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Abstract

A chemical tree is a tree that has no vertex of degree greater than 4. We denote
the set of chemical trees with n vertices as C,,. The ABC index of a chemical tree

T is defined as
i+j—2
ABC (T) = E mij (T) | ———,
— 1]
1<i<j<4

where m; ; (T) is the number of edges in T joining vertices of degree i and j. Furtula,
Graovac and Vukicevié in 2009 found trees with maximal ABC index among all trees
in Cp, when n =1 mod 4. In this paper we find the trees with maximal ABC index
in C, for all n. Using the same technique, we find the trees with maximal e“A%¢ and
minimal e94 over C, for all n, where

i+j—2
AT = 3 mi(T)eV S
1<i<j<4

and
2V

9A(T) = Z mi; (T)e i .

1<i<j<4
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1 Introduction

Let T be a tree with n vertices. We denote by n; = n; (T') the number of vertices in T
of degree j, and by m;; = m;; (T') the number of edges in T" joining vertices of degree ¢
and j. A chemical tree is a tree that has no vertex of degree greater than 4. We denote
the set of chemical trees with n vertices as C,,. The following relations are well known for
a chemical tree T' € C,,.

2maig Mg +Fmisz+mig =g
Mg+ 2Myo + Moz + Moy = 21y

, 1
myz+ ma3 + 277’L3,3 +mgy = 3ng ’ ( )
Mg+ My + may + 2myy = 4ny

ny+ng +ng+ng=n, (2)

and

Z m;j=mn—1. (3)

1<i<j<4

A vertex-degree-based (VDB) topological index defined over C,, is a function ¢ : C,, —

R induced by numbers {¢(i, j)}(; cx» Where
K={(i,j) e NxN:1<i<j<4},
defined for every T € C, as
P(T) =D mi; (1), j). (4)
(i.§)eK

In the particular case when ¢(i,j) = ﬁ we obtain the connectivity index y, introduced
by Randié¢ in 1975 [27], one of the best known and widely used molecular descriptor in
QSPR/QSAR studies [32,33]. However, in this paper our main concern is the atom-
bond connectivity index (ABC) proposed by Estrada et al. in [14], a valuable predictive
molecular descriptor in the study of heat formation in alkanes [14,15]. It is defined as in
(4), where ¢(i,7) = % Also we will study e*5, the exponential of ABC induced
by the numbers ¢(i,j) = e\/@ [26]. For recent results on ABC and e*5¢ we refer
to [3,4,6,7,11,13,16, 19,30, 35, 36].

Furtula, Graovac and Vukicevi¢ considered in 2009 [17] the problem of finding the trees
with maximal ABC among all trees in C,. They showed that when n = 4k +1 (k > 1),
the tree Tj shown in Table 1 has maximal ABC index over C,. In this paper we give the

ABC

complete solution for all n to the maximal ABC and e over C,. The results are shown
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Table 1. Maximal trees with respect to ABC and e8¢ indices over C,

Maximal ABC Maximal eABC
IR St
n=4k+1 Ty, 0—0—0O—0—0—0—0 o—?—o T o—c‘)—o—?—o—‘o—o o—‘o—o
o ° ° o ° .
(k>1) T P 1 T P =)
oo ° ° ° oo ° ° °
n =4k I | | | I | | |
Py o—c‘)—c‘)—o—?—o—?—o o—?—o Py o—c‘)—c‘)—o—?—o—?—o o—0—o
(k>2) o o ° ° ° o o ° °
—_ | B} —_ | )
T z =) T z =)
?TT ¢ ? ?fT ot !
n=4k+3 Qk o—c‘n—c‘)—c‘)—o—?—o—o—o o—?—o Qr o—c‘n—c‘z—c‘)—o—‘o—o—?—o o—?—o
o0 o ° ° ° o0 O . ° °
(k>2) —_ —_ —_ —_
T z =) T z =)
o 0 o
L/
T 79 9.t i 779¢% !
n=4k+2 T 0-0—0—0—-0—0—0—0—0—0 0—0—0 Ry 0—0—0—0—0—0—-0—0—0—0 o—?—o
(k>3) o o ° ] . 00O O ° °
= —_ [— —_ —_
T pl 73 T P =

in Table 1. As you can see, when n = 4k + 2 (k > 3), the maximal value of ABC and the
maximal value of B¢ are attained in different trees.

Another important VDB topological index is the geometric-arithmetic index G.A, in-
troduced by Vukicevi¢ and Furtula in 2009 [34], defined for a chemical tree T as in (4),
with ¢(i,7) = %;7 For recent results in GA see ( [1,2,5,18,20-25,28,29,31]) and the
survey [10]. The minimal value of GA over C, was solved in [34] for all n. In this paper
we consider the exponential of GA [26], denoted by €94, and induced by the numbers
(i, j) = 3 in (4). We solve the minimal value of e94 over C,, for all n. The results
are shown in Table 2. We note in this case that when n = 3k + 1, the minimal value of
GA and the minimal value of €94 are attained in different trees.

