On Chemical Trees That Maximize Atom-Bond Connectivity Index, Its Exponential Version, and Minimize Exponential Geometric-Arithmetic Index

Roberto Cruz, Juan Monsalve, Juan Rada
Instituto de Matemáticas, Universidad de Antioquia
Medellín, Colombia
roberto.cruz@udea.edu.co, daniel.monsalve@udea.edu.co
pablo.rada@udea.edu.co

(Received April 17, 2020)

Abstract

A chemical tree is a tree that has no vertex of degree greater than 4 . We denote the set of chemical trees with n vertices as \mathcal{C}_{n}. The $\mathcal{A B C}$ index of a chemical tree T is defined as $$
\mathcal{A B C}(T)=\sum_{1 \leq i \leq j \leq 4} m_{i, j}(T) \sqrt{\frac{i+j-2}{i j}},
$$ where $m_{i, j}(T)$ is the number of edges in T joining vertices of degree i and j. Furtula, Graovac and Vukičević in 2009 found trees with maximal $\mathcal{A B C}$ index among all trees in \mathcal{C}_{n}, when $n \equiv 1 \bmod 4$. In this paper we find the trees with maximal $\mathcal{A B C}$ index in \mathcal{C}_{n} for all n. Using the same technique, we find the trees with maximal $e^{\mathcal{A B C}}$ and minimal $e^{\mathcal{G A}}$ over \mathcal{C}_{n} for all n, where

$$
e^{\mathcal{A B C}}(T)=\sum_{1 \leq i \leq j \leq 4} m_{i, j}(T) e^{\sqrt{\frac{i+j-2}{i j}}}
$$

and

$$
e^{\mathcal{G A}}(T)=\sum_{1 \leq i \leq j \leq 4} m_{i, j}(T) e^{\frac{2 \sqrt{\hat{\jmath}}}{i+j}}
$$

1 Introduction

Let T be a tree with n vertices. We denote by $n_{j}=n_{j}(T)$ the number of vertices in T of degree j, and by $m_{i, j}=m_{i, j}(T)$ the number of edges in T joining vertices of degree i and j. A chemical tree is a tree that has no vertex of degree greater than 4 . We denote the set of chemical trees with n vertices as \mathcal{C}_{n}. The following relations are well known for a chemical tree $T \in \mathcal{C}_{n}$.

$$
\begin{gather*}
2 m_{1,1}+m_{1,2}+m_{1,3}+m_{1,4}=n_{1} \\
m_{1,2}+2 m_{2,2}+m_{2,3}+m_{2,4}=2 n_{2} \\
m_{1,3}+m_{2,3}+2 m_{3,3}+m_{3,4}=3 n_{3} \tag{1}\\
m_{1,4}+m_{2,4}+m_{3,4}+2 m_{4,4}=4 n_{4} \\
n_{1}+n_{2}+n_{3}+n_{4}=n, \tag{2}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{1 \leq i \leq j \leq 4} m_{i, j}=n-1 \tag{3}
\end{equation*}
$$

A vertex-degree-based (VDB) topological index defined over \mathcal{C}_{n} is a function $\varphi: \mathcal{C}_{n} \longrightarrow$ \mathbb{R} induced by numbers $\{\varphi(i, j)\}_{(i, j) \in K}$, where

$$
K=\{(i, j) \in \mathbb{N} \times \mathbb{N}: 1 \leq i \leq j \leq 4\},
$$

defined for every $T \in \mathcal{C}_{n}$ as

$$
\begin{equation*}
\varphi(T)=\sum_{(i, j) \in K} m_{i, j}(T) \varphi(i, j) . \tag{4}
\end{equation*}
$$

In the particular case when $\varphi(i, j)=\frac{1}{\sqrt{i j}}$ we obtain the connectivity index χ, introduced by Randić in 1975 [27], one of the best known and widely used molecular descriptor in QSPR/QSAR studies [32,33]. However, in this paper our main concern is the atombond connectivity index $(\mathcal{A B C})$ proposed by Estrada et al. in [14], a valuable predictive molecular descriptor in the study of heat formation in alkanes [14, 15]. It is defined as in (4), where $\varphi(i, j)=\sqrt{\frac{i+j-2}{i j}}$. Also we will study $e^{\mathcal{A B C}}$, the exponential of $\mathcal{A B C}$ induced by the numbers $\varphi(i, j)=e^{\sqrt{\frac{i+j-2}{i j}}}$ [26]. For recent results on $\mathcal{A B C}$ and $e^{\mathcal{A B C}}$ we refer to $[3,4,6,7,11,13,16,19,30,35,36]$.

Furtula, Graovac and Vukičević considered in 2009 [17] the problem of finding the trees with maximal $\mathcal{A B C}$ among all trees in \mathcal{C}_{n}. They showed that when $n=4 k+1(k \geq 1)$, the tree T_{k} shown in Table 1 has maximal $\mathcal{A B C}$ index over \mathcal{C}_{n}. In this paper we give the complete solution for all n to the maximal $\mathcal{A B C}$ and $e^{\mathcal{A B C}}$ over \mathcal{C}_{n}. The results are shown

Table 1. Maximal trees with respect to $\mathcal{A B C}$ and $e^{\mathcal{A B C}}$ indices over \mathcal{C}_{n}

	Maximal $\mathcal{A B C}$	Maximal $e^{\text {ABC }}$
$\begin{gathered} n=4 k+1 \\ (k \geqslant 1) \end{gathered}$	T_{k}	T_{k}
$\begin{aligned} & n=4 k \\ & (k \geqslant 2) \end{aligned}$		
$\begin{gathered} n=4 k+3 \\ (k \geqslant 2) \end{gathered}$	Q_{k}	Q_{k}
$\begin{gathered} n=4 k+2 \\ (k \geqslant 3) \end{gathered}$		

in Table 1. As you can see, when $n=4 k+2(k \geq 3)$, the maximal value of $\mathcal{A B C}$ and the maximal value of $e^{\mathcal{A B C}}$ are attained in different trees.

Another important VDB topological index is the geometric-arithmetic index $\mathcal{G A}$, introduced by Vukičević and Furtula in 2009 [34], defined for a chemical tree T as in (4), with $\varphi(i, j)=\frac{2 \sqrt{i j}}{i+j}$. For recent results in $\mathcal{G A}$ see $([1,2,5,18,20-25,28,29,31])$ and the survey [10]. The minimal value of $\mathcal{G \mathcal { A }}$ over \mathcal{C}_{n} was solved in [34] for all n. In this paper we consider the exponential of $\mathcal{G \mathcal { A }}$ [26], denoted by $e^{\mathcal{G A}}$, and induced by the numbers $\varphi(i, j)=e^{\frac{2 \sqrt{3 j}}{i+j}}$ in (4). We solve the minimal value of $e^{\mathcal{G} \mathcal{A}}$ over \mathcal{C}_{n}, for all n. The results are shown in Table 2. We note in this case that when $n=3 k+1$, the minimal value of $\mathcal{G A}$ and the minimal value of $e^{\mathcal{G} \mathcal{A}}$ are attained in different trees.

The maximal value of $e^{\mathcal{A B C}}$ and the minimal value of $e^{\mathcal{G} \mathcal{A}}$ over \mathcal{C}_{n} were both open problems proposed in [9].

2 Operations in chemical trees

There are three functions which play an important role in the variation of a VDB topological index φ, when operations are performed in chemical trees:

$$
\begin{align*}
f(p, q)= & {[\varphi(2, p)-\varphi(3, p)]+[\varphi(2, q)-\varphi(3, q)], } \tag{5}\\
g(p, q, r)= & {[\varphi(2, p)-\varphi(4, p)]+[\varphi(3, q)-\varphi(4, q)] } \\
& +[\varphi(3, r)-\varphi(4, r)] \tag{6}
\end{align*}
$$

Table 2. Minimal trees with respect to $\mathcal{G \mathcal { A }}$ and $e^{\mathcal{G} \mathcal{A}}$ indices over \mathcal{C}_{n}

	Minimal $\mathcal{G} \mathcal{A}$	Minimal $e^{\mathcal{G} \mathcal{A}}$
$\begin{gathered} n=3 k+2 \\ (k \geqslant 1) \end{gathered}$	H_{k}	H_{k}
$\begin{aligned} & n=3 k \\ & (k \geqslant 3) \end{aligned}$	F_{k}	F_{k}
$\begin{gathered} n=3 k+1 \\ (k \geqslant 4) \end{gathered}$	G_{k}^{\prime}	G_{k}

and

$$
\begin{align*}
h(p, q, r, s)= & {[\varphi(3, p)-\varphi(4, p)]+[\varphi(3, q)-\varphi(2, q)] } \\
& +[\varphi(3, r)-\varphi(4, r)]+[\varphi(3, s)-\varphi(4, s)] \tag{7}
\end{align*}
$$

where p, q, r, s are integers such that $1 \leq p, q, r, s \leq 4$. In fact, these functions appear when we perform the operations described below.

Proposition 2.1. (Operation 1) Let φ be a VDB topological index. Let $x y$ be an edge of T such that $d_{x}=d_{y}=2$ and \widehat{T} as in Figure 1. Then

$$
\begin{equation*}
\varphi(T)-\varphi(\widehat{T})=f\left(d_{a}, d_{b}\right)+\varphi(2,2)-\varphi(1,3) \tag{8}
\end{equation*}
$$

Figure 1. Operation 1 on T.

