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{marjan.matejic,ema, igor}@elfak.ni.ac.rs

(Received February 16, 2020)

Abstract

Let G = (V,E), V = {v1, v2, . . . , vn} be a simple connected graph with n vertices,
m edges and a sequence of vertex degrees d1 ≥ d2 ≥ · · · ≥ dn > 0, di = d(i). If
vertices vi and vj are adjacent in G we write i ∼ j, otherwise i � j. A so called
forgotten topological index is defined as F (G) =

∑n
i=1 d

3
i =

∑
i∼j(d

2
i + d2j ), and

its corresponding coindex as F (G) =
∑

i�j(d
2
i + d2j ). Several inequalities involving

lower and upper bounds for the F (G) and F (G) are derived. Also, relationships
between F (G) and F (G) and some other topological indices are determined. In
addition, a number of results for F (G) and F (G) when a graph has tree structure,
are obtained.

1 Introduction

A topological index of a graph is a numerical quantity which is invariant under auto-

morphisms of the graph. Topological indices are important and useful tools in mathe-

matical chemistry, nanomaterials, pharmaceutical engineering, etc. used for quantifying

information on molecules. Molecules and molecular compounds are modelled as molecu-

lar graphs, in which vertices correspond to the atoms and edges to the chemical bonds

between them. Hundreds of various topological indices have been introduced in math-

ematical chemistry literature in order to describe physical and chemical properties of

molecules, especially for studying quantitative structure–activity relationships (QSAR)

and quantitative structure–property relationships (QSPR) for predicting different prop-

erties of chemical compounds (see for example [42–44]). Many of them are defined as
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simple functions of the degrees of the vertices of (molecular) graph. Various mathemati-

cal properties of topological indices have been investigated, as well.

Let G be a simple graph, that is graph without multiple, directed, or weighted edges,

and without self-loops, with vertex set V (G) and edge set E(G), where |V (G)| = n and

|E(G)| = m. The number of first neighbors of the vertex vi ∈ V (G) is its degree, and

will be denoted by di = d(vi). Denote by ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ > 0 the sequence

of vertex degrees of G. The complement of G has the same vertex set V (G), and two

vertices are adjacent in G if and only if they are not adjacent in G, that is G = (V,E). If

vertices vi and vj of G are adjacent, we write i ∼ j. On the other hand, if vi and vj are

adjacent in G, we write i � j.

The first and second Zagreb indices are vertex-degree-based graph invariants defined

as

M1(G) =
n∑
i=1

d2i

and

M2(G) =
∑
i∼j

didj.

The quantity M1(G) was first time considered in 1972 [20], whereas M2(G) in 1975 [21].

These terms were recognized to be a measure of the extent of branching of the carbon–

atom skeleton of the underlying molecule. The first Zagreb index became one of the most

popular and most extensively studied graph-based molecular structure descriptors.

In [20], another quantity, the sum of cubes of vertex degrees

F (G) =
n∑
i=1

d3i =
∑
i∼j

(d2i + d2j) ,

was encountered, as well. This quantity is also a measure of branching and it was found

that its predictive ability is quite similar to that of M1(G). However, for the unknown

reasons, it did not attracted any attention until 2015 when it was reinvented in [15] and

named the forgotten topological index. In the case of entropy and acentric factor, both

M1(G) and F (G) gain correlation coefficients larger than 0.95 [15]. For other physico-

chemical properties, neither M1(G) nor F (G) are satisfactorily correlated. However, its

linear combination

M1(G) + λF (G) (1)

yields a highly accurate mathematical model of certain physico-chemical properties of

alkanes. A significant improvement with the above model was obtained in the case of
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octanol-water partition coefficient. It is worth noting that the paper [15] was cited more

than 300 times so far. More on mathematical properties and chemical applications of the

forgotten topological index can be found in [2, 4, 5, 19,23,24,28,31–33,35].

In [38] (see also [9]) it was shown that M1(G) can be also represented as

M1(G) =
∑
i∼j

(di + dj).

Inspired by the above identity, in [10] a concept of coindices was introduced. In this

case the sum runs over the edges of the complement of G. Thus, the first Zagreb coindex

is defined as

M1(G) =
∑
i�j

(di + dj),

and, analogously, the forgotten topological coindex, or F -coindex, as [16] (see also [8])

F (G) =
∑
i�j

(d2i + d2j) .