The maximal value of e**¢ and the minimal value of €94 over C, were both open

problems proposed in [9].
2 Operations in chemical trees

There are three functions which play an important role in the variation of a VDB topo-

logical index ¢, when operations are performed in chemical trees:

F@a)=p2p) —eB ] +[0(2,4q9—-¢3 9], (5)

gpar) = [p2p) -9l +pB,q9—v4,9)]
+lp3,7) =9 (4,1)], (6)
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Table 2. Minimal trees with respect to G.A and €94 indices over C,
Minimal GA Minimal 94
7Y 00 7Y o0
SR e oo o i omgo-te tase
(k}l) O e e L N o e e L N
T = T =
o] o e e L N J (o] (o BN ) [ BN J
n =3k [1d 1 L1 I
O G O O G B e omgmomg=p e e
(k>3) o] O e e L N (o] o e e L N
i —_ —_t —_
12 k-3 12 k=3
o]
O1.°
OO O e e [ BN J o] [e] (o BN ) [ BN J
n=3k+1 y i i |
Gh 0740048 §3-e | G 0--0-g-o--g-g-e p-oe
(k>4) [e] (ol BN ) L BN o] [e] (ol BN ) L BN
i —_ i —_
12 k—4 1 2 k—4
and
hp,g,rs) = [pB3.p) =@ p)]+1p(3,9) =¥ (2,9)]

where p, q,r, s are integers such that 1 < p,q,r,s < 4. In fact, these functions appear

when we perform the operations described below.

Proposition 2.1. (Operation 1) Let ¢ be a VDB topological index. Let xy be an edge of

+lBr) = )] +p(3,5) — ¢4, 9)],

T such that d, = d, = 2 and T as in Figure 1. Then

Proof. Note that

¢ (T) = o(T) = f (daydy) + 9 (2,2) — ¢ (1,3).

O

T

O

Figure 1. Operation 1 on 7.

©(2,da) +¢(2,2) + ¢ (2,ds)

—¥ (17 3) - ¥ (3, da) - (37 db)

f(dasdb) +§0(2>2) _99(173)'
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Proposition 2.2. (Operation 2) Let ¢ be a VDB topological index. Let xy be an edge of
T such that d, = 2,d, = 3 and T as in Figure 2. Then

¢ (T) = o(T) = g (dus dpydo) + 9 (2,3) — 0 (1,4). (9)

Q Q
OrrdO T
T C o

Figure 2. Operation 2 on 7.

Y

o——
b

Proof. In fact,

©
3
I
;S
G
Il

©(2,da) +9(2,3) + 0 (3,dp) + ¢ (3,d)
—p (174) - (47 da) - (47 db) - (4dr)
g (da7db7d6) + (2~3) - (1>4) .

Proposition 2.3. (Operation 3) Let ¢ be a VDB topological index. Let xy be an edge of
T such that d, = d, = 3 and T as in Figure 3. Then

@ (T) = o(T) = h(day dy, dey de) + 9 (3,3) — 0 (2,4) . (10)

Q0 GO

b c

Ot O

Figure 3. Operation 3 on 7.

Proof. Note that

2 (T) - Lp(T) = @ (37 da) + ® (37 db) + ® (3’ 3) + ® (3~ d(‘) + ® (37 de)
—p (2= db) - (27 4) - ¥ (47 da) - (4a dc) - ¥ (4¢ de)
= h(da7db7dc‘,d€)+¢(373) _@(234)'
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It is of great interest to us to determine the sign of ¢ (T') — (T'), because this infor-
mation indicates whether ¢ increases or decreases when the correspondent operation is
carried out. We will do this for the topological indices ABC, e*5¢ and 9.

We begin with Operation 1. Let us denote by p = d, (T) and ¢ = d, (T) in Figure
1. Without loosing generality, we may assume that 1 < p < ¢ < 4. The values of

@ (T) — ¢(T) are given in Table 3.

Table 3. Values of ¢ (T) — gp(f ) in Operation 1 for ABC, e*B¢ and ¢94 indices

ABC ABC eGA
-0.069 -0.154 0.341
-0.048 -0.113 0.272
-0.029 -0.074 0.232
-0.007 -0.033 0.163

0.014 0.008 0.094

ABC cABC e9A
-0.328 -0.703 0.720
-0.219 -0.469 0.585
-0.178 -0.389 0.476
-0.157 -0.348 0.407
-0.109 -0.234 0.450

N = = = =TT

N = W N0
=W w N NT
s W o W

Now we consider Operation 2. Assume that p = d, (T) and ¢ = d, (T) ,r = d.(T) in
Figure 2. Clearly 1 < p < 4 and we may assume that 1 < ¢ < r < 4. Then the values of

~

¢ (T) — ¢(T) are given in Table 4.

