈ ET1 \ EPx1,x2 ; φ2(e) = φ1(e) + dt/2e − bt/2c for each e ∈ EPx1,w∗ ; φ2(e) =

φ1(e) − dt/2e + bt/2c for each e ∈ EPx2,w∗ . And φ2(ei) = φ2(e
′
j) = n − 2 for each

i ∈ [1, bt/2c] and j ∈ [1, dt/2e]. So

Mo(T2) = Mo(T1) + t · (|ET1| − |EPx1,x2 |) + t · (n− 2)

= Mo(T1) + t · (2 · 3r−1 + n− 2r − 2) .

Note that for each edge uv ∈ Ej(T1), where u ∈ Rj(T1), v ∈ Rj−1(T1), 1 6 j 6 r − 1,

the contribution of uv equals to |T1| − 2σ(u). And recall σ(u) =
∑r−j

l=1 3l−1 = (3r−j − 1)/2

and |Ej(T1)| = 4 · 3j−1 for 1 6 j 6 r − 1. Then

Mo(T1) =
r−1∑
j=1

|Ej(T1)| · (|T1| − 2σ(u)) = 4(9r−1 − r · 3r−1) .

Thus,

Mo(T ) = Mo(T2) = Mo(T1) + t · (3r−1 + n− r − 2)

= 4(9r−1 − r · 3r−1) + t · (2 · 3r−1 + n− 2r − 2)

= n2 − (2r + 1)n+ 2 · 3r − 2(r + 1)

since t = n− (2 · 3r−1 − 1). This completes our proof.

4 Greatest Mostar index in Tn,d

In this section, we prove our second main result, which characterizes all the chemical

trees of order n and diameter d having the largest Mostar index. At first we give some

preliminary lemmas.

Lemma 4.1. Let T be in T max
n,d with d > 4 and n > d+ 4. Then the center or edge center

of T is in some path length of d.
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Proof. Let a = v∗ if T is v∗-central and a = e∗ = v∗1v
∗
2 if T is e∗-edge central. Suppose

a is not in any path of length d. Consider a path, say Px,y, of length d in T . Then Px,y

is in some extended branch of T (suppose it is in Tv1 if T is central or it is in Tv∗1 if T is

edge central). Let ξ = v1 or v∗1. Then (d+ 1) 6 |Tξ| 6 n/2 and there are at least n/2 > 4

vertices in VT \ VTξ .

If T is central, then d(v∗) = 4. For otherwise, there exists a pendent edge e ∈ ET \EPx,y
where d(e, v∗) > 1. And we can do moving operation on (e, v∗) to increase the Mostar

index by Property 2.1(i), with the diameter unchanged, a contradiction. When T is

central, let N(v∗) = {v1, v2, v3, v4} and suppose Tv2 is the branch containing the least

vertices among the three branches other than Tv1 .

Let z be the vertex in Px,y which has the least distance from ξ. Let x1 ∈ VPz,x ∩N(z)

and y1 ∈ VPz,y ∩ N(z). Without loss of generality, suppose d(x, z) > d(y, z). Then

d(x, z) > d(v, z) for each v ∈ S(x1); d(y, z) > d(v, z) for each v ∈ VTξ \ S(x1). And

d(y, z) > d(v, z) for each v ∈ VT \VTξ by our assumption. So d(x, a) > d(v, a) for each v ∈

S(x1); d(y, a) > d(v, a) for each v ∈ S(z) \ S(x1); d(y, a) > d(v, a) for each v ∈ VTξ \ S(z)

(for otherwise, d(v, x) would be a path of length greater than d, a contradiction). And

one also has d(y, a) > d(v, a) for each v in VT \VTξ . Let α be the greatest distance from a

leaf in S(y1) other than y to z. Let e1 be the pendent edge in [(ES(y1)∩Ed(z,a)+α)\{ey}].

If d(z) = 3, then α = 0, for otherwise we can do operation on (e1, z) to increase the

Mostar index by Property 2.1(i), with the diameter unchanged, a contradiction. So one

has σ(y1) = d(y, z) 6 d(x, z) 6 σ(x1) which implies σ(y1) 6 σ(ξ)/2.