The F -coindex has almost the same predictive ability for a chemically relevant property

of a non-trivial class of molecules as (1) (see [45]). The authors of [45] use the name

Lanzhou index for the F -coindex.

It was discovered that the following connection between F -coindex, M1(G) and F (G)

exists [8, 16,40]

F (G) = (n− 1)M1(G)− F (G). (2)

Various generalizations of the first Zagreb index have been proposed. In [25] a so

called general zeroth–order Randić index was introduced. It is defined as

0Rα(G) =
n∑
i=1

dαi ,

where α is an arbitrary real number. It is also met under the names the first general

Zagreb index [29] and variable first Zagreb index [31]. More about this topological index

can be found in [2, 36].

For specific values of α, specific notations and names are being used. Thus, for α = −1,

the inverse degree index [13]

ID(G) =
n∑
i=1

1

di

is obtained.

In this paper we further discuss some properties of the forgotten index and coindex.

Considering the fact that obtaining the exact and easy to compute formula for various
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topological indices is not always possible, it is useful to know approximating expressions.

We obtain some inequalities related to the forgotten index and coindex and other graphical

parameters. The rest of the paper is organized as follows. In Section 2, we recall some

analytical inequalities for real number sequences that are used in the proofs of theorems.

Section 3 is devided into three subsections. In Subsections 3.1 and 3.2 several inequalities

involving lower and upper bounds for the F (G) and F (G) are derived. Also, we establish

some relations between the F–index and/or F–coindex and some of the aforementioned

indices. As the structures of many molecules are tree like, in Subsection 3.3 we obtain a

number of results for forgotten index and coindex when a graph has tree structure.

2 Preliminaries

In this section we recall a couple of analytical inequalities that will be frequently used in

proofs of theorems throughout the paper.

Let p = (pi), i = 1, 2, . . . , n, be a sequence of non-negative real numbers, and a = (ai),

i = 1, 2, . . . , n, a sequence of positive real numbers. Then for any real r, r ≤ 0 or r ≥ 1,

holds [27] (see also [37]) (
n∑
i=1

pi

)r−1 n∑
i=1

pia
r
i ≥

(
n∑
i=1

piai

)r

. (3)

When 0 ≤ r ≤ 1, the opposite inequality is valid. Equality holds if and only if either

r = 0, or r = 1, or p1 = p2 = · · · = pt = 0 and at+1 = · · · = an, for some t, 1 ≤ t ≤ n− 1,

or a1 = a2 = · · · = an.

Let x = (xi) and a = (ai), i = 1, 2, . . . , n, be positive real number sequences. Then

for all r, r ≥ 0, holds [41]

n∑
i=1

xr+1
i

ari
≥

(
n∑
i=1

xi

)r+1

(
n∑
i=1

ai

)r , (4)

with equality holding if and only if r = 0 or x1
a1

= x2
a2

= · · · = xn
an

.

3 Main results

3.1 Bounds for the forgotten topological index

In the next theorem we determine upper bound for F (G) depending on M1(G) and ID(G).
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Theorem 1. Let G be a simple (n,m)-graph without isolated vertices. Then

F (G) ≤ min
{

(∆ + 3δ)M1(G)− 6mδ(∆ + δ) + nδ2(δ + 3∆)−∆δ3ID(G),

(δ + 3∆)M1(G)− 6m∆(∆ + δ) + n∆2(∆ + 3δ)−∆3δID(G)
}
.

(5)

Equality holds if and only if ∆ = d1 = · · · = dt ≥ dt+1 = · · · = dn = δ, for some t,

1 ≤ t ≤ n− 1.

Proof. For any vertex vi ∈ V (G) we have that

(∆− di)(di − δ) ≥ 0,

that is

di +
∆δ

di
≤ ∆ + δ. (6)

After multiplying the above inequality by (di − δ)2 and summing over i, i = 1, 2, . . . , n,

we get
n∑
i=1

(di − δ)2di + ∆δ
n∑
i=1

(di − δ)2

di
≤ (∆ + δ)

n∑
i=1

(di − δ)2,

that is

F (G)− 2δM1(G) + 2mδ2 + ∆δ(δ2ID(G) + 2m− 2nδ) ≤ (∆ + δ)(M1(G)− 4mδ + nδ2),

from which the first inequality in (5) is obtained.