Table 4. Values of ¢ (T') — go(f) in Operation 2 for ABC, % and €94 indices

ABC eABC A
-0.196  -0.458 0.716
-0.147 -0.343 0.660
-0.126 -0.302 0.591
-0.114 -0.281 0.536
-0.097 -0.228 0.605
-0.076  -0.187 0.536
-0.064 -0.166 0.481
-0.055 -0.147 0.467
-0.043 -0.125 0.412
-0.031 -0.104 0.356
-0.163 -0.396 0.591
-0.114 -0.281 0.536
-0.093 -0.240 0.467
-0.081 -0.219 0.411
-0.064 -0.166 0.481
-0.043 -0.125 0.412
-0.031 -0.104 0.356
-0.022  -0.084 0.343
-0.010 -0.063 0.287

0.002 -0.042 0.232

ABC eABC e9A
-0.417 -0.928 1.084
-0.367 -0.814 1.029
-0.346 -0.773  0.960
-0.334 -0.751 0.904
-0.318 -0.699 0.973
-0.297 -0.658 0.904
-0.285 -0.637 0.849
-0.275 -0.617 0.835
-0.264 -0.596 0.780
-0.252  -0.574 0.725
-0.258 -0.579 0.893
-0.208 -0.464 0.838
-0.187 -0.423 0.769
-0.175 -0.402 0.714
-0.159 -0.349 0.783
-0.138 -0.309 0.714
-0.126  -0.287 0.658
-0.117 -0.268 0.645
-0.105 -0.246 0.589
-0.093 -0.225 0.534

W WD NN W WNDNDNRFE == =0
R W0 R WO N R WD e s WO R WD R W

NN NNDNDNDRNDNDNDN R = = = =T
o e e e R e e R R W W W W W W W W W w|T
W WN NN R W W N == D
[T N O S  C I NG IO O SO SO N SO SIS \C RN N JUR \O ey )
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Finally, let us consider Operation 3. Set p = do(T),q = dp(T) and r = d.(T), s = d.(T)
in Figure 3. We may assume that 1 < p < ¢ < 4, in other words, we perform Operation
3 by moving the vertex adjacent to z (different from y) with the least degree. We also
assume that 1 <r < s < 4. Moreover, we will apply Operation 3 when p # 2,q # 2,1 # 2,

and s # 2. Then under these conditions, the values of ¢ (T') — ¢(T) are given in Table 5.

Table 5. Values of ¢ (T) — go(f ) in Operation 3 for ABC, eB¢ and ¢94 indices

ABC cABC e9A
-0.180 -0.391 0.606
-0.109 -0.235 0.482
-0.097 -0.214 0.426
-0.039 -0.079 0.358
-0.027 -0.058 0.302
-0.015 -0.036 0.247
-0.168 -0.369 0.551
-0.097 -0.214 0.426
-0.085 -0.192 0.371
-0.027 -0.058 0.302
-0.015 -0.036 0.247
-0.003 -0.015 0.191

ABC e ABC e9A
-0.080 -0.191 0.417
-0.009 -0.035 0.293

0.003 -0.014 0.237
-0.159 -0.350 0.537
-0.147 -0.328 0.482
-0.168 -0.369 0.551
-0.159 -0.350 0.537
-0.088 -0.194 0.413
-0.076  -0.173 0.357
-0.017 -0.038 0.289
-0.005 -0.017 0.233

0.007  0.004 0.178

W W W W WWrE === =g
W W WWWwWkE WwwrF~ Q8
B W W e e e e e
s Wk W R R W W ®»
R R R R R W W W W W wT
L N L S o e
AW W = R W W e
B W W R R Wk W,

3 Maximal value of the ABC index among chemical
trees

The following lemmas are useful in the sequel.

Lemma 3.1. Suppose that xy is an edge of T € C,, such that d, = d,, = 2 as in Figure 1.
If (dg, dy) # (4,4) then we can find a tree T € C,, such that ABC (T) < ABC(T).

Proof. This is a consequence of Proposition 2.1 and Table 3. |

Lemma 3.2. Suppose that xy is an edge of T € C, such that d, = 2 and d, = 3 as
in Figure 2. If dy, # 4 or (dp,d.) # (4,4) then we can find a tree T ¢ C, such that
ABC (T) < ABC(T).

Proof. This is a consequence of Proposition 2.2 and Table 4. |

Lemma 3.3. Suppose that xy is an edge of T € C,, such that d, = d, = 3 as in Figure 3.
If d. =2 for some z € {a,b,c,e}, then we can find a tree T € C, such that ABC (T) <
ABC(T).
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Proof. Assume that d, = 2. Then ax is an edge of T such that d, = 2 and d, = 3.
Moreover, (dy,d,) # (4,4). It follows from Lemma 3.2 that there exists a tree T ec,
such that ABC (T') < ABC(T). [ ]

From now on we will say that a tree 7' € C,, is maximal with respect to ABC over C,
if
ABC (S) < ABC(T),
for all S € C,.
Proposition 3.4. Let n > 10. If T is mazimal with respect to ABC over C,, then
mys(T) =0.

Proof. Assume that my 3 (T) > 0. Then T is of the form depicted in Figure 4, where we

may assume 1 < d. < d, < 4. We consider four cases:

Figure 4. Form of T € C,, when m4 3(T) > 0.

1. d, = 1. Then d. = 1 which implies n = 4, a contradiction.

2. d, = 2. Then zy is an edge of T such that d, = 2,d, = 3. Moreover, (dy,d.) =
(1,d.) # (4,4). By Lemma 3.2 we arrive at a contradiction.