Proof. Note that

$$
\begin{aligned}
\varphi(T)-\varphi(\widehat{T})= & \varphi\left(2, d_{a}\right)+\varphi(2,2)+\varphi\left(2, d_{b}\right) \\
& -\varphi(1,3)-\varphi\left(3, d_{a}\right)-\varphi\left(3, d_{b}\right) \\
= & f\left(d_{a}, d_{b}\right)+\varphi(2,2)-\varphi(1,3)
\end{aligned}
$$

Proposition 2.2. (Operation 2) Let φ be a VDB topological index. Let $x y$ be an edge of T such that $d_{x}=2, d_{y}=3$ and \widehat{T} as in Figure 2. Then

$$
\begin{equation*}
\varphi(T)-\varphi(\widehat{T})=g\left(d_{a}, d_{b}, d_{c}\right)+\varphi(2,3)-\varphi(1,4) \tag{9}
\end{equation*}
$$

T

Figure 2. Operation 2 on T.

Proof. In fact,

$$
\begin{aligned}
\varphi(T)-\varphi(\widehat{T})= & \varphi\left(2, d_{a}\right)+\varphi(2,3)+\varphi\left(3, d_{b}\right)+\varphi\left(3, d_{c}\right) \\
& -\varphi(1,4)-\varphi\left(4, d_{a}\right)-\varphi\left(4, d_{b}\right)-\varphi\left(4, d_{c}\right) \\
= & g\left(d_{a}, d_{b}, d_{c}\right)+\varphi(2,3)-\varphi(1,4) .
\end{aligned}
$$

Proposition 2.3. (Operation 3) Let φ be a VDB topological index. Let xy be an edge of T such that $d_{x}=d_{y}=3$ and \widehat{T} as in Figure 3. Then

$$
\begin{equation*}
\varphi(T)-\varphi(\widehat{T})=h\left(d_{a}, d_{b}, d_{c}, d_{e}\right)+\varphi(3,3)-\varphi(2,4) \tag{10}
\end{equation*}
$$

T

Figure 3. Operation 3 on T.

Proof. Note that

$$
\begin{aligned}
\varphi(T)-\varphi(\widehat{T})= & \varphi\left(3, d_{a}\right)+\varphi\left(3, d_{b}\right)+\varphi(3,3)+\varphi\left(3, d_{c}\right)+\varphi\left(3, d_{e}\right) \\
& -\varphi\left(2, d_{b}\right)-\varphi(2,4)-\varphi\left(4, d_{a}\right)-\varphi\left(4, d_{c}\right)-\varphi\left(4, d_{e}\right) \\
= & h\left(d_{a}, d_{b}, d_{c}, d_{e}\right)+\varphi(3,3)-\varphi(2,4)
\end{aligned}
$$

It is of great interest to us to determine the sign of $\varphi(T)-\varphi(\widehat{T})$, because this information indicates whether φ increases or decreases when the correspondent operation is carried out. We will do this for the topological indices $\mathcal{A B C}, e^{\mathcal{A B C}}$ and $e^{\mathcal{G A}}$.

We begin with Operation 1. Let us denote by $p=d_{a}(T)$ and $q=d_{b}(T)$ in Figure 1. Without loosing generality, we may assume that $1 \leq p \leq q \leq 4$. The values of $\varphi(T)-\varphi(\widehat{T})$ are given in Table 3.

Table 3. Values of $\varphi(T)-\varphi(\widehat{T})$ in Operation 1 for $\mathcal{A B C}, e^{\mathcal{A B C}}$ and $e^{\mathcal{G A}}$ indices

p	q	$\mathcal{A B C}$	$e^{\mathcal{A B C}}$	$e^{\mathcal{G A}}$	p	q	$\mathcal{A B C}$	$e^{\mathcal{A B C}}$	$e^{\mathcal{G} \mathcal{A}}$
1	1	-0.328	-0.703	0.720	2	3	-0.069	-0.154	0.341
1	2	-0.219	-0.469	0.585	2	4	-0.048	-0.113	0.272
1	3	-0.178	-0.389	0.476	3	3	-0.029	-0.074	0.232
1	4	-0.157	-0.348	0.407	3	4	-0.007	-0.033	0.163
2	2	-0.109	-0.234	0.450	4	4	0.014	0.008	0.094

Now we consider Operation 2. Assume that $p=d_{a}(T)$ and $q=d_{b}(T), r=d_{c}(T)$ in Figure 2. Clearly $1 \leq p \leq 4$ and we may assume that $1 \leq q \leq r \leq 4$. Then the values of $\varphi(T)-\varphi(\widehat{T})$ are given in Table 4.

Table 4. Values of $\varphi(T)-\varphi(\widehat{T})$ in Operation 2 for $\mathcal{A B C}, e^{\mathcal{A B C}}$ and $e^{\mathcal{G A}}$ indices

p	q	r	$\mathcal{A B C}$	$e^{\mathcal{A B C}}$	$e^{\mathcal{G} \mathcal{A}}$	p	q	r	$\mathcal{A B C}$	$e^{\mathcal{A} B \mathcal{C}}$	$e^{\mathcal{G A}}$
1	1	1	-0.417	-0.928	1.084	3	1	1	-0.196	-0.458	0.716
1	1	2	-0.367	-0.814	1.029	3	1	2	-0.147	-0.343	0.660
1	1	3	-0.346	-0.773	0.960	3	1	3	-0.126	-0.302	0.591
1	1	4	-0.334	-0.751	0.904	3	1	4	-0.114	-0.281	0.536
1	2	2	-0.318	-0.699	0.973	3	2	2	-0.097	-0.228	0.605
1	2	3	-0.297	-0.658	0.904	3	2	3	-0.076	-0.187	0.536
1	2	4	-0.285	-0.637	0.849	3	2	4	-0.064	-0.166	0.481
1	3	3	-0.275	-0.617	0.835	3	3	3	-0.055	-0.147	0.467
1	3	4	-0.264	-0.596	0.780	3	3	4	-0.043	-0.125	0.412
1	4	4	-0.252	-0.574	0.725	3	4	4	-0.031	-0.104	0.356
2	1	1	-0.258	-0.579	0.893	4	1	1	-0.163	-0.396	0.591
2	1	2	-0.208	-0.464	0.838	4	1	2	-0.114	-0.281	0.536
2	1	3	-0.187	-0.423	0.769	4	1	3	-0.093	-0.240	0.467
2	1	4	-0.175	-0.402	0.714	4	1	4	-0.081	-0.219	0.411
2	2	2	-0.159	-0.349	0.783	4	2	2	-0.064	-0.166	0.481
2	2	3	-0.138	-0.309	0.714	4	2	3	-0.043	-0.125	0.412
2	2	4	-0.126	-0.287	0.658	4	2	4	-0.031	-0.104	0.356
2	3	3	-0.117	-0.268	0.645	4	3	3	-0.022	-0.084	0.343
2	3	4	-0.105	-0.246	0.589	4	3	4	-0.010	-0.063	0.287
2	4	4	-0.093	-0.225	0.534	4	4	4	0.002	-0.042	0.232

Finally, let us consider Operation 3. Set $p=d_{a}(T), q=d_{b}(T)$ and $r=d_{c}(T), s=d_{e}(T)$ in Figure 3. We may assume that $1 \leq p \leq q \leq 4$, in other words, we perform Operation 3 by moving the vertex adjacent to x (different from y) with the least degree. We also assume that $1 \leq r \leq s \leq 4$. Moreover, we will apply Operation 3 when $p \neq 2, q \neq 2, r \neq 2$, and $s \neq 2$. Then under these conditions, the values of $\varphi(T)-\varphi(\widehat{T})$ are given in Table 5 .

Table 5. Values of $\varphi(T)-\varphi(\widehat{T})$ in Operation 3 for $\mathcal{A B C}, e^{\mathcal{A B C}}$ and $e^{\mathcal{G A}}$ indices

p	q	r	s	$\mathcal{A B C}$	$e^{\mathcal{A B C}}$	$e^{\mathcal{G A}}$	p	q	r	s	$\mathcal{A B C}$	$e^{\boldsymbol{A B C}}$	$e^{\mathcal{G} \mathcal{A}}$
1	1	1	1	-0.080	-0.191	0.417	3	4	1	1	-0.180	-0.391	0.606
1	1	1	3	-0.009	-0.035	0.293	3	4	1	3	-0.109	-0.235	0.482
1	1	1	4	0.003	-0.014	0.237	3	4	1	4	-0.097	-0.214	0.426
1	3	1	3	-0.159	-0.350	0.537	3	4	3	3	-0.039	-0.079	0.358
1	3	1	4	-0.147	-0.328	0.482	3	4	3	4	-0.027	-0.058	0.302
1	4	1	4	-0.168	-0.369	0.551	3	4	4	4	-0.015	-0.036	0.247
3	3	1	1	-0.159	-0.350	0.537	4	4	1	1	-0.168	-0.369	0.551
3	3	1	3	-0.088	-0.194	0.413	4	4	1	3	-0.097	-0.214	0.426
3	3	1	4	-0.076	-0.173	0.357	4	4	1	4	-0.085	-0.192	0.371
3	3	3	3	-0.017	-0.038	0.289	4	4	3	3	-0.027	-0.058	0.302
3	3	3	4	-0.005	-0.017	0.233	4	4	3	4	-0.015	-0.036	0.247
3	3	4	4	0.007	0.004	0.178	4	4	4	4	-0.003	-0.015	0.191

3 Maximal value of the $\mathcal{A B C}$ index among chemical trees

The following lemmas are useful in the sequel.
Lemma 3.1. Suppose that $x y$ is an edge of $T \in \mathcal{C}_{n}$ such that $d_{x}=d_{y}=2$ as in Figure 1. If $\left(d_{a}, d_{b}\right) \neq(4,4)$ then we can find a tree $\widehat{T} \in \mathcal{C}_{n}$ such that $\mathcal{A B C}(T)<\mathcal{A B C}(\widehat{T})$.