Similarly, after multiplying (6) by (∆ − di)2 and summing over i, i = 1, 2, . . . , n, we

obtain
n∑
i=1

(∆− di)2di + ∆δ
n∑
i=1

(∆− di)2

di
≤ (∆ + δ)

n∑
i=1

(∆− di)2,

that is

F (G)−2∆M1(G)+2m∆2 +∆δ(∆2ID(G)+2m−2n∆) ≤ (∆+ δ)(M1(G)−4m∆+n∆2),

from which the second inequality in (5) is obtained.

Equality in (6) is attained if and only if di ∈ {δ,∆} for every i, i = 1, 2, . . . , n, which

implies that equality in (5) holds if and only if ∆ = d1 = · · · = dt ≥ dt+1 = · · · = dn = δ,

for some t, 1 ≤ t ≤ n− 1.

Remark 1. After multiplying (6) by the appropriate expressions involving di and summing

over i, like in the case of Theorem 1, many inequalities for different vertex–degree–based

topological indices are obtained. We illustrate this with a few examples. For instance,
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after multiplying (6) by di, ∆− di, di − δ, d2i , (∆− di)di and (di − δ)di, respectively, and

summing over i, i = 1, 2, . . . n, we get

M1(G) ≤ 2m(∆ + δ)− n∆δ, (7)

M1(G) ≥ ∆2δID(G) + 2m(δ + 2∆)− n∆(∆ + 2δ),

M1(G) ≤ ∆δ2ID(G) + 2m(2δ + ∆)− nδ(2∆ + δ),

F (G) ≤M1(G)(∆ + δ)− 2m∆δ, (8)

F (G) ≥ (2∆ + δ)M1(G) + n∆2δ − 2m∆(∆ + 2δ), (9)

F (G) ≤ (∆ + 2δ)M1(G) + n∆δ2 − 2mδ(2∆ + δ). (10)

The inequality (7) was proven in [6], while inequalities (9) and (10) in [18, Theorem 2.3].

From (7) and (8), the following inequality follows

F (G) ≤ 2m(∆2 + ∆δ + δ2)− n∆δ(∆ + δ), (11)

which was proven in [33].

The inequality (8) was proven in [26] (see also [33]). In [5] it was proven that

F (G) ≤ (∆ + δ)M1(G)− 2m∆δ +
1

2
(∆− δ)

∑
i∼j

|di − dj| ,

The inequality (8) is stronger than the above one.

The next inequality is a direct consequence of (8)

F (G) ≤ M1(G)2

8m

(√
∆

δ
+

√
δ

∆

)2

.

This inequality was proven in [33] (see also [1]).

Closely related to (8) is the inequality

F (G) ≤ 2(∆ + δ)M1(G)− 4m∆δ − 2M2(G) ,

which was proven in [14] (see also [11, 46]). Its direct consequence is the inequality

F (G) ≤ M1(G)2

4m

(√
∆

δ
+

√
δ

∆

)2

− 2M2(G) ,

which was proven in [14] (see also [46]). A more general inequality was proven in [32]

and [34].

In [12] it was proven that

F (G) ≤ (∆ + δ)(M1(G)− n) + 2m−∆δ(2m− ID(G)) .
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This upper bound for F (G) and the one given by (5) depend on the same parameters. We

have performed a number of tests for various classes of graphs and did not find any graph

for which the above inequality is stronger than (5).

In the next theorem we prove inequalities which reveal relations between M1(G) and

F (G).

Theorem 2. Let G be a simple (n,m)-graph of size n ≥ 2. Then

((n− 1)∆− 2m+ δ)(∆M1(G)− F (G)− (∆− δ)δ2) ≥ ((2m− δ)∆−M1(G) + δ2)2 (12)

and

(2m−∆− (n− 1)δ)(F (G)− δM1(G)− (∆− δ)∆2) ≥ (M1(G)− (2m−∆)δ−∆2)2. (13)

Equality in (12) holds if and only if ∆ = d1 = · · · = dt ≥ dt+1 = · · · = dn−1 ≥ dn = δ, for

some t, 1 ≤ t ≤ n − 2. Equality in (13) is attained if and only if ∆ = d1 ≥ d2 = · · · =

dt ≥ dt+1 = · · · = dn = δ, for some t, 2 ≤ t ≤ n− 1.