®

b

TO o—e °
a oz y e

Figure 5. Form of T' € C,, when m;3(T) > 0 and d, = 3.

c

3. d, = 3. Then T has the form depicted in Figure 5. By Lemma 3.3, d, # 2,d, # 2,
and d. # 2. Now, since 2y is an edge of T such that d, = d, = 3, we apply
Proposition 2.3 and Table 5 to deduce that d. = 4,d, = d, = 1. In this case, we

construct the tree 7" in Figure 6. Then

ABC (T) — ABC(T') = 3\/g+\/§+\/g+\/%ﬁ
1 3 6
72\@73\/2*\/% (11)
<0
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for all 2 <d, <4. A contradiction. So the only case left is when d, = d, = d, = 1,

but in this case n =9, a contradiction.
/
bo ’:uﬁo .

*—o—0
Y

Figure 6. Operation on T € C,, when m; 3(T) >0, d, =3,dq =dp =1 and d. = 4.

4. d, = 4. Then T has the form depicted in Figure 7. Let 7" be the tree shown in
Figure 7. It follows that

L0 ©Q

w w
—® *o—o — 00— 0——@
x Y b @ Y b
v v
O “ O

Figure 7. Operation on T € C,, when m;3(T) >0, d, =4 and 2 < d,, < 4.

ABC (T) — ABC(T") = ,/d2;2+\/§ﬂ/d§;17\/§<0, (12)

for all 2 < d, < 4. A contradiction. So we may assume that d, = d, = d,, = 1,

. Q

c

Figure 8. Form of T' € C,, when my3(T) >0, dy =4 and dy, = d, = dyy = 1.

as shown in Figure 8. If d. = 1 then n = 7, a contradiction. If d. = 2 then we
get a contradiction by Lemma 3.2. If d. = 3, then we repeat the argument of case
3. So we may assume that d. = 4. In this case we again apply the same operation
considered in Figure 7, to conclude that all three vertices adjacent to ¢ (different

from y) have degree 1, and so n = 10, a contradiction. |
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Proposition 3.5. Let n > 7. If T is mazimal with respect to ABC over C,, then
mio (T) =0.

r O
a oz

Figure 9. Form of T' € C,, when my(T) > 0.

Proof. Assume that my 2 (T) > 0 so T has the form depicted in Figure 9. If d, = 1, then
n = 3, a contradiction. If d, = 2 then az is an edge of T such that d, = d, = 2. Then we
get a contradiction by Lemma 3.1. If d, = 3, then za is an edge of T' such that d, = 2
and d, = 3. So we get a contradiction using Lemma 3.2. So we may assume that d, = 4.

Then we construct the tree 7" shown in Figure 10. Therefore

Q© Q

u u
a x

*—o—60 *—o—0

w x b w oa b

v

O e

Figure 10. Operation on T € C,, when m2(T") > 0 and d, = 4.

ABC (T) — ABC (T') = ,/dji;:? - \E <0, (13)

for all 2 < d,, < 4. Hence we may assume that d, = d, = d,, = 1, but in this case n = 6,

a contradiction. Consequently, my o (T') = 0. ]

Proposition 3.6. Let n > 11. If T is mazimal with respect to ABC over C,, then
ma2 (T) =0.

Figure 11. Operation on T € C,, when my2(T) > 0 and d, = dj = 4.
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Proof. If mas (T) > 0 then T has the form depicted in Figure 1. Then by Lemma 3.1,
d, = d, = 4. Let T' be the tree in Figure 11. Then

ABC (T) — ABC (T') = dz‘j 2 \/g <0, (14)

for all 3 < d,, < 4. So we may assume that all vertices u,v,w,u,v',w’" have degree < 2.

If they are all 1’s, then n = 10, a contradiction. So one of them has degree 2, say d,, = 2.

Then we define the tree T7” in Figure 12. Hence

Figure 12. Operation on T' € C, when maos(T) > 0, dg = dp = 4 and d,, = 2.

ABC (T) — ABC (T") = \[ \f \ﬁf\/? (15)

for all 1 < d, < 4. This is a contradiction. In conclusion, my, (T') = 0. | |

Proposition 3.7. If T is mazimal with respect to ABC over C,, then ms3 (T) = 0.

Proof. If my5(T) > 0 then T has the form depicted in Figure 3. By Lemma 3.3, d, # 2,
dp # 2,d. # 2, and d, # 2. We also know by Proposition 3.4 that d, # 1,dy, # 1,d. # 1,
and d. # 1. Now we apply Proposition 2.3 and Table 5 to deduce that d, = d, = 3 and
de. = d. = 4. Then T has the form shown in Figure 13. Since d, = d, = d, = 3, we repeat
the same argument to the edges bx and az of T to conclude that d, = d, = dy = d, = 4.
Now we define T" as in Figure 13. Then

o

u

Ot O— &
O

~O O 0
¥ el

Figure 13. Operation on T' € C, when m33(T) > 0, dy = dp = 3 and d. = d. = 4.

ABC (T) — ABC (T') = 3\/5- 2\/2- \/g <. (16)
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This is a contradiction. Hence mg 3 (T) = 0. |

Proposition 3.8. If T is mazimal with respect to ABC over C,, then ms3 (T) < 1.

1o 1.

Figure 14. Form of T € C, when my3(T) > 2.

Proof. Assume that ms 3 (T') > 2. By Lemma 3.2, T is of the form depicted in Figure 14,
where d, = dy = d. = d, = d, = d, = 4 (u = ¢ is possible). Define 7" as in Figure 15.
Then

Figure 15. Operation on T € C, when ma3(T) > 2

ABC (T) — ABC (T") _4\/7 \[ \/7<0, (17)

this is a contradiction. Hence, mo 3 (T) < | ]
Proposition 3.9. Let T' be maximal with respect to ABC over C,.