Proof. This is a consequence of Proposition 2.1 and Table 3.

Lemma 3.2. Suppose that $x y$ is an edge of $T \in \mathcal{C}_{n}$ such that $d_{x}=2$ and $d_{y}=3$ as in Figure 2. If $d_{a} \neq 4$ or $\left(d_{b}, d_{c}\right) \neq(4,4)$ then we can find a tree $\widehat{T} \in \mathcal{C}_{n}$ such that $\mathcal{A B C}(T)<\mathcal{A B C}(\widehat{T})$.

Proof. This is a consequence of Proposition 2.2 and Table 4.
Lemma 3.3. Suppose that $x y$ is an edge of $T \in \mathcal{C}_{n}$ such that $d_{x}=d_{y}=3$ as in Figure 3. If $d_{z}=2$ for some $z \in\{a, b, c, e\}$, then we can find a tree $\widehat{T} \in \mathcal{C}_{n}$ such that $\mathcal{A B C}(T)<$ $\mathcal{A B C}(\widehat{T})$.

Proof. Assume that $d_{a}=2$. Then $a x$ is an edge of T such that $d_{a}=2$ and $d_{x}=3$. Moreover, $\left(d_{b}, d_{y}\right) \neq(4,4)$. It follows from Lemma 3.2 that there exists a tree $\widehat{T} \in \mathcal{C}_{n}$ such that $\mathcal{A B C}(T)<\mathcal{A B C}(\widehat{T})$.

From now on we will say that a tree $T \in \mathcal{C}_{n}$ is maximal with respect to $\mathcal{A B C}$ over \mathcal{C}_{n} if

$$
\mathcal{A B C}(S) \leq \mathcal{A B C}(T)
$$

for all $S \in \mathcal{C}_{n}$.
Proposition 3.4. Let $n \geq 10$. If T is maximal with respect to $\mathcal{A B C}$ over \mathcal{C}_{n}, then $m_{1,3}(T)=0$.

Proof. Assume that $m_{1,3}(T)>0$. Then T is of the form depicted in Figure 4, where we may assume $1 \leq d_{c} \leq d_{x} \leq 4$. We consider four cases:

Figure 4. Form of $T \in \mathcal{C}_{n}$ when $m_{1,3}(T)>0$.

1. $d_{x}=1$. Then $d_{c}=1$ which implies $n=4$, a contradiction.
2. $d_{x}=2$. Then $x y$ is an edge of T such that $d_{x}=2, d_{y}=3$. Moreover, $\left(d_{b}, d_{c}\right)=$ $\left(1, d_{c}\right) \neq(4,4)$. By Lemma 3.2 we arrive at a contradiction.

Figure 5. Form of $T \in \mathcal{C}_{n}$ when $m_{1,3}(T)>0$ and $d_{x}=3$.
3. $d_{x}=3$. Then T has the form depicted in Figure 5. By Lemma 3.3, $d_{a} \neq 2, d_{b} \neq 2$, and $d_{c} \neq 2$. Now, since $x y$ is an edge of T such that $d_{x}=d_{y}=3$, we apply Proposition 2.3 and Table 5 to deduce that $d_{c}=4, d_{a}=d_{b}=1$. In this case, we construct the tree T^{\prime} in Figure 6. Then

$$
\begin{align*}
\mathcal{A B C}(T)-\mathcal{A B C}\left(T^{\prime}\right)= & 3 \sqrt{\frac{2}{3}}+\sqrt{\frac{4}{9}}+\sqrt{\frac{5}{12}}+\sqrt{\frac{d_{w}+2}{4 d_{w}}} \\
& -2 \sqrt{\frac{1}{2}}-3 \sqrt{\frac{3}{4}}-\sqrt{\frac{6}{16}} \tag{11}\\
< & 0
\end{align*}
$$

for all $2 \leq d_{w} \leq 4$. A contradiction. So the only case left is when $d_{u}=d_{v}=d_{w}=1$, but in this case $n=9$, a contradiction.

T

Figure 6. Operation on $T \in \mathcal{C}_{n}$ when $m_{1,3}(T)>0, d_{x}=3, d_{a}=d_{b}=1$ and $d_{c}=4$.
4. $d_{x}=4$. Then T has the form depicted in Figure 7. Let $T^{\prime \prime}$ be the tree shown in Figure 7. It follows that

Figure 7. Operation on $T \in \mathcal{C}_{n}$ when $m_{1,3}(T)>0, d_{x}=4$ and $2 \leq d_{w} \leq 4$.

$$
\begin{equation*}
\mathcal{A B C}(T)-\mathcal{A B C}\left(T^{\prime \prime}\right)=\sqrt{\frac{d_{w}+2}{4 d_{w}}}+\sqrt{\frac{2}{3}}-\sqrt{\frac{d_{w}+1}{3 d_{w}}}-\sqrt{\frac{3}{4}}<0 \tag{12}
\end{equation*}
$$

for all $2 \leq d_{w} \leq 4$. A contradiction. So we may assume that $d_{u}=d_{v}=d_{w}=1$,

Figure 8. Form of $T \in \mathcal{C}_{n}$ when $m_{1,3}(T)>0, d_{x}=4$ and $d_{u}=d_{v}=d_{w}=1$.
as shown in Figure 8. If $d_{c}=1$ then $n=7$, a contradiction. If $d_{c}=2$ then we get a contradiction by Lemma 3.2. If $d_{c}=3$, then we repeat the argument of case 3. So we may assume that $d_{c}=4$. In this case we again apply the same operation considered in Figure 7, to conclude that all three vertices adjacent to c (different from y) have degree 1 , and so $n=10$, a contradiction.

Proposition 3.5. Let $n \geq 7$. If T is maximal with respect to $\mathcal{A B C}$ over \mathcal{C}_{n}, then $m_{1,2}(T)=0$.

Figure 9. Form of $T \in \mathcal{C}_{n}$ when $m_{1,2}(T)>0$.

Proof. Assume that $m_{1,2}(T)>0$ so T has the form depicted in Figure 9. If $d_{a}=1$, then $n=3$, a contradiction. If $d_{a}=2$ then $a x$ is an edge of T such that $d_{a}=d_{x}=2$. Then we get a contradiction by Lemma 3.1. If $d_{a}=3$, then $x a$ is an edge of T such that $d_{x}=2$ and $d_{a}=3$. So we get a contradiction using Lemma 3.2. So we may assume that $d_{a}=4$. Then we construct the tree T^{\prime} shown in Figure 10. Therefore

Figure 10. Operation on $T \in \mathcal{C}_{n}$ when $m_{1,2}(T)>0$ and $d_{a}=4$.

$$
\begin{equation*}
\mathcal{A B C}(T)-\mathcal{A B C}\left(T^{\prime}\right)=\sqrt{\frac{d_{w}+2}{4 d_{w}}}-\sqrt{\frac{3}{4}}<0 \tag{13}
\end{equation*}
$$

for all $2 \leq d_{w} \leq 4$. Hence we may assume that $d_{u}=d_{v}=d_{w}=1$, but in this case $n=6$, a contradiction. Consequently, $m_{1,2}(T)=0$.

Proposition 3.6. Let $n \geq 11$. If T is maximal with respect to $\mathcal{A B C}$ over \mathcal{C}_{n}, then $m_{2,2}(T)=0$.

Figure 11. Operation on $T \in \mathcal{C}_{n}$ when $m_{2,2}(T)>0$ and $d_{a}=d_{b}=4$.

Proof. If $m_{2,2}(T)>0$ then T has the form depicted in Figure 1. Then by Lemma 3.1, $d_{a}=d_{b}=4$. Let T^{\prime} be the tree in Figure 11. Then

$$
\begin{equation*}
\mathcal{A B C}(T)-\mathcal{A B C}\left(T^{\prime}\right)=\sqrt{\frac{d_{w}+2}{4 d_{w}}}-\sqrt{\frac{1}{2}}<0 \tag{14}
\end{equation*}
$$

for all $3 \leq d_{w} \leq 4$. So we may assume that all vertices $u, v, w, u^{\prime}, v^{\prime}, w^{\prime}$ have degree ≤ 2. If they are all 1 's, then $n=10$, a contradiction. So one of them has degree 2 , say $d_{w}=2$. Then we define the tree $T^{\prime \prime}$ in Figure 12. Hence

Figure 12. Operation on $T \in \mathcal{C}_{n}$ when $m_{2,2}(T)>0, d_{a}=d_{b}=4$ and $d_{w}=2$.

$$
\begin{equation*}
\mathcal{A B C}(T)-\mathcal{A B C}\left(T^{\prime \prime}\right)=3 \sqrt{\frac{1}{2}}-\sqrt{\frac{3}{4}}-\sqrt{\frac{5}{12}}-\sqrt{\frac{d_{z}+1}{3 d_{z}}}<0, \tag{15}
\end{equation*}
$$

for all $1 \leq d_{z} \leq 4$. This is a contradiction. In conclusion, $m_{2,2}(T)=0$.
Proposition 3.7. If T is maximal with respect to $\mathcal{A B C}$ over \mathcal{C}_{n}, then $m_{3,3}(T)=0$.
Proof. If $m_{3,3}(T)>0$ then T has the form depicted in Figure 3. By Lemma 3.3, $d_{a} \neq 2$, $d_{b} \neq 2, d_{c} \neq 2$, and $d_{e} \neq 2$. We also know by Proposition 3.4 that $d_{a} \neq 1, d_{b} \neq 1, d_{c} \neq 1$, and $d_{e} \neq 1$. Now we apply Proposition 2.3 and Table 5 to deduce that $d_{a}=d_{b}=3$ and $d_{c}=d_{e}=4$. Then T has the form shown in Figure 13. Since $d_{b}=d_{x}=d_{a}=3$, we repeat the same argument to the edges $b x$ and $a x$ of T to conclude that $d_{u}=d_{v}=d_{b^{\prime}}=d_{z}=4$. Now we define T^{\prime} as in Figure 13. Then

Figure 13. Operation on $T \in \mathcal{C}_{n}$ when $m_{3,3}(T)>0, d_{a}=d_{b}=3$ and $d_{c}=d_{e}=4$.

$$
\begin{equation*}
\mathcal{A B C}(T)-\mathcal{A B C}\left(T^{\prime}\right)=3 \sqrt{\frac{4}{9}}-2 \sqrt{\frac{1}{2}}-\sqrt{\frac{6}{16}}<0 \tag{16}
\end{equation*}
$$

This is a contradiction. Hence $m_{3,3}(T)=0$.
Proposition 3.8. If T is maximal with respect to $\mathcal{A B C}$ over \mathcal{C}_{n}, then $m_{2,3}(T) \leq 1$.