If d(z) = 4, let z1 be the neighbor of z other than x1, y1. Then each vertex z2 in [S(z1)∩

(∪j6d(z,a)+α−2Rj)] is full, for otherwise we can do moving operation on (e1, z2) to increase

the Mostar index by Property 2.1(i), with the diameter unchanged, a contradiction. Then

we can do equivalent moving operations on (e′i, v
′
ji

)’s for all e′i’s in ES(y1)∩Ed(z,a)+α and

for some v′ji ’s in S(z1) ∩ Sd(z,a)+α−1 until |ES(y1) ∩ Ed(z,a)+α| 6 |ES(z1) ∩ Ed(z,a)+α|,

with the diameter unchanged. Then one has σ(y1) 6 σ(z1) + σ(x1) which also implies

σ(y1) 6 σ(ξ)/2 after these equivalent moving operations. So without loss of generality,

we can suppose σ(y1) 6 σ(ξ)/2 6 n/4.

Let w2 be a leaf in S(v2) if T is central and w2 be a leaf in S(v∗2) if T is edge central.

Then d(w2, z) < d(y, z) by our assumption. Choose y2 ∈ VPz,y such that d(y2, z) =

d(w2, z). Then d(y2, a) > d(w2, a). And σ1(y2) = σ(y2)− 1 6 σ(y1)− 1 < σ(ξ)/2 6 n/4.
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When T is edge central, we can do moving operation on (y2, w2) to increase the Mostar

index by Property 2.1(v). When T is central, if σ(v1) > n/4, then σ(v2) < n/4 6

n/2 − n/4 6 bn/2c − σ1(y2) by our choice of Tv2 . So we can do moving operation on

(y2, w2) to increase the Mostar index by Property 2.1(iv). If σ(v1) 6 n/4, then σ1(y2) <

σ(v1)/2 6 n/8. One has σ(v2) < n/3 = n/2 − n/6 < n/2 − n/8 6 bn/2c − σ1(y2). So

we can also do moving operation on (y2, w2) to increase the Mostar index by Property

2.1(iv).

On the other hand, let T2 = T (y−2 , w
+
2 ). Note that, whenever T is central or edge

central, one has dT2(v, y) 6 dT2(x, y) = dT (x, y) = d. And for each v ∈ VT \ VTa , one has

dT2(v, y) 6 dT2(y, a) + dT2(v, a) < dT (y, z) + dT (y, z) 6 d. So T2 has the same diameter to

T but a greater Mostar index, a contradiction. Thus, there is a choice of Px,y such that

v∗ ∈ VPx,y . This completes the proof.

Recall that, for a v∗-central T , one has N(v∗) = {vi|i ∈ [1, dT (v∗)]}.

Lemma 4.2. Suppose T is a v∗-central tree in T max
n,d and Px,y is a path of length d con-

taining v∗, where d > 4, n > d + 4, x ∈ S(v1), y ∈ S(v2) and d(x, v∗) > d(y, v∗). Let α

be the greatest distance from a leaf other than x or y in T to v∗. Then α 6 d(y, v∗) + 1

with equality only if T ∈ T cs(α) and d = 2α − 1. Furthermore, if α 6 d(y, v∗) then

T ∈ T cs(α, d).

Proof. Note that d(v∗) = 4 since n > d + 4 (for otherwise, we can do moving operation

to increase the Mostar index, a contradiction). Let N(v∗) = {v1, v2, v3, v4}. Let αi be the

greatest distance from a leaf other than x or y in Tvi to v∗ for i ∈ {1, 2, 3, 4}.

If α > d(y, v∗)+1, then α = α1 > αi for each i ∈ {2, 3, 4}. Let e ∈ Eα\EPx,y . Suppose

there exits a hungry vertex v in (∪d(y,v
∗)−1

j=1 Rj) ∪ (∪α−2j=1R1,j). Then we can do moving

operation on (e, v) to increase the Mostar index by Property 2.1(i) or Property 2.1(ii),

with the diameter unchanged, a contradiction. So each vertex in (∪d(y,v
∗)−1

j=1 Rj)∪(∪α−2j=1R1,j)

is full. And so T cs(d(y, v∗)) < T . Suppose α > d(y, v∗) + 2. Then

σ(v1) >
α−1∑
j=1

3j−1 >

d(y,v∗)∑
j=1

3j = σ(v2) + σ(v3) + σ(v4)

since α > d(y, v∗)+2, a contradiction to the fact that T is v∗-central. So α = d(y, v∗)+1.

Then T cs(α − 1) < T . On the other hand, suppose d(x, v∗) > α + 1. Then we can do

moving operation on (ex, y) to increase the Mostar index by Property 2.1(ii), with the
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diameter unchanged, a contradiction. So d(x, v∗) = α which implies T < T cs(α). Thus,

T ∈ T cs(α) and d = 2α− 1.