1. If mo3 (T) =0 then ng (T') = 0;

2. If mos (T) =1 then ng (T) = 1.

Proof.

1. Suppose that mo3 (T) = 0 and n3 (T') > 0. Consider the tree T" defined from T as
indicated in Figure 16. From the Propositions 3.4, 3.7 and the fact that mq3 (T') = 0, we
deduce that d, = dy, = d. = d. = 4. Hence

ABC (T) — ABC (T') = 3\/% + \/g - 4@ <0, (18)

a contradiction. Consequently, nz (T') = 0.
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T

CO O O OO

Figure 16. Operation on T € C, when mo3(T) = 0 and n3(T) > 0.

2. Assume that mo3 (T') = 1. Then ng (T') > 1 and T has the form depicted in Figure 17.
As in part 1., it is clear that d, = d, = d. = 4 is not possible. Then by Propositions 3.4
and 3.7, d, = 2 for some z € {a,b, c}. In other words, every vertex of degree 3 has at least
one neighbor of degree 2. Consequently, if ns (T') > 2, then my 3 (T') > 2, a contradiction.

In conclusion, ng (T') = 1. |

Figure 17. Form of T € C,, when mo3(T) =1 and n3(T) > 1.

Corollary 3.10. If T is maximal with respect to ABC over C, then T € U or T € V,
where

U= {T S Cn TMyo =Moo = N3 = O}
or

V:{TGCn:ng:ng:m2>2:0,m2,3:n3:1}.

Proof. 1f T is maximal with respect to ABC over C,, then by Propositions 3.4, 3.5, 3.6,
3.7

myz = mip = Moz =mz3 = 0.

By Proposition 3.8, ma3 < 1. If my3 = 0 then by Proposition 3.9, ng = 0. Hence T € U.
If my 3 = 1, then ng = 1 again by Proposition 3.9 and 7" € V. [ |

Next we compute the ABC index of the trees in & and in V. From now on we use the

following notation:
1 3 1 1 3 1 6

o« = 2(\/;+\/;>’52<\/;_3\/;+2\/16>’
1 3 1 3 5
2<3\/;‘5\[2>’5<2\/;‘5 5+2 12)

2
|
=
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Proposition 3.11. Let T € C,.

1. If T € U then
ABC (T) = an + Bmya +7;

2. If T €V then
ABC (T) = an + Bma + 9.
Proof. 1. If T € U then by relations (1)
mi4 = Ny
Mo 4 = 27L2

My 4+ Mag + 2myq = 4ny

Tt follows from relation (2) that

n = np+ne+ny

1 1
mig4 + §m2,4 + 1 (Mg + Moy + 2myy),

and from relation (3),

n—1=my +mog+myy.
In other words, we have the relations

An = dSmy g + 3Imoy + 2myy
n=myqs+mos+mas+1"

As a consequence, we can express both my 4 and my 4 in terms of n and my 4:

2m1,4 = n+3+ My 4

2moy = N —5—3Mmya.

2ABC(T) = 2!7114\/>+2mz4\/>+2m44\/>

(n+3+m44)\/; +(n—5—3mya) \/7+2m44\/7

(D)o ()
+(3\/§5\/g).

Hence,
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2. If T € V then by relations (1)

mia =Ny
1+ mo 4 = 2712
1 -+ mga = 3

Mig + Mo+ 2+ 2myg = 4ny

In particular, mz4 = 2. It follows from relation (2) that

n = ny+ne+1+ny

1 1
= Mmyq+ 5 (1 + Tng,4) + 1+ Z (m1,4 + mog4 + 2+ 27714,4) R

and from relation (3),
n71:m114+1+m2y4+2+m4v4.
In other words, we have the relations

4n = 5my 4+ 3may +2myy + 8
n=mjq + mo4 + W + 4.

From here we deduce that
27711’4 =n+4+ my.4
2mog4 =n — 12 —3myy

Hence,

2ABC(T) = 2m1_4\/§ + 2m273\/I + Qmm\/I + 2m3‘4\/E + QmM\/E

4 2 2 12 16
(n+4+myy) \/§+ 2\/%* (n—12 —3mya4) \/g+ 4\/%* 2m4,4\/g
(o) () e

Remark 3.12. The coefficient B that appears with my4 in the expression for ABC (T')

when T €U or T €V in Proposition 3.11 is f ~ —1.5275 x 1072 < 0. Hence, the ABC

index is strictly decreasing on my4 over U and over V.

By Corollary 3.10 we know that if T is maximal with respect to ABC over C,, then
T el or T € V. Furthermore, based on the Remark 3.12, we next show that 7" belongs
to

U,':{TEUZH”LA;A:’L-}
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or
Vi={T eV :my,=1i},

for some i =0, 1,2, 3.
Proposition 3.13. Let n be a positive integer. Then:

1. Uy # 0 if and only if n =1 mod 4 (n >5);

2. Uy #0 if and only if n =0 mod 4 (n > 8);

3. Uy # 0 if and only if n =3 mod 4 (n > 11);

4. Us # 0 if and only if n =2 mod 4 (n > 14).

Proof. 1. If n =1 mod 4, say n = 4k + 1 with k£ > 1, then the tree T} defined in Table
1 satisfies

n(Ty) =5+4(k—1)=4k+1=n,

and Ty € Up.
Conversely, assume that 7' € Up. Then by (1) and (3),

Mg+ Moy = 4ny

m1¢4+m2.4 = n—1.