Figure 14. Form of $T \in \mathcal{C}_{n}$ when $m_{2,3}(T) \geq 2$.
Proof. Assume that $m_{2,3}(T) \geq 2$. By Lemma 3.2, T is of the form depicted in Figure 14, where $d_{a}=d_{b}=d_{c}=d_{u}=d_{v}=d_{w}=4$ ($u=c$ is possible). Define T^{\prime} as in Figure 15. Then

Figure 15. Operation on $T \in \mathcal{C}_{n}$ when $m_{2,3}(T) \geq 2$.

$$
\begin{equation*}
\mathcal{A B C}(T)-\mathcal{A B C}\left(T^{\prime}\right)=4 \sqrt{\frac{5}{12}}-2 \sqrt{\frac{1}{2}}-2 \sqrt{\frac{6}{16}}<0 \tag{17}
\end{equation*}
$$

this is a contradiction. Hence, $m_{2,3}(T) \leq 1$.
Proposition 3.9. Let T be maximal with respect to $\mathcal{A B C}$ over \mathcal{C}_{n}.

1. If $m_{2,3}(T)=0$ then $n_{3}(T)=0$;
2. If $m_{2,3}(T)=1$ then $n_{3}(T)=1$.

Proof.

1. Suppose that $m_{2,3}(T)=0$ and $n_{3}(T)>0$. Consider the tree T^{\prime} defined from T as indicated in Figure 16. From the Propositions 3.4, 3.7 and the fact that $m_{2,3}(T)=0$, we deduce that $d_{a}=d_{b}=d_{c}=d_{e}=4$. Hence

$$
\begin{equation*}
\mathcal{A B C}(T)-\mathcal{A B C}\left(T^{\prime}\right)=3 \sqrt{\frac{5}{12}}+\sqrt{\frac{3}{4}}-4 \sqrt{\frac{1}{2}}<0 \tag{18}
\end{equation*}
$$

a contradiction. Consequently, $n_{3}(T)=0$.

Figure 16. Operation on $T \in \mathcal{C}_{n}$ when $m_{2,3}(T)=0$ and $n_{3}(T)>0$.
2. Assume that $m_{2,3}(T)=1$. Then $n_{3}(T) \geq 1$ and T has the form depicted in Figure 17 . As in part 1., it is clear that $d_{a}=d_{b}=d_{c}=4$ is not possible. Then by Propositions 3.4 and 3.7, $d_{z}=2$ for some $z \in\{a, b, c\}$. In other words, every vertex of degree 3 has at least one neighbor of degree 2 . Consequently, if $n_{3}(T) \geq 2$, then $m_{2,3}(T) \geq 2$, a contradiction. In conclusion, $n_{3}(T)=1$.

Figure 17. Form of $T \in \mathcal{C}_{n}$ when $m_{2,3}(T)=1$ and $n_{3}(T) \geq 1$.
Corollary 3.10. If T is maximal with respect to $\mathcal{A B C}$ over \mathcal{C}_{n} then $T \in \mathcal{U}$ or $T \in \mathcal{V}$, where

$$
\mathcal{U}=\left\{T \in \mathcal{C}_{n}: m_{1,2}=m_{2,2}=n_{3}=0\right\}
$$

or

$$
\mathcal{V}=\left\{T \in \mathcal{C}_{n}: m_{1,3}=m_{1,2}=m_{2,2}=0, m_{2,3}=n_{3}=1\right\}
$$

Proof. If T is maximal with respect to $\mathcal{A B C}$ over \mathcal{C}_{n}, then by Propositions 3.4, 3.5, 3.6, 3.7

$$
m_{1,3}=m_{1,2}=m_{2,2}=m_{3,3}=0 .
$$

By Proposition 3.8, $m_{2,3} \leq 1$. If $m_{2,3}=0$ then by Proposition 3.9, $n_{3}=0$. Hence $T \in \mathcal{U}$. If $m_{2,3}=1$, then $n_{3}=1$ again by Proposition 3.9 and $T \in \mathcal{V}$.

Next we compute the $\mathcal{A B C}$ index of the trees in \mathcal{U} and in \mathcal{V}. From now on we use the following notation:

$$
\begin{aligned}
& \alpha=\frac{1}{2}\left(\sqrt{\frac{3}{4}}+\sqrt{\frac{1}{2}}\right), \beta=\frac{1}{2}\left(\sqrt{\frac{3}{4}}-3 \sqrt{\frac{1}{2}}+2 \sqrt{\frac{6}{16}}\right) \\
& \gamma=\frac{1}{2}\left(3 \sqrt{\frac{3}{4}}-5 \sqrt{\frac{1}{2}}\right), \delta=\left(2 \sqrt{\frac{3}{4}}-5 \sqrt{\frac{1}{2}}+2 \sqrt{\frac{5}{12}}\right) .
\end{aligned}
$$

Proposition 3.11. Let $T \in \mathcal{C}_{n}$.

1. If $T \in \mathcal{U}$ then

$$
\mathcal{A B C}(T)=\alpha n+\beta m_{4,4}+\gamma ;
$$

2. If $T \in \mathcal{V}$ then

$$
\mathcal{A B C}(T)=\alpha n+\beta m_{4,4}+\delta .
$$

Proof. 1. If $T \in \mathcal{U}$ then by relations (1)

$$
\begin{gathered}
m_{1,4}=n_{1} \\
m_{2,4}=2 n_{2} \\
m_{1,4}+m_{2,4}+2 m_{4,4}=4 n_{4}
\end{gathered}
$$

It follows from relation (2) that

$$
\begin{aligned}
n & =n_{1}+n_{2}+n_{4} \\
& =m_{1,4}+\frac{1}{2} m_{2,4}+\frac{1}{4}\left(m_{1,4}+m_{2,4}+2 m_{4,4}\right)
\end{aligned}
$$

and from relation (3),

$$
n-1=m_{1,4}+m_{2,4}+m_{4,4} .
$$

In other words, we have the relations

$$
\begin{aligned}
& 4 n=5 m_{1,4}+3 m_{2,4}+2 m_{4,4} \\
& n=m_{1,4}+m_{2,4}+m_{4,4}+1
\end{aligned}
$$

As a consequence, we can express both $m_{1,4}$ and $m_{2,4}$ in terms of n and $m_{4,4}$:

$$
\begin{align*}
& 2 m_{1,4}=n+3+m_{4,4} \tag{19}\\
& 2 m_{2,4}=n-5-3 m_{4,4} . \tag{20}
\end{align*}
$$

Hence,

$$
\begin{aligned}
2 \mathcal{A B C}(T)= & 2 m_{1,4} \sqrt{\frac{3}{4}}+2 m_{2,4} \sqrt{\frac{1}{2}}+2 m_{4,4} \sqrt{\frac{6}{16}} \\
= & \left(n+3+m_{4,4}\right) \sqrt{\frac{3}{4}}+\left(n-5-3 m_{4,4}\right) \sqrt{\frac{1}{2}}+2 m_{4,4} \sqrt{\frac{6}{16}} \\
= & \left(\sqrt{\frac{3}{4}}+\sqrt{\frac{1}{2}}\right) n+\left(\sqrt{\frac{3}{4}}-3 \sqrt{\frac{1}{2}}+2 \sqrt{\frac{6}{16}}\right) m_{4,4} \\
& +\left(3 \sqrt{\frac{3}{4}}-5 \sqrt{\frac{1}{2}}\right) .
\end{aligned}
$$

2. If $T \in \mathcal{V}$ then by relations (1)

$$
\begin{gathered}
m_{1,4}=n_{1} \\
1+m_{2,4}=2 n_{2} \\
1+m_{3,4}=3 \\
m_{1,4}+m_{2,4}+2+2 m_{4,4}=4 n_{4}
\end{gathered}
$$

In particular, $m_{3,4}=2$. It follows from relation (2) that

$$
\begin{aligned}
n & =n_{1}+n_{2}+1+n_{4} \\
& =m_{1,4}+\frac{1}{2}\left(1+m_{2,4}\right)+1+\frac{1}{4}\left(m_{1,4}+m_{2,4}+2+2 m_{4,4}\right)
\end{aligned}
$$

and from relation (3),

$$
n-1=m_{1,4}+1+m_{2,4}+2+m_{4,4}
$$

In other words, we have the relations

$$
\begin{gathered}
4 n=5 m_{1,4}+3 m_{2,4}+2 m_{4,4}+8 \\
n=m_{1,4}+m_{2,4}+m_{4,4}+4
\end{gathered}
$$