Proof. For r = 2, the inequality (3) can be considered in the following form

n−1∑
i=1

pi

n−1∑
i=1

pia
2
i ≥

(
n−1∑
i=1

piai

)2

.

Now, for pi = ∆− di, ai = di, i = 1, 2, . . . , n− 1, the above inequality transforms into

n−1∑
i=1

(∆− di)
n−1∑
i=1

(∆− di)d2i ≥

(
n−1∑
i=1

(∆− di)di

)2

,

that is (
n∑
i=1

(∆− di)− (∆− δ)

)(
n∑
i=1

(∆− di)d2i − (∆− δ)δ2
)

≥

(
n∑
i=1

(∆− di)di − (∆− δ)δ

)2

,

(14)

from which we obtain (12).

Similarly, for r = 2 the inequality (3) can be considered as

n∑
i=2

pi

n∑
i=2

pia
2
i ≥

(
n∑
i=2

piai

)2

.

For pi = di − δ, ai = di, i = 2, 3, . . . , n, this inequality becomes

n∑
i=2

(di − δ)
n∑
i=2

(di − δ)d2i ≥

(
n∑
i=2

(di − δ)di

)2

,
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that is (
n∑
i=1

(di − δ)− (∆− δ)

)(
n∑
i=1

(di − δ)d2i − (∆− δ)∆2

)

≥

(
n∑
i=1

(di − δ)di − (∆− δ)∆

)2

,

(15)

from which (13) is obtained.

Equality in (14), and consequently in (12), holds if and only if ∆ = d1 = · · · = dt ≥

dt+1 = · · · = dn−1 ≥ dn = δ, for some t, 1 ≤ t ≤ n− 2.

Equality in (15), and, hence, in (13), holds if and only if ∆ = d1 ≥ d2 = · · · = dt ≥

dt+1 = · · · = dn = δ, for some t, 2 ≤ t ≤ n− 1.

3.2 Bounds for the forgotten topological coindex

In the next theorem we determine a connection between condices F (G) and M1(G) and

index ID(G).

Theorem 3. Let G be a simple (n,m)-graph, n ≥ 2, without isolated vertices. Then

F (G) ≤ (∆ + 2δ)M1(G) + ∆δ2
(
(n− 1)ID(G)− n)− δ(2∆ + δ)(n(n− 1)− 2m) . (16)

Equality holds if and only if ∆ = d1 = · · · = dt ≥ dt+1 = · · · = dn = δ, for some t,

1 ≤ t ≤ n− 1.

Proof. After multiplying (6) by (n − 1 − di)(di − δ) and summing over i, i = 1, 2, . . . n,

we get

n∑
i=1

(n− 1− di)(di − δ)di + ∆δ
n∑
i=1

(n− 1− di)(di − δ)
di

≤ (∆ + δ)
n∑
i=1

(n− 1− di)(di − δ),

that is

F (G)− δM1(G) + ∆δ
(
n(n− 1)− 2m− δ(n− 1)ID(G) + nδ

)
≤

≤ (∆ + δ)(M1(G)− δ(n(n− 1)− 2m)
)
,

from which (16) is obtained.

Remark 2. In [19] the following inequality was proved

F (G) ≤ (∆ + δ)M1(G)−∆δ(n(n− 1)− 2m) .

We have performed a number of tests for various types of graphs, and did not find any

graph for which the above inequality is stronger than (16).
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By the similar arguments as in case of Theorem 3, the following result can be proven.

Theorem 4. Let G be a simple (n,m)-graph without isolated vertices. Then

F (G) ≤ (∆ + δ)M1(G)−∆δ((n− 1)2ID(G)− 2n(n− 1) + 2m).

Equality holds if and only if ∆ = d1 = · · · = dt ≥ dt+1 = · · · = dn = δ, for some t,

1 ≤ t ≤ n− 1.