Consequently, n = 4ny + 1 and so n =1 mod 4.

2. If n =0 mod 4, say n = 4k with k > 2, then the tree Py defined in Table 1 satisfies
n(P)=8+4(k—-2)=4k=n,

and P, € U;.
Conversely, assume that P € U;. Then by (1) and (3),

Mg+ Moy +2 = 4dny

[
3

\
—_

Mig + Moy +1

Consequently, n = 4ny and so n =0 mod 4.
3. If n =3 mod 4, say n = 4k + 3 with k£ > 2, then the tree @)} defined in Table 1
satisfies

n(Qr)=114+4(k—2)=4k+3=n
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and Qy € Us.
Conversely, assume that @) € Us. Then by (1) and (3),

Mg +moy+4 = 4dny

m174+m2,4+2 = n—1.

Consequently, n =4 (ny — 1) + 3 and so n =3 mod 4.
4. If n =2 mod 4, say n = 4k + 2 with k£ > 3, then the tree Rj defined in Table 1
satisfies
n(Re)=14+44(k—-3)=4k+2=n
and Ry € Us.
Conversely, assume that R € Us. Then by (1) and (3),

mi4 + Moy + 6 = 4dny
Mig+mos+3 = n—1
Consequently, n =4 (ny — 1) + 2 and so n = 2 mod 4. |

We also have a similar result to Proposition 3.13 relative to the sets V.

Proposition 3.14. Let n be a positive integer.

1. Vo # 0 if and only if n =2 mod 4 (n > 14);
2. Vi #0if and only if n=1 mod 4 (n > 17);
3. Vo # 0 if and only if n =0 mod 4 (n > 20);
4. V3 #0 if and only if n =3 mod 4 (n > 23).

Proof. 1. If n =2 mod 4, say n = 4k + 2 with k > 3, then the tree 7} defined in Table
1 satisfies
n(Ty)=14+4(k—-3)=4k+2=n
and T}, € V.
Conversely, assume that 7" € V,. Then by (1) and (3), m34 = 2 and so

Mig + Moy +2 4ny

n—1.

mia + maa +3
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Consequently, n = 4ny + 2 and so n =2 mod 4.
2. If n =1 mod 4, say n =4k + 1 with k > 4, then the tree P} defined in Figure 18

satisfies
L) e ]
\L/ [ ] [ ] [ ] [ ]
P \ \
e—0—0—0—0—0—0—0—0—0—0 000
k>4 | \ \
[ ] [ ] ° °
—_ L L
1 2 k-4
Figure 18. Tree P| € V;.
n(P)=17T+4(k—4)=4k+1=n,
and P, € V.
Conversely, assume that P’ € V;. Then by (1) and (3), ms4 = 2 and
mia + mo 4 +4 = 4724
m1,4+m2,4+4 = n—1

Consequently, n = 4ny + 1 and so n =1 mod 4.
3. If n =0 mod 4, say n = 4k with k£ > 5, then the tree Q). defined in Figure 19

satisfies
[ ]
[} ‘ [ ]
\./ [ ] [ ] [ ] [ ]
, [ ] \ \
Qk .7.7.7.777 — 7.7.7.777. *—0—0
[ ] [ ] [ ] [ ] [ ]
—_ L —
1 2 k-5

Figure 19. Tree Q) € Vs.

n(Q) =20+4(k—5) =4k =n,

and Q) € Vs.
Conversely, assume that Q" € V,. Then by (1) and (3), ms4 = 2 and

Mg +Mog+6 = 4dny

Mig+mes+5 = n—1

Hence n = 4ny4 and so n =0 mod 4.
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4. If n =3 mod 4, say n = 4k + 3 with £ > 5, then the tree R}, defined in Figure 20

satisfies
L) ® [ ]
[ ] \.‘/ [ ] [ ] [ ] [ ]
® | [ 1 1 \ | |
. 60— 0—0—0—0—0—0—0—0—0—0—0—0 0—0—0
SRS S OEAE G
[ [
1 2 k=5
Figure 20. Tree R € Vs.
n(R,)=23+4(k—5 =4k+3=n
and R}, € V;.

Conversely, assume that R’ € V3. Then by (1) and (3), m34 = 2 and

Mia+moa+8 = 4dny
Mig+mos+6 = n—1
Consequently, n =4 (ny — 1) + 3 and so n =3 mod 4. |

Corollary 3.15. Let T be mazimal with respect to ABC over C,,.
1. Ifn=0 mod 4 thenT € Uy or T € Vy;
2. Ifn=1 mod4 thenT € Uy or T € Vy;
3. Ifn=2 mod 4 thenT € Us or T € Vy;
4. If n=3 mod 4 then T € Uy or T € V.
Proof. By Corollary 3.10, T € U or T' € V. If T' € U then by Proposition 3.11,
ABC (T) = an + fmya (T) + 7.