From here we deduce that

$$
\begin{gathered}
2 m_{1,4}=n+4+m_{4,4} \\
2 m_{2,4}=n-12-3 m_{4,4}
\end{gathered}
$$

Hence,

$$
\begin{aligned}
2 \mathcal{A B C}(T)= & 2 m_{1,4} \sqrt{\frac{3}{4}}+2 m_{2,3} \sqrt{\frac{1}{2}}+2 m_{2,4} \sqrt{\frac{1}{2}}+2 m_{3,4} \sqrt{\frac{5}{12}}+2 m_{4,4} \sqrt{\frac{6}{16}} \\
= & \left(n+4+m_{4,4}\right) \sqrt{\frac{3}{4}}+2 \sqrt{\frac{1}{2}}+\left(n-12-3 m_{4,4}\right) \sqrt{\frac{1}{2}}+4 \sqrt{\frac{5}{12}}+2 m_{4,4} \sqrt{\frac{6}{16}} \\
= & \left(\sqrt{\frac{3}{4}}+\sqrt{\frac{1}{2}}\right) n+\left(\sqrt{\frac{3}{4}}-3 \sqrt{\frac{1}{2}}+2 \sqrt{\frac{6}{16}}\right) m_{4,4} \\
& +\left(4 \sqrt{\frac{3}{4}}-10 \sqrt{\frac{1}{2}}+4 \sqrt{\frac{5}{12}}\right)
\end{aligned}
$$

Remark 3.12. The coefficient β that appears with $m_{4,4}$ in the expression for $\mathcal{A B C}(T)$ when $T \in \mathcal{U}$ or $T \in \mathcal{V}$ in Proposition 3.11 is $\beta \approx-1.5275 \times 10^{-2}<0$. Hence, the $\mathcal{A B C}$ index is strictly decreasing on $m_{4,4}$ over \mathcal{U} and over \mathcal{V}.

By Corollary 3.10 we know that if T is maximal with respect to $\mathcal{A B C}$ over \mathcal{C}_{n}, then $T \in \mathcal{U}$ or $T \in \mathcal{V}$. Furthermore, based on the Remark 3.12 , we next show that T belongs to

$$
\mathcal{U}_{i}=\left\{T \in \mathcal{U}: m_{4,4}=i\right\}
$$

-706-

or

$$
\mathcal{V}_{i}=\left\{T \in \mathcal{V}: m_{4,4}=i\right\},
$$

for some $i=0,1,2,3$.

Proposition 3.13. Let n be a positive integer. Then:

1. $\mathcal{U}_{0} \neq \emptyset$ if and only if $n \equiv 1 \bmod 4(n \geq 5)$;
2. $\mathcal{U}_{1} \neq \emptyset$ if and only if $n \equiv 0 \bmod 4(n \geq 8)$;
3. $\mathcal{U}_{2} \neq \emptyset$ if and only if $n \equiv 3 \bmod 4(n \geq 11)$;
4. $\mathcal{U}_{3} \neq \emptyset$ if and only if $n \equiv 2 \bmod 4(n \geq 14)$.

Proof. 1. If $n \equiv 1 \bmod 4$, say $n=4 k+1$ with $k \geq 1$, then the tree T_{k} defined in Table 1 satisfies

$$
n\left(T_{k}\right)=5+4(k-1)=4 k+1=n,
$$

and $T_{k} \in \mathcal{U}_{0}$.
Conversely, assume that $T \in \mathcal{U}_{0}$. Then by (1) and (3),

$$
\begin{aligned}
m_{1,4}+m_{2,4} & =4 n_{4} \\
m_{1,4}+m_{2,4} & =n-1
\end{aligned}
$$

Consequently, $n=4 n_{4}+1$ and so $n \equiv 1 \bmod 4$.
2. If $n \equiv 0 \bmod 4$, say $n=4 k$ with $k \geq 2$, then the tree P_{k} defined in Table 1 satisfies

$$
n\left(P_{k}\right)=8+4(k-2)=4 k=n,
$$

and $P_{k} \in \mathcal{U}_{1}$.
Conversely, assume that $P \in \mathcal{U}_{1}$. Then by (1) and (3),

$$
\begin{aligned}
& m_{1,4}+m_{2,4}+2=4 n_{4} \\
& m_{1,4}+m_{2,4}+1=n-1 .
\end{aligned}
$$

Consequently, $n=4 n_{4}$ and so $n \equiv 0 \bmod 4$.
3. If $n \equiv 3 \bmod 4$, say $n=4 k+3$ with $k \geq 2$, then the tree Q_{k} defined in Table 1 satisfies

$$
n\left(Q_{k}\right)=11+4(k-2)=4 k+3=n
$$

and $Q_{k} \in \mathcal{U}_{2}$.
Conversely, assume that $Q \in \mathcal{U}_{2}$. Then by (1) and (3),

$$
\begin{aligned}
& m_{1,4}+m_{2,4}+4=4 n_{4} \\
& m_{1,4}+m_{2,4}+2=n-1 .
\end{aligned}
$$

Consequently, $n=4\left(n_{4}-1\right)+3$ and so $n \equiv 3 \bmod 4$.
4. If $n \equiv 2 \bmod 4$, say $n=4 k+2$ with $k \geq 3$, then the tree R_{k} defined in Table 1 satisfies

$$
n\left(R_{k}\right)=14+4(k-3)=4 k+2=n
$$

and $R_{k} \in \mathcal{U}_{3}$.
Conversely, assume that $R \in \mathcal{U}_{3}$. Then by (1) and (3),

$$
\begin{aligned}
& m_{1,4}+m_{2,4}+6=4 n_{4} \\
& m_{1,4}+m_{2,4}+3=n-1 .
\end{aligned}
$$

Consequently, $n=4\left(n_{4}-1\right)+2$ and so $n \equiv 2 \bmod 4$.

We also have a similar result to Proposition 3.13 relative to the sets \mathcal{V}_{i}.
Proposition 3.14. Let n be a positive integer.

1. $\mathcal{V}_{0} \neq \emptyset$ if and only if $n \equiv 2 \bmod 4(n \geq 14)$;
2. $\mathcal{V}_{1} \neq \emptyset$ if and only if $n \equiv 1 \bmod 4(n \geq 17)$;
3. $\mathcal{V}_{2} \neq \emptyset$ if and only if $n \equiv 0 \bmod 4(n \geq 20)$;
4. $\mathcal{V}_{3} \neq \emptyset$ if and only if $n \equiv 3 \bmod 4(n \geq 23)$.

Proof. 1. If $n \equiv 2 \bmod 4$, say $n=4 k+2$ with $k \geq 3$, then the tree T_{k}^{\prime} defined in Table 1 satisfies

$$
n\left(T_{k}^{\prime}\right)=14+4(k-3)=4 k+2=n
$$

and $T_{k}^{\prime} \in \mathcal{V}_{0}$.
Conversely, assume that $T^{\prime} \in \mathcal{V}_{0}$. Then by (1) and (3), $m_{3,4}=2$ and so

$$
\begin{aligned}
& m_{1,4}+m_{2,4}+2=4 n_{4} \\
& m_{1,4}+m_{2,4}+3=n-1
\end{aligned}
$$

Consequently, $n=4 n_{4}+2$ and so $n \equiv 2 \bmod 4$.
2. If $n \equiv 1 \bmod 4$, say $n=4 k+1$ with $k \geq 4$, then the tree P_{k}^{\prime} defined in Figure 18 satisfies

Figure 18. Tree $P_{k}^{\prime} \in \mathcal{V}_{1}$.

$$
n\left(P_{k}^{\prime}\right)=17+4(k-4)=4 k+1=n,
$$

and $P_{k}^{\prime} \in \mathcal{V}_{1}$.
Conversely, assume that $P^{\prime} \in \mathcal{V}_{1}$. Then by (1) and (3), $m_{3,4}=2$ and

$$
\begin{aligned}
& m_{1,4}+m_{2,4}+4=4 n_{4} \\
& m_{1,4}+m_{2,4}+4=n-1
\end{aligned}
$$

Consequently, $n=4 n_{4}+1$ and so $n \equiv 1 \bmod 4$.
3. If $n \equiv 0 \bmod 4$, say $n=4 k$ with $k \geq 5$, then the tree Q_{k}^{\prime} defined in Figure 19 satisfies

Figure 19. Tree $Q_{k}^{\prime} \in \mathcal{V}_{2}$.

$$
n\left(Q_{k}^{\prime}\right)=20+4(k-5)=4 k=n,
$$

and $Q_{k}^{\prime} \in \mathcal{V}_{2}$.
Conversely, assume that $Q^{\prime} \in \mathcal{V}_{2}$. Then by (1) and (3), $m_{3,4}=2$ and

$$
\begin{aligned}
& m_{1,4}+m_{2,4}+6=4 n_{4} \\
& m_{1,4}+m_{2,4}+5=n-1
\end{aligned}
$$

Hence $n=4 n_{4}$ and so $n \equiv 0 \bmod 4$.