If α 6 d(y, v∗), let e ∈ Eα \ EPx,y . Suppose there exits a hungry vertex v ∈ ∪α−2j=1Rj.

Then we can do moving operation on (e, v) to increase the Mostar index by Property

2.1(i) or Property 2.1(ii), with the diameter unchanged, a contradiction. So each vertex in

∪j6α−2Rj is full. On the other hand, suppose d(x, v∗) > d(y, v∗)+2. Then d(x, v∗) > α+2.

Then we can do moving operation on (ex, y) to increase the Mostar index by Property

2.1(ii), with the diameter unchanged, a contradiction. So d(x, v∗) 6 d(y, v∗) + 1. And so

T ∈ T cs(α, d).

Lemma 4.3. Suppose T is a v∗1v
∗
2-edge central tree in T max

n,d and Px,y is a path of length

d containing v∗1v
∗
2, where d > 4, n > d + 4, x ∈ S(v∗1), y ∈ S(v∗2) and d(x, v∗1) > d(y, v∗2).

Let α be the greatest distance from a leaf other than x or y to v∗1v
∗
2. Then T

∼= T ces(α, d)

and d is odd.

Proof. For each vertex u ∈ VTv∗1 and v ∈ VTv∗2 , one has d(x, v∗1) > d(u, v∗1) and d(y, v∗2) >

d(v, v∗2). Let αi be the greatest distance from a leaf other than x or y in Tv∗i to v∗i for

i ∈ {1, 2}. Then d(x, v∗1) > α1 and d(y, v∗2) > α2.

Let e be in E2,α2 \EPx,y . Suppose there exists a hungry vertex v in ∪α2−1
j=0 R1,j. Then we

can do moving operation on (e, v) to increase the Mostar index by Property 2.1(iii) with

the diameter unchanged, a contradiction. So each vertex in ∪α2−1
j=0 R1,j is full and α2 6 α1.

Similarly, one has each vertex in ∪α1−1
j=0 R2,j is full and α1 6 α2. So α1 = α2 = α and each

vertex in ∪α−1j=0Rj is full. Then T [∪j>α+1Ej] consists of two paths if ∪j>α+1Rj 6= ∅. And

the two paths have the same length, since T is edge central. So d(x, v∗1) = d(y, v∗2). Thus,

T ∼= T ces(α, d) and d is odd.

Now we come back to prove Theorem 1.5.

Proof of Theorem 1.5. (1) If d is odd and (2 · 3(d−1)/2− 1) + 1 < n 6 3(d+1)/2− 1, then

T max
n ⊆ T cs((d + 1)/2) by Theorem 1.4. And T max

n ∩ Tn,d 6= ∅. So T max
n,d = T max

n ∩ Tn,d =

T cs((d+ 1)/2) ∩ Tn,d.

(2) Suppose (2·3r−1−1)+[d−2(r−1)] < n 6 (2·3r−1)+(d−2r) where 2 6 r 6 bd/2c.

Then n > d + 4 > 8. Let T ∈ T max
n,d . Let Px,y be a path length of d in T with two leaf

ends x and y.
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We first consider that T is v∗-central. By Lemma 4.1, suppose v∗ ∈ VPx,y . Without

loss of generality, suppose d(x, v∗) > d(y, v∗). Let α be the greatest distance from a

leaf other than x or y to v∗. By Lemma 4.2, one has α 6 d(y, v∗) + 1. And when

α = d(y, v∗) + 1, one has T ∈ T cs(α) and d = 2α− 1, which implies α = r and d = 2r− 1,

since (2 · 3r−1− 1) + [d− 2(r− 1)] < n 6 (2 · 3r − 1) + (d− 2r). However, this contradicts

the assumption of d > 2r. So α 6 d(y, v∗). And by Lemma 4.2, one has T ∈ T cs(α, d),

which implies α = r and T ∈ T cs(r, d), since |T cs(r − 1, d)| < n 6 |T cs(r, d)|.

Now we consider that T is v∗1v
∗
2-edge central. By Lemma 4.1, there is a choice such that

v∗1v
∗
2 is in a path length of d. Note that T ces(r− 1, d) is the unique d-path complete edge

symmetry chemical tree which has a number of vertices in [|T cs(r− 1, d)|+ 1, |T cs(r, d)|].

So by Lemma 4.3, one also has T ∼= T ces(r − 1, d) ∈ T cs(r, d), since |T cs(r − 1, d)| < n 6

|T cs(r, d)|.