Consider the following cases:

1. n =0 mod 4. Then by Proposition 3.13, there exists U € U; and my4 (T) #
0,mas (T) # 2 and myy (T) # 3. If T & Uy then myy (T) # 1 and since 8 < 0, we
conclude that

ABC(T) — ABC (U) = 8 (maa (T) — 1) <0,

a contradiction. Hence T € U .
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2. n =1 mod 4. Then by Proposition 3.13, there exists U € Uy and my4 (T) #
1,myq(T) # 2 and myy (T) # 3. If T & Uy then myy(T) # 0 and since § < 0, we
conclude that

ABC(T) — ABC (U) = Py (T) <0,
a contradiction. Hence T' € U,.

3. n = 2 mod 4. Then by Proposition 3.13, there exists U € Us and my4 (T) #
0,mas (T) # 1 and may (T) # 2. It T & Uz then myy (T) # 3 and since § < 0, we
conclude that

ABC (T) — ABC (U) = 8 (my4 (T) —3) <0,
a contradiction. Hence T' € Us.

4. n = 3 mod 4. Then by Proposition 3.13, there exists U € Uy and my4 (T) #
0,mas (T) # 1 and myy (T) # 3. If T & Uy then myy (T) # 2 and since 8 < 0, we
conclude that

ABC(T) — ABC (U) = 8 (ma4 (T) —2) <0,
a contradiction. Hence T' € Us.

If T € V then by Proposition 3.11,
ABC (T) = an + By (T) + 6,

where 6 = (2\/§ - 5\/2 + 24/ %) A similar argument based on Proposition 3.14 shows
that T € Vo if n=0,T €V, ifn=1 mod4;, T € Vyif n =2 mod4; and T € V5 if
n =3 mod 4. |

Theorem 3.16. Let n be a positive integer. The mazximal value of ABC over C, is attained
m

1. Uy ifn=0 mod 4 (n > 38), with mazimal value

2. Uy ifn=1 mod 4 (n>5), with mazimal value

(5 D)3

3. Vo ifn=2 mod 4 (n>14), with mazimal value

1( 3 N 3 1 5
El OV 22 —5y/= +2¢/=.
2<\/;+\[2>"+ \/; "\/;r 12
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4. Us if n =3 mod 4 (n > 11), with mazimal value

1 \/§+\/T/+2/6+5\/§ 11\/T
2 \VaTVa)" 16 2V1 2V
Proof. Let T be maximal with respect to ABC over C,,.
1. If n =0 mod 4 then by Corollary 3.15, T' € U; or T € V,. By Proposition 3.11,

ABC is constant in U with value

an+f+7,

and is constant in Vo with value

an+ 203 + 6.

Now the value of ABC is larger in U; than in Vs since
(an+B+7v) —(an+28+0)=~v—— 0 ~0.06 > 0.

Hence T € U;.
2. If n =1 mod 4 then by Corollary 3.15, T € Uy or T' € V;. By Proposition 3.11,
ABC is constant in Uy with value

an + 7,

and is constant in V; with value

an+ f+6.

Since

(an+7)_(an+ﬁ+5):7—6—6z006>0.

we conclude that T € Up.
3. If n =2 mod 4 then by Corollary 3.15, ' € U3 or T € V,. By Proposition 3.11,

ABC is constant in U3 with value
an+ 38+ 7,

and is constant in V, with value

an + 0.

Since

(an+3B8+7) —(an+68) =38+~ — 5~ —2.0653 x 107% < 0.

it follows that T' € V.
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4. If n =3 mod 4 then by Corollary 3.15, T € U, or T € V3. By Proposition 3.11,

ABC is constant in Uy with value

an+ 28+,
and is constant in V3 with value
an + 30+ 4.
Since
(an+28+7)—(an+38+6)=v— 5 —0~0.06 > 0.
we deduce that T € Us. | |

ABC

4 Maximal value of e among chemical trees

Recall that the exponential of ABC is denoted by eB¢ and defined for a tree T' € C, as

ATy = 5y (1) eV

(i,j)eK

ABC

We will find in this section the maximal value of e over C,. The arguments in the

BC

previous section work for e5¢, mainly because the behaviour of e%¢ in Tables 3-5 is

similar to the behaviour of ABC, in other words, the increasing properties of ABC and

ABC

e are similar when the operations 1-3 are performed. Also, the signs in relations (11),

(12), (13), (14), (15), (16), (17), and (18) hold when ABC is changed to e45¢.

The only difference appears in Table 4, where e8¢

increases even when p = 4 and
(¢,r) = (4,4). This situation has important implications which simplify the analysis of
the study of the maximal value of e“%¢ in C,. In fact, by Proposition 2.2 and Table 4 we

ABC

deduce immediately that if 7" is maximal with respect to e over C,, then my3 (T') = 0.

Hence, we have

Corollary 4.1. If T is maximal with respect to e*B¢ over C, then T € U.
As in Proposition 3.11:

Proposition 4.2. If T € U, then

e\/g + e\/g) n+ % (F’\/% — 36\/g + 26@) My 4

(30\/§ - 59\/g) .