-709-

4. If $n \equiv 3 \bmod 4$, say $n=4 k+3$ with $k \geq 5$, then the tree R_{k}^{\prime} defined in Figure 20 satisfies

Figure 20. Tree $R_{k}^{\prime} \in \mathcal{V}_{3}$.

$$
n\left(R_{k}^{\prime}\right)=23+4(k-5)=4 k+3=n
$$

and $R_{k}^{\prime} \in \mathcal{V}_{3}$.
Conversely, assume that $R^{\prime} \in \mathcal{V}_{3}$. Then by (1) and (3), $m_{3,4}=2$ and

$$
\begin{aligned}
& m_{1,4}+m_{2,4}+8=4 n_{4} \\
& m_{1,4}+m_{2,4}+6=n-1 .
\end{aligned}
$$

Consequently, $n=4\left(n_{4}-1\right)+3$ and so $n \equiv 3 \bmod 4$.
Corollary 3.15. Let T be maximal with respect to $\mathcal{A B C}$ over \mathcal{C}_{n}.

1. If $n \equiv 0 \bmod 4$ then $T \in \mathcal{U}_{1}$ or $T \in \mathcal{V}_{2}$;
2. If $n \equiv 1 \bmod 4$ then $T \in \mathcal{U}_{0}$ or $T \in \mathcal{V}_{1}$;
3. If $n \equiv 2 \bmod 4$ then $T \in \mathcal{U}_{3}$ or $T \in \mathcal{V}_{0}$;
4. If $n \equiv 3 \bmod 4$ then $T \in \mathcal{U}_{2}$ or $T \in \mathcal{V}_{3}$.

Proof. By Corollary 3.10, $T \in \mathcal{U}$ or $T \in \mathcal{V}$. If $T \in \mathcal{U}$ then by Proposition 3.11,

$$
\mathcal{A B C}(T)=\alpha n+\beta m_{4,4}(T)+\gamma .
$$

Consider the following cases:

1. $n \equiv 0 \bmod 4$. Then by Proposition 3.13, there exists $U \in \mathcal{U}_{1}$ and $m_{4,4}(T) \neq$ $0, m_{4,4}(T) \neq 2$ and $m_{4,4}(T) \neq 3$. If $T \notin \mathcal{U}_{1}$ then $m_{4,4}(T) \neq 1$ and since $\beta<0$, we conclude that

$$
\mathcal{A B C}(T)-\mathcal{A B C}(U)=\beta\left(m_{4,4}(T)-1\right)<0,
$$

a contradiction. Hence $T \in \mathcal{U}_{1}$.
2. $n \equiv 1 \bmod 4$. Then by Proposition 3.13, there exists $U \in \mathcal{U}_{0}$ and $m_{4,4}(T) \neq$ $1, m_{4,4}(T) \neq 2$ and $m_{4,4}(T) \neq 3$. If $T \notin \mathcal{U}_{0}$ then $m_{4,4}(T) \neq 0$ and since $\beta<0$, we conclude that

$$
\mathcal{A B C}(T)-\mathcal{A B C}(U)=\beta m_{4,4}(T)<0
$$

a contradiction. Hence $T \in \mathcal{U}_{0}$.
3. $n \equiv 2 \bmod 4$. Then by Proposition 3.13, there exists $U \in \mathcal{U}_{3}$ and $m_{4,4}(T) \neq$ $0, m_{4,4}(T) \neq 1$ and $m_{4,4}(T) \neq 2$. If $T \notin \mathcal{U}_{3}$ then $m_{4,4}(T) \neq 3$ and since $\beta<0$, we conclude that

$$
\mathcal{A B C}(T)-\mathcal{A B C}(U)=\beta\left(m_{4,4}(T)-3\right)<0
$$

a contradiction. Hence $T \in \mathcal{U}_{3}$.
4. $n \equiv 3 \bmod 4$. Then by Proposition 3.13, there exists $U \in \mathcal{U}_{2}$ and $m_{4,4}(T) \neq$ $0, m_{4,4}(T) \neq 1$ and $m_{4,4}(T) \neq 3$. If $T \notin \mathcal{U}_{2}$ then $m_{4,4}(T) \neq 2$ and since $\beta<0$, we conclude that

$$
\mathcal{A B C}(T)-\mathcal{A B C}(U)=\beta\left(m_{4,4}(T)-2\right)<0
$$

a contradiction. Hence $T \in \mathcal{U}_{2}$.
If $T \in \mathcal{V}$ then by Proposition 3.11,

$$
\mathcal{A B C}(T)=\alpha n+\beta m_{4,4}(T)+\delta,
$$

where $\delta=\left(2 \sqrt{\frac{3}{4}}-5 \sqrt{\frac{1}{2}}+2 \sqrt{\frac{5}{12}}\right)$. A similar argument based on Proposition 3.14 shows that $T \in \mathcal{V}_{2}$ if $n \equiv 0 ; T \in \mathcal{V}_{1}$ if $n \equiv 1 \bmod 4 ; T \in \mathcal{V}_{0}$ if $n \equiv 2 \bmod 4$; and $T \in \mathcal{V}_{3}$ if $n \equiv 3 \bmod 4$.

Theorem 3.16. Let n be a positive integer. The maximal value of $\mathcal{A B C}$ over \mathcal{C}_{n} is attained in

1. \mathcal{U}_{1} if $n \equiv 0 \bmod 4(n \geq 8)$, with maximal value

$$
\frac{1}{2}\left(\sqrt{\frac{3}{4}}+\sqrt{\frac{1}{2}}\right) n+\sqrt{\frac{6}{16}}+2 \sqrt{\frac{3}{4}}-4 \sqrt{\frac{1}{2}}
$$

2. \mathcal{U}_{0} if $n \equiv 1 \bmod 4(n \geq 5)$, with maximal value

$$
\frac{1}{2}\left(\sqrt{\frac{3}{4}}+\sqrt{\frac{1}{2}}\right) n+\frac{3}{2} \sqrt{\frac{3}{4}}-\frac{5}{2} \sqrt{\frac{1}{2}}
$$

3. \mathcal{V}_{0} if $n \equiv 2 \bmod 4(n \geq 14)$, with maximal value

$$
\frac{1}{2}\left(\sqrt{\frac{3}{4}}+\sqrt{\frac{1}{2}}\right) n+2 \sqrt{\frac{3}{4}}-5 \sqrt{\frac{1}{2}}+2 \sqrt{\frac{5}{12}}
$$

4. \mathcal{U}_{2} if $n \equiv 3 \bmod 4(n \geq 11)$, with maximal value

$$
\frac{1}{2}\left(\sqrt{\frac{3}{4}}+\sqrt{\frac{1}{2}}\right) n+2 \sqrt{\frac{6}{16}}+\frac{5}{2} \sqrt{\frac{3}{4}}-\frac{11}{2} \sqrt{\frac{1}{2}}
$$

Proof. Let T be maximal with respect to $\mathcal{A B C}$ over \mathcal{C}_{n}.

1. If $n \equiv 0 \bmod 4$ then by Corollary $3.15, T \in \mathcal{U}_{1}$ or $T \in \mathcal{V}_{2}$. By Proposition 3.11, $\mathcal{A B C}$ is constant in \mathcal{U}_{1} with value

$$
\alpha n+\beta+\gamma,
$$

and is constant in \mathcal{V}_{2} with value

$$
\alpha n+2 \beta+\delta .
$$

Now the value of $\mathcal{A B C}$ is larger in \mathcal{U}_{1} than in \mathcal{V}_{2} since

$$
(\alpha n+\beta+\gamma)-(\alpha n+2 \beta+\delta)=\gamma-\beta-\delta \approx 0.06>0
$$

Hence $T \in \mathcal{U}_{1}$.
2. If $n \equiv 1 \bmod 4$ then by Corollary $3.15, T \in \mathcal{U}_{0}$ or $T \in \mathcal{V}_{1}$. By Proposition 3.11, $\mathcal{A B C}$ is constant in \mathcal{U}_{0} with value

$$
\alpha n+\gamma,
$$

and is constant in \mathcal{V}_{1} with value

$$
\alpha n+\beta+\delta
$$

Since

$$
(\alpha n+\gamma)-(\alpha n+\beta+\delta)=\gamma-\beta-\delta \approx 0.06>0
$$

we conclude that $T \in \mathcal{U}_{0}$.
3. If $n \equiv 2 \bmod 4$ then by Corollary $3.15, T \in \mathcal{U}_{3}$ or $T \in \mathcal{V}_{0}$. By Proposition 3.11, $\mathcal{A B C}$ is constant in \mathcal{U}_{3} with value

$$
\alpha n+3 \beta+\gamma,
$$

and is constant in \mathcal{V}_{0} with value

$$
\alpha n+\delta
$$

Since

$$
(\alpha n+3 \beta+\gamma)-(\alpha n+\delta)=3 \beta+\gamma-\delta \approx-2.0653 \times 10^{-3}<0
$$

it follows that $T \in \mathcal{V}_{0}$.
4. If $n \equiv 3 \bmod 4$ then by Corollary $3.15, T \in \mathcal{U}_{2}$ or $T \in \mathcal{V}_{3}$. By Proposition 3.11, $\mathcal{A B C}$ is constant in \mathcal{U}_{2} with value

$$
\alpha n+2 \beta+\gamma,
$$

and is constant in \mathcal{V}_{3} with value

$$
\alpha n+3 \beta+\delta .
$$

Since

$$
(\alpha n+2 \beta+\gamma)-(\alpha n+3 \beta+\delta)=\gamma-\beta-\delta \approx 0.06>0 .
$$

we deduce that $T \in \mathcal{U}_{2}$.