On the other hand, all trees in T cs(r, d) are equivalent to each other. Thus, we have

T max
n,d = T cs(r, d) ∩ Tn,d.

Let T1 = T cs(r − 1, d). Suppose n = |T1| + t where t ∈ [1, 4 · 3r−1 − 2]. Let w∗

be the center of T1. Let x1, x2, x3, x4 be four leaves in the four distinct branches of T1,

respectively, where Px1,x2 is a path of length d and d(x1) > d(x2). Let T2 be the graph

obtained from T1 by attaching bt/2c pendent edges {ei|i ∈ [1, bt/2c]} to x3 and attaching

dt/2e pendent edges {e′j|j ∈ [1, dt/2e]} to x4. Then T2 is a w∗-central tree which is

equivalent to T .

Let φi(e) be the contribution of e to Ti for i ∈ {1, 2} and e ∈ ETi . Then φ2(e) =

φ1(e) + t for each e ∈ ET1 \ EPx3,x4 ; φ2(e) = φ1(e) + dt/2e − bt/2c for each e ∈ EPx3,w∗ ;

φ2(e) = φ1(e) − dt/2e + bt/2c for each e ∈ EPx4,w∗ and φ2(ei) = φ2(e
′
j) = n − 2 for each

i ∈ [1, bt/2c] and j ∈ [1, dt/2e]. So

Mo(T2) = Mo(T1) + t · (|ET1| − |EPx3,x4 |) + t · (n− 2)

= Mo(T1) + t · (2 · 3r−1 + n+ d− 4r) .

Note that for each edge uv ∈ Ej(T1), where u ∈ Rj(T1), v ∈ Rj−1(T1) and 1 6 j 6 dd/2e,

the contribution of uv equals to |T1| − 2σ(u). If v /∈ VPx1,x2 , one has σ(u) = (3r−j − 1)/2.

If u is in Px1,w∗ , one has σ(u) = (3r−j − 1)/2 + dd/2e − (r − 1) for 1 6 j 6 r − 1,

while σ(u) = dd/2e − j + 1 for r 6 j 6 dd/2e. If u is in Px2,w∗ , one has σ(u) =

(3r−j − 1)/2 + bd/2c − (r − 1) for 1 6 j 6 r − 1, while σ(u) = bd/2c − j + 1 for
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r 6 j 6 bd/2c. And one has |Ej \ EPx1,x2 | = 4 · 3j−1 − 2 for 1 6 j 6 r − 1. So

Mo(T1) =
r−1∑
j=1

∑
uv∈Ej\EPx1,x2

φ1(uv) +
r−1∑
j=1

∑
uv∈Ej∩EPx1,x2

φ1(uv) +
∑
j>r

∑
uv∈Ej

φ1(uv)

=
r−1∑
j=1

(4 · 3j−1 − 2)(|T1| − 3r−j + 1) +
r−1∑
j=1

[2 · |T1| − 2(3r−j − 1)− 2d+ 4(r − 1)]

+

d d
2
e∑

j=r

[
|T1| − 2

(⌈
d

2

⌉
− j + 1

)]
+

b d2c∑
j=r

[
|T1| − 2

(⌊
d

2

⌋
− j + 1

)]
=4[9r−1 + (d− 3r + 2)3r−1 − rd+ 2r − 2] + 6(r − 1)2 +

⌊
d2

2

⌋
.

Thus,

Mo(T ) = Mo(T2) = Mo(T1) + t · (2 · 3r−1 + n+ d− 4r)

= n2 − (2r + 1)n+ 2 · 3r − 2r2 + 2dr −
⌊
d2

2

⌋
− d− 2

since t = n− [(2 · 3r−1 − 1) + (d− 2(r − 1))].

This completes our proof.

5 The least Mostar index in T Gn,d
In this section, we determine the least Mostar index of trees in T Gn,d. All the corresponding

extremal trees are characterized. In order to show our main result, we give some lemmas

at first.

Lemma 5.1. Let T be in T Gmin
n,d with d > 4. Then the center or the edge center is in

some path of length d.

Proof. Suppose to the contrary that the center or the edge center of T is not in any path

length of d. Let Px,y be a path of length d. Then Px,y is in some branch of T (suppose it

is in Tv1 if T is v∗-central or in Tv∗1 if T is v∗1v
∗
2-central).

