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Abstract

A chemical tree is a tree that has no vertex of degree greater than 4. We denote
the set of chemical trees with n vertices as Cn. The ABC index of a chemical tree
T is defined as

ABC (T ) =
∑

1≤i≤j≤4
mi,j (T )

√
i + j − 2

ij
,

where mi,j (T ) is the number of edges in T joining vertices of degree i and j. Furtula,
Graovac and Vukičević in 2009 found trees with maximal ABC index among all trees
in Cn, when n ≡ 1 mod 4. In this paper we find the trees with maximal ABC index
in Cn for all n. Using the same technique, we find the trees with maximal eABC and
minimal eGA over Cn for all n, where

eABC (T ) =
∑

1≤i≤j≤4
mi,j (T ) e

√
i+j−2

ij

and

eGA (T ) =
∑

1≤i≤j≤4
mi,j (T ) e

2
√
ij

i+j .
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1 Introduction

Let T be a tree with n vertices. We denote by nj = nj (T ) the number of vertices in T

of degree j, and by mi,j = mi,j (T ) the number of edges in T joining vertices of degree i

and j. A chemical tree is a tree that has no vertex of degree greater than 4. We denote

the set of chemical trees with n vertices as Cn. The following relations are well known for

a chemical tree T ∈ Cn.

2m1,1 +m1,2 +m1,3 +m1,4 = n1

m1,2 + 2m2,2 +m2,3 +m2,4 = 2n2

m1,3 +m2,3 + 2m3,3 +m3,4 = 3n3

m1,4 +m2,4 +m3,4 + 2m4,4 = 4n4

, (1)

n1 + n2 + n3 + n4 = n, (2)

and ∑
1≤i≤j≤4

mi,j = n− 1. (3)

A vertex-degree-based (VDB) topological index defined over Cn is a function ϕ : Cn −→

R induced by numbers {ϕ(i, j)}(i,j)∈K , where

K = {(i, j) ∈ N× N : 1 ≤ i ≤ j ≤ 4} ,

defined for every T ∈ Cn as

ϕ (T ) =
∑

(i,j)∈K

mi,j (T )ϕ(i, j). (4)

In the particular case when ϕ(i, j) = 1√
ij

we obtain the connectivity index χ, introduced

by Randić in 1975 [27], one of the best known and widely used molecular descriptor in

QSPR/QSAR studies [32, 33]. However, in this paper our main concern is the atom-

bond connectivity index (ABC) proposed by Estrada et al. in [14], a valuable predictive

molecular descriptor in the study of heat formation in alkanes [14,15]. It is defined as in

(4), where ϕ(i, j) =
√

i+j−2
ij

. Also we will study eABC, the exponential of ABC induced

by the numbers ϕ(i, j) = e

√
i+j−2

ij [26]. For recent results on ABC and eABC we refer

to [3, 4, 6, 7, 11, 13,16,19,30,35,36].

Furtula, Graovac and Vukičević considered in 2009 [17] the problem of finding the trees

with maximal ABC among all trees in Cn. They showed that when n = 4k + 1 (k ≥ 1),

the tree Tk shown in Table 1 has maximal ABC index over Cn. In this paper we give the

complete solution for all n to the maximal ABC and eABC over Cn. The results are shown
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Table 1. Maximal trees with respect to ABC and eABC indices over Cn

Maximal ABC Maximal eABC

n = 4k + 1

(k > 1)

Tk

1 2 k−1

Tk

1 2 k−1

n = 4k

(k > 2)

Pk

1 2 k−2

Pk

1 2 k−2

n = 4k + 3

(k > 2)

Qk

1 2 k−2

Qk

1 2 k−2

n = 4k + 2

(k > 3)

T ′k

1 2 k−3

Rk

1 2 k−3

in Table 1. As you can see, when n = 4k+ 2 (k ≥ 3), the maximal value of ABC and the

maximal value of eABC are attained in different trees.

Another important VDB topological index is the geometric-arithmetic index GA, in-

troduced by Vukičević and Furtula in 2009 [34], defined for a chemical tree T as in (4),

with ϕ(i, j) = 2
√
ij

i+j
. For recent results in GA see ( [1, 2, 5, 18, 20–25, 28, 29, 31]) and the

survey [10]. The minimal value of GA over Cn was solved in [34] for all n. In this paper

we consider the exponential of GA [26], denoted by eGA, and induced by the numbers

ϕ(i, j) = e
2
√
ij

i+j in (4). We solve the minimal value of eGA over Cn, for all n. The results

are shown in Table 2. We note in this case that when n = 3k + 1, the minimal value of

GA and the minimal value of eGA are attained in different trees.

The maximal value of eABC and the minimal value of eGA over Cn were both open

problems proposed in [9].