4 Maximal value of $e^{\mathcal{A B C}}$ among chemical trees

Recall that the exponential of $\mathcal{A B C}$ is denoted by $e^{\mathcal{A B C}}$ and defined for a tree $T \in \mathcal{C}_{n}$ as

$$
e^{\mathcal{A B C}}(T)=\sum_{(i, j) \in K} m_{i, j}(T) e^{\sqrt{\frac{i+j-2}{i j}}} .
$$

We will find in this section the maximal value of $e^{\mathcal{A B C}}$ over \mathcal{C}_{n}. The arguments in the previous section work for $e^{\mathcal{A B C}}$, mainly because the behaviour of $e^{\mathcal{A B C}}$ in Tables 3-5 is similar to the behaviour of $\mathcal{A B C}$, in other words, the increasing properties of $\mathcal{A B C}$ and $e^{\mathcal{A B C}}$ are similar when the operations 1-3 are performed. Also, the signs in relations (11), (12), (13), (14), (15), (16), (17), and (18) hold when $\mathcal{A B C}$ is changed to $e^{\mathcal{A B C}}$.

The only difference appears in Table 4, where $e^{\mathcal{A B C}}$ increases even when $p=4$ and $(q, r)=(4,4)$. This situation has important implications which simplify the analysis of the study of the maximal value of $e^{\mathcal{A B C}}$ in \mathcal{C}_{n}. In fact, by Proposition 2.2 and Table 4 we deduce immediately that if T is maximal with respect to $e^{\mathcal{A B C}}$ over \mathcal{C}_{n}, then $m_{2,3}(T)=0$. Hence, we have

Corollary 4.1. If T is maximal with respect to $e^{\mathcal{A B C}}$ over \mathcal{C}_{n} then $T \in \mathcal{U}$.
As in Proposition 3.11:
Proposition 4.2. If $T \in \mathcal{U}$, then

$$
\begin{aligned}
e^{\mathcal{A B C}}(T)= & \frac{1}{2}\left(e^{\sqrt{\frac{3}{4}}}+e^{\sqrt{\frac{1}{2}}}\right) n+\frac{1}{2}\left(e^{\sqrt{\frac{3}{4}}}-3 e^{\sqrt{\frac{1}{2}}}+2 e^{\sqrt{\frac{6}{16}}}\right) m_{4,4} \\
& +\frac{1}{2}\left(3 e^{\sqrt{\frac{3}{4}}}-5 e^{\sqrt{\frac{1}{2}}}\right) .
\end{aligned}
$$

It is important to note that the companion coefficient of $m_{4,4}$ in this expression is

$$
\frac{1}{2}\left(e^{\sqrt{\frac{3}{4}}}-3 e^{\sqrt{\frac{1}{2}}}+2 e^{\sqrt{\frac{6}{16}}}\right) \approx-8.6482 \times 10^{-3}<0
$$

so again $e^{\mathcal{A B C}}$ is decreasing on $m_{4,4}$ over \mathcal{U}. Consequently, as in Corollary 3.15, we have
Corollary 4.3. Let T be maximal with respect to $e^{\mathcal{A B C}}$ over \mathcal{C}_{n}.

1. If $n \equiv 0 \bmod 4$ then $T \in \mathcal{U}_{1}$;
2. If $n \equiv 1 \bmod 4$ then $T \in \mathcal{U}_{0}$;
3. If $n \equiv 2 \bmod 4$ then $T \in \mathcal{U}_{3}$;
4. If $n \equiv 3 \bmod 4$ then $T \in \mathcal{U}_{2}$.

Following the proof of Theorem 3.16 we deduce the maximal value of $e^{\mathcal{A B C}}$ over \mathcal{C}_{n}.
Theorem 4.4. Let n be a positive integer. The maximal value of $e^{\mathcal{A B C}}$ over \mathcal{C}_{n} is attained in

1. \mathcal{U}_{1} if $n \equiv 0 \bmod 4(n \geq 8)$, with maximal value

$$
\frac{1}{2}\left(e^{\sqrt{\frac{3}{4}}}+e^{\sqrt{\frac{1}{2}}}\right) n+2 e^{\sqrt{\frac{3}{4}}}+e^{\sqrt{\frac{6}{16}}}-4 e^{\sqrt{\frac{1}{2}}}
$$

2. \mathcal{U}_{0} if $n \equiv 1 \bmod 4(n \geq 5)$, with maximal value

$$
\frac{1}{2}\left(e^{\sqrt{\frac{3}{4}}}+e^{\sqrt{\frac{1}{2}}}\right) n+\frac{3}{2} e^{\sqrt{\frac{3}{4}}}-\frac{5}{2} e^{\sqrt{\frac{1}{2}}}
$$

3. \mathcal{U}_{3} if $n \equiv 2 \bmod 4(n \geq 14)$, with maximal value

$$
\frac{1}{2}\left(e^{\sqrt{\frac{3}{4}}}+e^{\sqrt{\frac{T}{2}}}\right) n+3 e^{\sqrt{\frac{3}{4}}}+3 e^{\sqrt{\frac{6}{16}}}-7 e^{\sqrt{\frac{1}{2}}}
$$

4. \mathcal{U}_{2} if $n \equiv 3 \bmod 4(n \geq 11)$, with maximal value

$$
\frac{1}{2}\left(e^{\sqrt{\frac{3}{4}}}+e^{\sqrt{\frac{1}{2}}}\right) n+\frac{5}{2} e^{\sqrt{\frac{3}{4}}}-\frac{11}{2} e^{\sqrt{\frac{1}{2}}}+2 e^{\sqrt{\frac{6}{16}}}
$$

In conclusion, the maximal value of $e^{\mathcal{A B C}}$ and $\mathcal{A B C}$ are attained in the same trees except when $n \equiv 2 \bmod 4$. When $n \equiv 2 \bmod 4$ the $\mathcal{A B C}$ index attains its maximal value in \mathcal{V}_{0} and $e^{\mathcal{A B C}}$ attains its maximal value in \mathcal{U}_{3}.

5 Minimal value of $e^{\mathcal{G A}}$ among chemical trees

$e^{\mathcal{G A}}$ is defined for a chemical tree T as

$$
e^{\mathcal{G} \mathcal{A}}(T)=\sum_{(i, j) \in K} m_{i, j}(T) e^{\frac{2 \sqrt{3 j}}{i+j}}
$$

If we look at Tables 3-5 we note that the behavior of $e^{\mathcal{G A}}$ is even more favorable than the previous ones but with opposite signs. So when the operations 1-3 are performed, $e^{\mathcal{G A}}$ decreases and the minimal value of $e^{\mathcal{G A}}$ over \mathcal{C}_{n} is obtained. In fact, the version of Lemmas 3.1, 3.2, and 3.3 for $e^{\mathcal{G} \mathcal{A}}$ are as follows:

Lemma 5.1. Let $x y$ be an edge of $T \in \mathcal{C}_{n}$ such that $d_{x}=d_{y}=2$ as in Figure 1. Then we can find a tree $\widehat{T} \in \mathcal{C}_{n}$ such that $e^{\mathcal{G} \mathcal{A}}(T)>e^{\mathcal{G} \mathcal{A}}(\widehat{T})$.

Lemma 5.2. Let $x y$ be an edge of $T \in \mathcal{C}_{n}$ such that $d_{x}=2$ and $d_{y}=3$ as in Figure 2. Then we can find a tree $\widehat{T} \in \mathcal{C}_{n}$ such that $e^{\mathcal{G} \mathcal{A}}(T)>e^{\mathcal{G} \mathcal{A}}(\widehat{T})$.

Lemma 5.3. Let $x y$ be an edge of $T \in \mathcal{C}_{n}$ such that $d_{x}=d_{y}=3$ as in Figure 3. If $d_{z}=2$ for some $z \in\{a, b, c, e\}$, then we can find a tree $\widehat{T} \in \mathcal{C}_{n}$ such that $e^{\mathcal{G A}}(T)>e^{\mathcal{G A}}(\widehat{T})$.

Note that Lemmas 5.1 and 5.2 already imply that $m_{2,2}(T)=m_{2,3}(T)=0$ when T is minimal with respect to $e^{\mathcal{G} \mathcal{A}}$ over \mathcal{C}_{n}. Moreover, following the results in Section 3, one proves:

Corollary 5.4. If T is minimal with respect to $e^{\mathcal{G A}}$ over \mathcal{C}_{n} then $T \in \mathcal{U}$.
We also can compute $e^{\mathcal{G} \mathcal{A}}$ for trees in \mathcal{U} as in the previous sections.
Proposition 5.5. If $T \in \mathcal{U}$, then

$$
\begin{aligned}
e^{\mathcal{G A}}(T)= & \frac{1}{2}\left(e^{\frac{2 \sqrt{4}}{5}}+e^{\frac{2 \sqrt{8}}{6}}\right) n+\frac{1}{2}\left(e^{\frac{2 \sqrt{4}}{5}}-3 e^{\frac{2 \sqrt{8}}{6}}+2 e^{\frac{2 \sqrt{16}}{8}}\right) m_{4,4} \\
& +\frac{1}{2}\left(3 e^{\frac{2 \sqrt{4}}{5}}-5 e^{\frac{2 \sqrt{8}}{6}}\right) .
\end{aligned}
$$

Since the companion coefficient of $m_{4,4}$ in this expression is

$$
\frac{1}{2}\left(e^{\frac{2 \sqrt{4}}{5}}-3 e^{\frac{2 \sqrt{8}}{6}}+2 e^{\frac{2 \sqrt{16}}{8}}\right) \approx-1.9722 \times 10^{-2}<0
$$

it follows that $e^{\mathcal{G A}}$ is decreasing on $m_{4,4}$ over \mathcal{U}. From now on everything changes, because we are searching for the minimal value of $e^{\mathcal{G A}}$ over \mathcal{U}. In other words, we now have to consider subsets of \mathcal{U} with large $m_{4,4}$. From equation (20), it is clear that the maximal
number of $m_{4,4}$ in \mathcal{U} occur in the trees F_{k}, G_{k}, and H_{k} shown in Table 2, depending on the congruence of n modulo 3 . So let us define

$$
\begin{aligned}
\mathcal{U}_{\frac{n-9}{3}} & =\left\{T \in \mathcal{U}: m_{4,4}=\frac{n-9}{3}\right\} ; \\
\mathcal{U}_{\frac{n-13}{3}} & =\left\{T \in \mathcal{U}: m_{4,4}=\frac{n-13}{3}\right\} ; \\
\mathcal{U}_{\frac{n-5}{3}} & =\left\{T \in \mathcal{U}: m_{4,4}=\frac{n-5}{3}\right\} .
\end{aligned}
$$