In the following theorem we reveal a connection between F (G) and ID(G).

Theorem 5. Let G be a simple (n,m)-graph, n ≥ 3, without isolated vertices. Then(
(n− 1)

(
ID(G)− ∆ + δ

∆δ

)
− n+ 2

)2 (
F (G)− (n− 1)(∆2 + δ2) + ∆3 + δ3

)
≥ ((n− 1)(n− 2)− 2m+ δ + ∆)3 .

(17)

Equality holds if and only if ∆ = d1 ≥ d2 = · · · = dn−1 ≥ dn = δ, or n − 1 = ∆ = d1 =

· · · = dt ≥ dt+1 = · · · = dn−1 ≥ dn = δ, for some t, 1 ≤ t ≤ n− 2.

Proof. For r = 3, the inequality (3) can be considered in the following form(
n−1∑
i=2

pi

)2 n−1∑
i=2

pia
3
i ≥

(
n−1∑
i=2

piai

)3

.

For pi = n−1−di
di

, ai = di, i = 2, 3, . . . , n− 1, the above inequality transforms into(
n−1∑
i=2

n− 1− di
di

)2 n−1∑
i=2

(n− 1− di)d2i ≥

(
n−1∑
i=2

(n− 1− di)

)3

,

that is (
n∑
i=1

n− 1− di
di

− n− 1−∆

∆
− n− 1− δ

δ

)2

×

(
n∑
i=1

(n− 1− di)d2i − (n− 1−∆)∆2 − (n− 1− δ)δ2
)

≥

(
n∑
i=1

(n− 1− di)− (n− 1−∆)− (n− 1− δ)

)3

,

(18)

from which we obtain (17).

Equality in (18), and consequently in (17), holds if and only if d2 = · · · = dn−1, or

n− 1 = ∆ = d1 = · · · = dt ≥ dt+1 = · · · = dn−1 ≥ dn = δ, for some t, 1 ≤ t ≤ n− 2.

In the following theorem we establish relationship between topological coindices F (G)

and ID(G).
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Theorem 6. Let G be a simple (n,m)-graph, n ≥ 3, without isolated vertices. Then(
ID(G)− n− 1−∆

∆2
− n− 1− δ

δ2

)(
F (G)− (n− 1−∆)∆2 − (n− 1− δ)δ2

)
≥ (2m− 2(n− 1) + ∆ + δ)2 .

(19)

Equality holds if and only if ∆ = d1 ≥ d2 = · · · = dn−1 ≥ dn = δ, or n − 1 = ∆ = d1 =

· · · = dt ≥ dt+1 = · · · = dn−1 ≥ dn = δ, for some t, 2 ≤ t ≤ n− 1.

Proof. For r = 2, the inequality (3) can be considered as

n−1∑
i=2

pi

n−1∑
i=2

pia
2
i ≥

(
n−1∑
i=2

piai

)2

.

Now, for pi = n−1−di
d2i

, ai = d2i , i = 2, 3, . . . , n− 1, the above inequality transforms into

n−1∑
i=2

n− 1− di
d2i

n−1∑
i=2

(n− 1− di)d2i ≥

(
n−1∑
i=2

(n− 1− di)

)2

,

that is (
n∑
i=1

n− 1− di
d2i

− n− 1−∆

∆2
− n− 1− δ

δ2

)

×

(
n∑
i=1

(n− 1− di)d2i − (n− 1−∆)∆2 − (n− 1− δ)δ2
)

≥

(
n∑
i=1

(n− 1− di)− (n− 1−∆)− (n− 1− δ)

)2

.

(20)

Since

ID(G) =
∑
i�j

(
1

d2i
+

1

d2j

)
=

n∑
i=1

n− 1− di
d2i

and F (G) =
n∑
i=1

(n− 1− di)d2i ,

from the above we obtain (19).

Equality in (20), and therefore in (19), holds if and only if d2 = · · · = dn−1, or

n− 1 = ∆ = d1 = · · · = dt ≥ dt+1 = · · · = dn−1 ≥ dn = δ, for some t, 2 ≤ t ≤ n− 1.

In the following theorem we establish relationship between topological indices F (G)

and ID(G) and coindices F (G) and ID(G).