Let a = v∗ or v∗1v
∗
2. Let z be the vertex in Px,y which has the least distance from

a. Without loss of generality, assume d(x, z) > d(y, z). Then for any pendent edge e in

another branch or extended branch other than Tv1 or Tv∗1 , one has d(e, z) 6 d(y, z)− 2 by

our assumption. That is d(e, a) 6 d(y, a)−3. Then we can do moving operation on (e, y1)

where y1y ∈ ET , to decrease the Mostar index by Property 2.1(ii) or Property 2.1(iii),

with the diameter unchanged, a contradiction. Thus, the center or the edge center is in a

path length of d.

-175-



Lemma 5.2. Let T be a v∗-central tree in T Gmin
n,d with d > 4. Then T∼=P̃ (n, d).

Proof. By Lemma 5.1, let v∗ be in a path, say Px,y, of length d. Suppose x ∈ S(v1) and

y ∈ S(v2). Without loss of generality, suppose d(x, v∗) > d(y, v∗). Let αi be the greatest

distance from a leaf in Tvi to v∗ where vi ∈ N(v∗) and let α = max16i6d(v∗){αi}. Then

for each v ∈ VT and each w ∈ VT \ S(v1), one has α = α1 = d(x, v∗) > d(v, v∗) and

α2 = d(y, v∗) > d(w, v∗). We proceed by showing the following facts.

Fact 1. If αi > 3, then each vertex in ∪αi−2j=1 Ri,j is a 2-vertex for i ∈ [1, d(v∗)].

Proof of Fact 1. Suppose αi > 3, w ∈ Ri,αi−1. If there exists u ∈ ∪αi−2j=1 Ri,j such that

d(u) > 3, then let e be in (E(u) ∩ ES(u) \ EPu,w). Hence, we can do moving opera-

tion on (ES(e), w) to decrease the Mostar index by Property 2.1(vi), with the diameter

unchanged, a contradiction.

Fact 2. α2 = α or α− 1 and α2 > 2.

Proof of Fact 2. Note that α2 6 α. Suppose α2 6 α−2. Let e ∈ E2,α2 . Then we can do

moving operation on (e, v1,α−1) to decrease the Mostar index by the first part of Property

2.1(ii), with the diameter unchanged, a contradiction. So α2 = α or α− 1. Together with

α2 + α = d > 4, we have α2 > 2.

Fact 3. d(v∗) = 2, σ(v1) = σ(v2) and n is odd.

Proof of Fact 3. Suppose d(v∗) > 3. Let v3 ∈ N(v∗). By Fact 1, for each leaf w′ in Tvi ,

one has d(w′, v∗) = αi and there is a unique vertex in Ri,αi−1 (let vi,αi−1 be this unique

vertex).

Suppose α3 6 α2 − 1. Let e ∈ E3,α3 . Note that either σ(v1) 6 bn/2c − 1 or σ(v2) 6

bn/2c − 1. Then we can do moving operation on (e, v2,α2−1) or (e, v1,α−1) to decrease

the Mostar index by the first part of Property 2.1(ii), with the diameter unchanged, a

contradiction. So α3 = α2 since α3 6 α2.

Now we can firstly do moving operations on (ei, v1,α−1) or (ei, v2,α2−1) for each ei ∈

E3,α2 until until E3,α2 = ∅, and make sure one of the branches containing x and y has

at most bn/2c − 1 vertices, with the Mostar index not increasing by the first part of

Property 2.1(ii), and with the diameter unchanged. And secondly do moving operation

on (e, v2,α2−1) or (e, v1,α−1) for e ∈ E3,α2−1 to decrease the Mostar index by the first part

-176-



of Property 2.1(ii), with the diameter unchanged, a contradiction. Thus, d(v∗) = 2. Then

n is odd and σ(v1) = σ(v2) = (n− 1)/2. Therefore, Fact 3 holds.

Now we come back to show Lemma 5.2. By Facts 2 and 3, if α2 = α, then d = 2α and

|E1,α| = |E2,α|; if α2 = α−1, then d = 2α−1 and |E1,α| = |E2,α−1|−1. Thus, T∼=P̃ (n, d),

as claimed.

Lemma 5.3. Let T be a v∗1v
∗
2-edge central tree in T Gmin

n,d with d > 4. Then T∼=P̃ (n, d).

Proof. By Lemma 5.1, let v∗1v
∗
2 be in a path, say Px,y, of length d. Let αi be the greatest

distance from a leaf in Tv∗i to v∗i for i ∈ {1, 2} and let α = max{α1, α2}. Suppose x ∈ S(v∗1)

and y ∈ S(v∗2). Then α1 = d(x, v∗1) and α2 = d(y, v∗2). Without loss of generality, suppose

α = α1 > α2.