Clearly, $F_{k} \in \mathcal{U}_{\frac{n-9}{3}}, G_{k} \in \mathcal{U}_{\frac{n-13}{3}}$, and $H_{k} \in \mathcal{U}_{\frac{n-5}{3}}$. It is easy to see that
Proposition 5.6. Let n be a positive integer. Then:

1. $\mathcal{U}_{\frac{n-9}{3}} \neq \emptyset$ if and only if $n \equiv 0 \bmod 3(n \geq 9)$;
2. $\mathcal{U}_{\frac{n-13}{3}} \neq \emptyset$ if and only if $n \equiv 1 \bmod 3(n \geq 13)$;
3. $\mathcal{U}_{\frac{n-5}{}} \neq \emptyset$ if and only if $n \equiv 2 \bmod 3(n \geq 5)$.

So we conclude the following:
Corollary 5.7. Let T be minimal with respect to $e^{\mathcal{G} \mathcal{A}}$ over \mathcal{C}_{n}.

1. If $n \equiv 0 \bmod 3(n \geq 9)$ then $T \in \mathcal{U}_{\frac{n-9}{3}}$;
2. If $n \equiv 1 \bmod 3(n \geq 13)$ then $T \in \mathcal{U}_{\frac{n-13}{3}}$;
3. If $n \equiv 2 \bmod 3(n \geq 5)$ then $T \in \mathcal{U}_{\frac{n-5}{3}}$.

Finally we obtain:
Theorem 5.8. Let n be a positive integer. The minimal value of $e^{\mathcal{G A}}$ over \mathcal{C}_{n} is attained in

1. $\mathcal{U}_{\frac{n-9}{3}}$ if $n \equiv 0 \bmod 3(n \geq 9)$ with minimal value

$$
\frac{1}{3}\left(2 e^{\frac{2 \sqrt{4}}{5}}+e^{\frac{2 \sqrt{16}}{8}}\right) n+2 e^{\frac{2 \sqrt{8}}{6}}-3 e^{\frac{2 \sqrt{16}}{8}}
$$

2. $\mathcal{U}_{\frac{n-13}{3}}$ if $n \equiv 1 \bmod 3(n \geq 13)$, with minimal value

$$
\frac{1}{3}\left(2 e^{\frac{2 \sqrt{4}}{5}}+e^{\frac{2 \sqrt{16}}{8}}\right) n+4 e^{\frac{2 \sqrt{8}}{6}}-\frac{2}{3} e^{\frac{2 \sqrt{4}}{5}}-\frac{13}{3} e^{\frac{2 \sqrt{16}}{8}}
$$

-716-

3. $\mathcal{U}_{\frac{n-5}{3}}$ if $n \equiv 2 \bmod 3(n \geq 5)$ with minimal value

$$
\frac{1}{3}\left(2 e^{\frac{2 \sqrt{4}}{5}}+e^{\frac{2 \sqrt{16}}{8}}\right) n+\frac{2}{3} e^{\frac{2 \sqrt{4}}{5}}-\frac{5}{3} e^{\frac{2 \sqrt{16}}{8}}
$$

Note that when $n=3 k+1$, the minimal value of $\mathcal{G A}$ and the minimal value of $e^{\mathcal{G} \mathcal{A}}$ are attained in different trees (see Table 2).

Acknowledgment: J.M. and J.R. thanks to COLCIENCIAS and UNIVERSIDAD DE ANTIOQUIA (Convocatoria 811- Programa de estancias Postdoctorales 2018) for their support.

References

[1] M. Aouchiche, P. Hansen, The geometric-arithmetic index and the chromatic number of connected graphs, Discr. Appl. Math. 232 (2017) 207-212.
[2] M. Bianchi, A. Cornaro, J. L. Palacios, A. Torriero, Lower bounds for the geometricarithmetic index of graphs with pendant and fully connected vertices, Discr. Appl. Math. 257 (2019) 53-59.
[3] X. Chen, G. Hao, Extremal graphs with respect to generalized ABC index, Discr. Appl. Math. 243 (2018) 115-124.
[4] X. Chen, K. Das, Solution to a conjecture on the maximum $A B C$ index of graphs with given chromatic number, Discr. Appl. Math. 251 (2018) 126-134.
[5] Y. Chen, B. Wu, On the geometric-arithmetic index of a graph, Discr. Appl. Math. 254 (2019) 268-273.
[6] R. Cruz, J. Rada, The path and the star as extremal values of vertex-degree-based topological indices among trees, MATCH Commun. Math. Comput. Chem. 82 (2019) 715-732.
[7] R. Cruz, J. Rada, Extremal values of exponential vertex-degree-based topological indices over graphs, Kragujevac J. Math. 46 (2022) 105-113.
[8] R. Cruz, J. Monsalve, J. Rada, Trees with maximal exponential Randić index, Discr. Appl. Math., in press.
[9] R. Cruz, J. Monsalve, J. Rada, Extremal values of vertex-degree-based topological indices of chemical trees, Appl. Math. Comput., in press.
[10] K. Das, I. Gutman, B. Furtula, Survey on geometric-arithmetic indices of graphs, MATCH Commun. Math. Comput. Chem. 65 (2011) 595-644.
[11] K. Das, S. Elumalai, I. Gutman, On $A B C$ index of graphs, MATCH Commun. Math. Comput. Chem. 78 (2017) 459-468.
[12] J. Devillers, A. T. Balaban (Eds.), Topological Indices and Related Descriptors in QSAR and QSPR, Gordon \& Breach, Amsterdam, 1999.
[13] D. Dimitrov, Z. Du, C. da Fonseca, The minimal- $A B C$ trees with B1-branches, PLoS One 13 (2018) \#e0195153.
[14] E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian J. Chem. 37A (1998) 849-855.
[15] E. Estrada, Atom-bond connectivity and the energetic of branched alkanes, Chem. Phys. Lett. 463 (2008) 422-425.
[16] E. Estrada, The ABC matrix, J. Math. Chem. 55 (2017) 1021-1033.
[17] B. Furtula, A. Graovac, D. Vukičević, Atom-bond connectivity index of trees, Discr. Appl. Math. 157 (2009) 2828-2835.
[18] J. Hernández, J. Rodríguez, J. Sigarreta, On the geometric-arithmetic index by decompositions, J. Math. Chem. 55 (2017) 1376-1391.
[19] J. Liu, R. Zheng, J. Chen, B. Liu, The extremal general atom-bond connectivity indices of unicyclic and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 81 (2019) 345-360.
[20] A. Martínez-Perez, J. Rodríguez, New lower bounds for the geometric-arithmetic index, MATCH Commun. Math. Comput. Chem. 79 (2018) 451-466.
[21] A. Martínez-Perez, J. Rodríguez, Some results on lower bounds for topological indices, J. Math. Chem. 57 (2019) 1472-1495.
[22] A. Martínez-Perez, J. Rodríguez, J. Sigarreta, A new approximation to the geometric-arithmetic index, J. Math. Chem. 56 (2018) 1865-1883.
[23] E. I. Milovanović, I. Ž. Milovanović, M. M. Matejić, Remark on spectral study of the geometric-arithmetic index and some generalizations, Appl. Math. Comput. 334 (2018) 206-213.
[24] D. Pestana, J. Sigarreta, E. Tourís, Geometric-arithmetic index and line graph, J. Math. Chem. 57 (2019) 1427-1447.
[25] A. Portilla, J. Rodríguez, J. Sigarreta, Recent lower bounds for geometric-arithmetic index, Discr. Math. Lett. 1 (2019) 59-82.
[26] J. Rada, Exponential vertex-degree-based topological indices and discrimination, MATCH Commun. Math. Comput. Chem. 82 (2019) 29-41.
[27] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609-6615.
[28] J. Rodríguez, J. Sigarreta, Spectral properties of geometric-arithmetic index, Appl. Math. Comput. 277 (2016) 142-153.
[29] J. Rodríguez, J. Rodríguez-Velazquez, J. Sigarreta, New inequalities involving the geometric-arithmetic index, MATCH Commun. Math. Comput. Chem. 78 (2017) 361-374.
[30] Z. Shao, P. Wu, Y. Gao, I. Gutman, X. Zhang, On the maximum $A B C$ index of graphs without pendent vertices, Appl. Math. Comput. 315 (2017) 298-312.
[31] M. Sohrabi-Haghighat, M. Rostami, The minimum value of geometric-arithmetic index of graphs with minimum degree 2, J. Comb. Optim. 34 (2017) 218-232.
[32] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
[33] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, WileyVCH, Weinheim, 2009.
[34] D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 13691376.
[35] X. Zhang, Y. Sun, H. Wang, X. Zhang, On the $A B C$ index of connected graphs with given degree sequences, J. Math. Chem. 56 (2018) 568-582.
[36] R. Zheng, J. Liu, J. Chen, B. Liu, Bounds on the general atom-bond connectivity indices, MATCH Commun. Math. Comput. Chem. 83 (2020) 143-166.