Theorem 7. Let G be a simple (n,m)-graph without isolated vertices. Then√
ID(G)F (G) +

√
ID(G)F (G) ≥ n(n− 1). (21)

Equality holds if and only if G is a regular graph.
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Proof. Let G be a simple (n,m)-graph such that di 6= 0 and di 6= n − 1. Then we have

that

ID(G) =
∑
i�j

(
1

d2i
+

1

d2j

)
=

n∑
i=1

n− 1− di
d2i

=
n∑
i=1

(n− 1− di)2

(n− 1− di)d2i
. (22)

On the other hand, for r = 1, xi = n− 1− di, ai = (n− 1− di)d2i , i = 1, 2, . . . , n, the

inequality (4) becomes

n∑
i=1

(n− 1− di)2

(n− 1− di)d2i
≥

(
n∑
i=1

(n− 1− di)

)2

n∑
i=1

(n− 1− di)d2i

. (23)

From (22) and (23) we get

ID(G) ≥ (n(n− 1)− 2m)2

F (G)
,

i.e. √
ID(G)F (G) ≥ n(n− 1)− 2m. (24)

Further, for r = 2, pi = 1
di

, ai = d2i , i = 1, 2, . . . , n, the inequality (3) transforms into

n∑
i=1

1

di

n∑
i=1

d3i ≥

(
n∑
i=1

di

)2

,

wherefrom it follows √
ID(G)F (G) ≥ 2m. (25)

The inequality (21) is obtained by combining (24) and (25).

Equality in (24) holds if and only if 1
d21

= · · · = 1
d2n

, di 6= 0 and di 6= n − 1. Since for

G ∼= Kn the equality is attained in (21), it follows that equality in (21) holds if and only

if G is a regular graph.

In the same manner as in Theorem 7, the following result can be proved.

Theorem 8. Let G be a simple (n,m)-graph without isolated vertices such that G is

without isolated vertices as well. Then√
ID(G)F (G) +

√
ID(G)F (G) ≥ n(n− 1)

and √
ID(G)F (G) +

√
ID(G)F (G) ≥ n(n− 1).

Equalities hold if and only if G is a regular graph.
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3.3 Bounds of the forgotten index and coindex for graphs with
tree structure

In this section we present results for the forgotten index and coindex when graph G is a

tree.

The next theorem establishes bounds for F (T ) in terms of order n and maximal vertex

degree ∆.

Theorem 9. Let T be a tree with n vertices. If n ≥ 4, then

F (T ) ≥ ∆3 + 2 +
(2(n− 2)−∆)3

(n− 3)2
. (26)

Equality holds if and only if a tree T is such that ∆ = d1 ≥ d2 = · · · = dn−2 ≥ dn−1 =

dn = δ = 1.

Proof. For r = 2 the inequality (3) can be considered as

n−2∑
i=2

pi

n−2∑
i=2

pia
2
i ≥

(
n−2∑
i=2

piai

)2

. (27)

For pi = ai = di, i = 2, 3, . . . , n− 2, this inequality becomes

n−2∑
i=2

di

n−2∑
i=2

d3i ≥

(
n−2∑
i=1

d2i

)2

,

that is (
n∑
i=1

di −∆− dn−1 − δ

)(
n∑
i=1

d3i −∆3 − d3n−1 − δ3
)

≥

(
n∑
i=1

d2i −∆2 − d2n−1 − δ2
)2

,

from which we get

F (G) ≥ ∆3 + d3n−1 + δ3 +

(
M1(G)−∆2 − d2n−1 − δ2

)2
2m−∆− dn−1 − δ

. (28)

On the other hand, for pi = 1, ai = di, i = 2, 3, . . . , n− 2, the inequality (27) becomes

n−2∑
i=2

1
n−2∑
i=2

d2i ≥

(
n−2∑
i=2

di

)2

,

wherefrom we obtain

M1(G) ≥ ∆2 + d2n−1 + δ2 +
(2m−∆− dn−1 − δ)2

n− 3
. (29)
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From (28) and (29) it follows

F (G) ≥ ∆3 + d3n−1 + δ3 +
(2m−∆− dn−1 − δ)3

(n− 3)2
. (30)

Let G ∼= T be a tree with n ≥ 4 vertices. Since every tree has at least two vertices of

degree 1, for m = n− 1, dn−1 = δ = 1, from (30) we arrive at (26).