1
ABC
7 = 5(
A (T) =
L1
2
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It is important to note that the companion coefficient of m44 in this expression is
1
5 <e\/§ 3V 4 26\/g> ~ —8.6482 x 107% < 0,

so again e*PC is decreasing on my 4 over U. Consequently, as in Corollary 3.15, we have

ABC

Corollary 4.3. Let T' be mazimal with respect to e over C,,.

1. Ifn=0 mod 4 then T € Uy;
2. Ifn=1 mod 4 then T € Uy;
3. Ifn=2 mod 4 then T € Us;
4. If n =3 mod 4 then T € Us.

ABC

Following the proof of Theorem 3.16 we deduce the maximal value of e”*“ over C,.

ABC

Theorem 4.4. Let n be a positive integer. The mazimal value of e over C, is attained

m
1. Uy ifn=0 mod 4 (n > 38), with mazimal value

% (e\/g-i- e\/g) n+26\/§+ e\/g — 46\/;,

2. Uy ifn=1 mod4 (n>5), with mazimal value
1 (e\/g + e\/g) n+ §e\/§ - ée\/g;
2 2 2

3. Us if n=2 mod 4 (n > 14), with mazimal value

<e\/§ + e\/g> n+ 36\/§ + 36\/g - 76\/2;

1
2
4. Us if n =3 mod 4 (n > 11), with mazimal value

% (e\/g + e\/g> n+ ge\/g — %e\/g + 26\/%.
ABC

In conclusion, the maximal value of e and ABC are attained in the same trees

except when n = 2 mod 4. When n = 2 mod 4 the ABC index attains its maximal

ABC

value in V, and e attains its maximal value in Us.
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5 Minimal value of e94 among chemical trees
e94 is defined for a chemical tree T as
27

9T = Z mi; (T) e .

(i,j)eK

If we look at Tables 3-5 we note that the behavior of ¢94 is even more favorable than
the previous ones but with opposite signs. So when the operations 1-3 are performed,
€94 decreases and the minimal value of €94 over C, is obtained. In fact, the version of

Lemmas 3.1, 3.2, and 3.3 for 94 are as follows:

Lemma 5.1. Let xy be an edge of T € C,, such that d, = d, = 2 as in Figure 1. Then
we can find a tree T € C, such that 94 (T) > e94(T).

Lemma 5.2. Let xy be an edge of T € C, such that d, = 2 and d, = 3 as in Figure 2.
Then we can find a tree T € C,, such that e94 (T) > e9A(T).

Lemma 5.3. Let zy be an edge of T € C,, such that d, = d, = 3 as in Figure 3. If d, =2
for some z € {a,b,c, e}, then we can find a tree T € C, such that 94 (T) > eg““(f).

Note that Lemmas 5.1 and 5.2 already imply that mos (T') = me3(T) = 0 when T is

A

minimal with respect to ¢94 over C,. Moreover, following the results in Section 3, one

proves:
Corollary 5.4. If T is minimal with respect to e9* over C, then T € U.
We also can compute €94 for trees in U as in the previous sections.

Proposition 5.5. If T € U, then

1 Vi VB 1 Vi 2V8 216
ST = = (e% + e%) n+ 3 (e% — 3" + 26%) o

+% <3€2\5/Z — 562Tﬁ) .

Since the companion coefficient of m44 in this expression is

1, . , )
5 (eM _3H 26%@) ~ —1.9722 x 1072 < 0,

it follows that 94 is decreasing on my 4 over . From now on everything changes, because
we are searching for the minimal value of 94 over Y. In other words, we now have to

consider subsets of U with large m44. From equation (20), it is clear that the maximal
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number of my 4 in U occur in the trees Fj, Gy, and Hy shown in Table 2, depending on

the congruence of n modulo 3. So let us define

-9
Uno = {Teu:m44:L};
3 ’ 3
—13
Un-13 = {TGU:m44:n };
3 ’ 3
n—>5
Uns = T EU:myy= .
3 ? 3
Clearly, F}, € Z/{nTw7Gk S Z/[n—SIS, and Hy € L{ng5. It is easy to see that

Proposition 5.6. Let n be a positive integer. Then:
1. L{%s # 0 if and only if n =0 mod 3 (n >9);
2. U% # 0 if and only if n =1 mod 3 (n > 13);
3 Uns # 0 if and only if n =2 mod 3 (n >5).
So we conclude the following:

Corollary 5.7. Let T be minimal with respect to 94 over C,,.

1. Ifn=0 mod 3 (n>9) then T € Uns;

2. Ifn=1 mod3 (n>13) then T € Un-1s;

3. Ifn=2 mod3 (n>5)thenT € Uns.

Finally we obtain:
Theorem 5.8. Let n be a positive integer. The minimal value of 94 over C, is attained
mn

1. Uno if n=0 mod 3 (n >9) with minimal value

% (26¥ + e@) n+ 2€¥ — Sesz;

2. Unoss if n=1 mod 3 (n > 13), with minimal value
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3. Uns ifn=2 mod 3 (n>5) with minimal value

1 (2 ¥ 4 2?@) 4 2 % 5 2\§T6
= [ € n —€ 5 — —€ .
3 3 3

Note that when n = 3k + 1, the minimal value of G.A and the minimal value of ¢94

are attained in different trees (see Table 2).

Acknowledgment: J.M. and J.R. thanks to COLCIENCIAS and UNIVERSIDAD DE
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