Let xx1 ∈ ET . If ∪16j6α−2R1,j 6= ∅, then one may suppose there exists u ∈ ∪16j6α−2

R1,j where d(u) > 3. Thus, let e be in (E(u)−EA(x)). Then we can do moving operation

on (ES(e), x1) to decrease the Mostar index by Property 2.1(i), with the diameter un-

changed, a contradiction. So each vertex in ∪16j6α−2R1,j (if it is not empty) is a 2-vertex.

Similarly, each vertex in ∪16j6α2−2R2,j (if it is not empty) is a 2-vertex. So there is a

unique vertex vi,αi−1 in Ri,αi−1 for i ∈ {1, 2}.

Suppose α > α2+2. Then |E2,α2| > |E1,α| since σ(v∗1) = σ(v∗2). Let e ∈ E2,α2 . Then we

can do moving operation on (e, v1,α−1) to decrease the Mostar index by Property 2.1(iii),

with the diameter unchanged, a contradiction. So α 6 α2 + 1. If α = α2, then d = 2α+ 1

and |E1,α| = |E1,α|. If α = α2+1, then d = 2α and |E1,α| = |E2,α−1|−1. Thus, T∼=P̃ (n, d),

as claimed.

Proof of Theorem 1.6. If d = 3 and n > 6, then let P = x1x2x3x4 be a path of length

3. If T is edge central, then x2x3 is the edge center and T is unique where T∼=P̃ (n, 3).

If T is central, then v∗ = x2 or x3. Without loss of generality, suppose v∗ = x2. Then

σ(x3) 6 dn/2e − 1. If n is even, or n is odd and σ(x3) 6 (n − 1)/2 − 1, then we can

do moving operation on (x2x
′
2, x3) where x′2 6= x3 to decrease the Mostar index with

the diameter unchanged, a contradiction. So n is odd and σ(x3) = (n − 1)/2. Thus,

T∼=P̃ (n, 3).

If d > 4, by Lemmas 5.2 and 5.3, one also has T∼=P̃ (n, d). On the other hand,

Mo(P̃ (n, d)) =
∑

e∈V1 φ(e) +
∑

e∈VT \V1 φ(e) for d > 3.
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If n is even and d is odd, one has

Mo(P̃ (n, d)) = (n− d+ 1)(n− 2) + 2

d−3
2∑
j=0

2j = (n− d+ 1)(n− 2) +
(d− 1)(d− 3)

2
.

If n is even and d is even, one has

Mo(P̃ (n, d)) = (n− d+ 1)(n− 2) +

d
2
−1∑
j=1

2j +

d
2
−2∑
j=0

2j = (n− d+ 1)(n− 2) +
(d− 2)2

2
.

If n is odd and d is odd, one has

Mo(P̃ (n, d)) = (n− d+ 1)(n− 2) +

d−3
2∑
j=0

2j +

d−1
2∑
j=1

2j = (n− d+ 1)(n− 2) +
(d− 1)2

2
.

If n is odd and d is even, one has

Mo(P̃ (n, d)) = (n− d+ 1)(n− 2) + 2

d
2
−1∑
j=1

2j = (n− d+ 1)(n− 2) +
d(d− 1)

2
.

Thus, for d > 3,

Mo(T ) >

{
(n− d+ 1)(n− 2) + 2bd

2
cbd−2

2
c, if n is even;

(n− d+ 1)(n− 2) + 2bd−1
2
c2, if n is odd.

This completes our proof.

6 Future work

In this paper, we determine the chemical trees of order n with the greatest Mostar index.

We also identify chemical trees of order n and diameter d with the greatest Mostar index.

What is more, we characterize the general trees of order n and diameter d having the least

Mostar index. We tried to determine chemical trees of order n and diameter d having the

smallest Mostar index without complete success. Hence, this problem is still open. We

will do it in the near future.

Acknowledgment : Kecai Deng is partially supported by NSFC (No. 11701195) and by

Scientific Research Funds of Huaqiao University (No. 16BS808) and Shuchao Li is partially

ssupported by NSFC (Nos. 11671164, 11271149).

-178-



References
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[11] A. Ilić, I. Gutman, Eccentric connectivity index of chemical trees, MATCH Commun.

Math. Comput. Chem. 65 (2011) 731–744.
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