Equality in (29), i.e. in (30), holds if and only if d2 = · · · = dn−2, which implies that

equality in (26) holds if and only if T is a tree with the property ∆ = d1 ≥ d2 = · · · =

dn−2 ≥ dn−1 = dn = δ = 1.

Corollary 1. Let T be an arbitrary tree with n ≥ 2 vertices. Then

8n− 14 ≤ F (T ) ≤ (n− 1)(n2 − 2n+ 2). (31)

Equality in the left-hand side of (31) holds if and only if T ∼= Pn, whereas in the right-hand

side if and only if T ∼= K1,n−1.

Proof. The function f(x) = x3 +2+ (2(n−2)−x)3
(n−3)2

, n ≥ 4, is an increasing function for x ≥ 2.

Since ∆ ≥ 2, it follows that f(∆) ≥ f(2), and from (26) the left-hand side of (31) is

obtained.

From (11) we have that

F (T ) ≤ 2(n− 1) + ∆(∆ + 1) . (32)

Now, consider the function g(x) = 2(n− 1) + (n− 2)x(x+ 1). It is an increasing function

for x ≥ 1. For ∆ ≤ n − 1, we have that g(∆) ≤ g(n − 1), and from (32) we get the

right-hand side of (31).

The inequalities (31) were proven in [30].

In [17] it was proven that

16n− 30− 2M2(T ) ≤ F (T ) ≤ n2(n− 1)− 2M2(T ) .

The inequalities (31) are stronger than the above ones.

By the similar arguments as in case of Theorem 9, according to (29) and (7), the

following result is obtained.

Theorem 10. Let T be a tree with n vertices. If n ≥ 4, then

M1(T ) ≥ ∆2 + 2 +
(2(n− 2)−∆)2

n− 3
. (33)
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If n ≥ 2, then

M1(T ) ≤ 2(n− 1) + (n− 2)∆. (34)

Equality in (33) holds if and only if T is a tree with the property ∆ = d1 ≥ d2 = · · · =

dn−2 ≥ dn−1 = dn = δ = 1. Equality in (34) is attained if and only if a tree T is such that

∆ = d1 = · · · = dt ≥ dt+1 = · · · = dn = δ = 1, for some t, 2 ≤ t ≤ n− 2.

Remark 3. The inequality (34) is stronger than inequality

M1(T ) ≤ n(n− 3) + 2(∆ + 1),

proven in [7].

Corollary 2. Let T be an arbitrary tree with n ≥ 2 vertices. Then

4n− 6 ≤M1(T ) ≤ n(n− 1). (35)

Equality in the left-hand side of (35) holds if and only if T ∼= Pn, while in the right-hand

side if and only if T ∼= K1,n−1.

Remark 4. The inequalities (35) were proven in [22] (see also [30]).

Corollary 3. Let T be an arbitrary tree with n vertices. If n ≥ 4, then

F (T ) + F (T ) ≥ (n− 1)

(
∆2 + 2 +

(2(n− 2)−∆)2

n− 3

)
.

If n ≥ 2, then

F (T ) + F (T ) ≤ (n− 1)(2(n− 1) + (n− 2)∆).

Equality in the first inequality holds if and only if T is a tree such that ∆ = d1 ≥ d2 =

· · · = dn−2 ≥ dn−1 = dn = δ = 1. Equality in the second inequality is attained if and

only if a tree T is such that ∆ = d1 = · · · = dt ≥ dt+1 = · · · = dn = δ = 1, for some t,

2 ≤ t ≤ n− 1.

Corollary 4. Let T be an arbitrary tree with n vertices. Then

2(n− 1)(2n− 3) ≤ F (T ) + F (T ) ≤ n(n− 1)2.

Equality in the left-hand side holds if and only if T ∼= Pn, while in the right-hand side if

and only if T ∼= K1,n−1.
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Theorem 11. Let T be an arbitrary tree with n vertices. If n ≥ 4, then

F (T ) + F (T ) ≥ (n− 1)

(
(n− 1)2(n− 4) + ∆2 + 2 +

(2(n− 2)−∆)2

n− 3

)
. (36)

If n ≥ 2, then

F (T ) + F (T ) ≤ (n− 1)((n− 1)2(n− 4) + 2(n− 1) + (n− 2)∆). (37)

Equality in (36) holds if and only if a tree T is such that ∆ = d1 ≥ d2 = · · · = dn−2 ≥

dn−1 = dn = δ = 1. Equality in (37) is attained if and only if a tree T has a property

∆ = d1 = · · · = dt ≥ dt+1 = · · · = dn = δ = 1, for some t, 2 ≤ t ≤ n− 1.

Proof. Since [16]

F (T ) + F (T ) = (n− 1)M1(T )

and

M1(T ) = (n− 1)2(n− 4) +M1(T ),

we have that

F (T ) + F (T ) = (n− 1)((n− 1)2(n− 4) +M1(T )).

From the above and (33) and (34), we get (36) and (37).

Corollary 5. Let T be an arbitrary tree with n ≥ 2 vertices. Then

(n− 1)(n− 2)(n2 − 4n+ 5) ≤ F (T ) + F (T ) ≤ (n− 1)2(n− 2)2.

Equality in the left-hand side holds if and only if T ∼= Pn, and in the right-hand side if

and only if T ∼= K1,n−1.

In what follows we prove inequalities of the Nordhaus–Gaddum type [39] for F (G)

and F (G) when G has a tree structure.

Theorem 12. Let T be an arbitrary tree with n vertices. If n ≥ 4, then

F (T ) + F (T ) ≥ (n− 1)

(
(n− 6)(n− 1)2 + 3∆2 + 6 +

3(2(n− 2)−∆)2

n− 3

)
. (38)

If n ≥ 2, then

F (T ) + F (T ) ≤ (n− 1)((n− 6)(n− 1)2 + 6(n− 1) + 3(n− 2)∆). (39)

Equality in (38) holds if and only if tree T is such that ∆ = d1 ≥ d2 = · · · = dn−2 ≥

dn−1 = dn = δ = 1. Equality in (39) is attained if and only if tree T is such that

∆ = d1 = · · · = dt ≥ dt+1 = · · · = dn = δ = 1, for some t, 1 ≤ t ≤ n− 2.
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Proof. In [16] (see also [8]) it was proven that

F (G) + F (G) = (n− 1)(n(n− 1)2 − 6m(n− 1) + 3M1(G)),

therefore for G ∼= T we have that

F (T ) + F (T ) = (n− 1)((n− 6)(n− 1)2 + 3M1(T )).

From the above and (33) and (34) we obtain (38) and (39).

Corollary 6. Let T be an arbitrary tree with n ≥ 2 vertices. Then

(n− 1)(n3 − 8n2 + 25n− 24) ≤ F (T ) + F (T ) ≤ (n− 1)2(n2 − 4n+ 6).

Equality in the left-hand side holds if and only if T ∼= Pn, and in the right-hand side if

and only if T ∼= K1,n−1.

In a similar way, the following results are obtained.

Theorem 13. Let T be an arbitrary tree with n vertices. If n ≥ 2, then

F (T ) + F (T ) ≥ (n− 1)(n− 2)(2n− 2−∆). (40)

If n ≥ 4, then

F (T ) + F (T ) ≤ (n− 1)

(
2(n− 1)2 −∆2 − 2− (2(n− 2)−∆)2

n− 3

)
. (41)

Equality in (40) is attained if and only if tree T is such that ∆ = d1 = · · · = dt ≥ dt+1 =

· · · = dn = δ = 1, for some t, 1 ≤ t ≤ n− 2. Equality in (41) holds if and only if tree T

is such that ∆ = d1 ≥ d2 = · · · = dn−2 ≥ dn−1 = dn = δ = 1.

Corollary 7. Let T be an arbitrary tree with n ≥ 2 vertices. Then

(n− 1)2(n− 2) ≤ F (T ) + F (T ) ≤ 2(n− 1)(n− 2)2.

Equality in the left-hand side holds if and only if T ∼= K1,n−1, and in the right-hand side

if and only if T ∼= Pn.
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