2 Operations in chemical trees

There are three functions which play an important role in the variation of a VDB topo-

logical index ϕ, when operations are performed in chemical trees:

f (p, q) = [ϕ (2, p)− ϕ (3, p)] + [ϕ (2, q)− ϕ (3, q)] , (5)

g (p, q, r) = [ϕ (2, p)− ϕ (4, p)] + [ϕ (3, q)− ϕ (4, q)]

+ [ϕ (3, r)− ϕ (4, r)] , (6)
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Table 2. Minimal trees with respect to GA and eGA indices over Cn

Minimal GA Minimal eGA

n = 3k + 2

(k > 1)

Hk

1 2 k−1

Hk

1 2 k−1

n = 3k

(k > 3)

Fk

1 2 k−3

Fk

1 2 k−3

n = 3k + 1

(k > 4)

G′k

1 2 k−4

Gk

1 2 k−4

and

h (p, q, r, s) = [ϕ (3, p)− ϕ (4, p)] + [ϕ (3, q)− ϕ (2, q)]

+ [ϕ (3, r)− ϕ (4, r)] + [ϕ (3, s)− ϕ (4, s)] , (7)

where p, q, r, s are integers such that 1 ≤ p, q, r, s ≤ 4. In fact, these functions appear

when we perform the operations described below.

Proposition 2.1. (Operation 1) Let ϕ be a VDB topological index. Let xy be an edge of

T such that dx = dy = 2 and T̂ as in Figure 1. Then

ϕ (T )− ϕ(T̂ ) = f (da, db) + ϕ (2, 2)− ϕ (1, 3) . (8)

a x y b

T

x y

a

b

T̂

Figure 1. Operation 1 on T .

Proof. Note that

ϕ (T )− ϕ(T̂ ) = ϕ (2, da) + ϕ (2, 2) + ϕ (2, db)

−ϕ (1, 3)− ϕ (3, da)− ϕ (3, db)

= f (da, db) + ϕ (2, 2)− ϕ (1, 3) .
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Proposition 2.2. (Operation 2) Let ϕ be a VDB topological index. Let xy be an edge of

T such that dx = 2, dy = 3 and T̂ as in Figure 2. Then

ϕ (T )− ϕ(T̂ ) = g (da, db, dc) + ϕ (2, 3)− ϕ (1, 4) . (9)

a x y b

c

T

x

y

b

c

a

T̂

Figure 2. Operation 2 on T .

Proof. In fact,

ϕ (T )− ϕ(T̂ ) = ϕ (2, da) + ϕ (2, 3) + ϕ (3, db) + ϕ (3, dc)

−ϕ (1, 4)− ϕ (4, da)− ϕ (4, db)− ϕ (4, dc)

= g (da, db, dc) + ϕ (2, 3)− ϕ (1, 4) .

Proposition 2.3. (Operation 3) Let ϕ be a VDB topological index. Let xy be an edge of

T such that dx = dy = 3 and T̂ as in Figure 3. Then

ϕ (T )− ϕ(T̂ ) = h (da, db, dc, de) + ϕ (3, 3)− ϕ (2, 4) . (10)

a x y e

cb

T

x

y

e

c

a

b

T̂

Figure 3. Operation 3 on T .

Proof. Note that

ϕ (T )− ϕ(T̂ ) = ϕ (3, da) + ϕ (3, db) + ϕ (3, 3) + ϕ (3, dc) + ϕ (3, de)

−ϕ (2, db)− ϕ (2, 4)− ϕ (4, da)− ϕ (4, dc)− ϕ (4, de)

= h (da, db, dc, de) + ϕ (3, 3)− ϕ (2, 4) .
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It is of great interest to us to determine the sign of ϕ (T )− ϕ(T̂ ), because this infor-

mation indicates whether ϕ increases or decreases when the correspondent operation is

carried out. We will do this for the topological indices ABC, eABC and eGA.

We begin with Operation 1. Let us denote by p = da (T ) and q = db (T ) in Figure

1. Without loosing generality, we may assume that 1 ≤ p ≤ q ≤ 4. The values of

ϕ (T )− ϕ(T̂ ) are given in Table 3.

Table 3. Values of ϕ (T )− ϕ(T̂ ) in Operation 1 for ABC, eABC and eGA indices

p q ABC eABC eGA p q ABC eABC eGA

1 1 -0.328 -0.703 0.720 2 3 -0.069 -0.154 0.341
1 2 -0.219 -0.469 0.585 2 4 -0.048 -0.113 0.272
1 3 -0.178 -0.389 0.476 3 3 -0.029 -0.074 0.232
1 4 -0.157 -0.348 0.407 3 4 -0.007 -0.033 0.163
2 2 -0.109 -0.234 0.450 4 4 0.014 0.008 0.094

Now we consider Operation 2. Assume that p = da (T ) and q = db (T ) , r = dc (T ) in

Figure 2. Clearly 1 ≤ p ≤ 4 and we may assume that 1 ≤ q ≤ r ≤ 4. Then the values of

ϕ (T )− ϕ(T̂ ) are given in Table 4.

Table 4. Values of ϕ (T )− ϕ(T̂ ) in Operation 2 for ABC, eABC and eGA indices

p q r ABC eABC eGA p q r ABC eABC eGA

1 1 1 -0.417 -0.928 1.084 3 1 1 -0.196 -0.458 0.716
1 1 2 -0.367 -0.814 1.029 3 1 2 -0.147 -0.343 0.660
1 1 3 -0.346 -0.773 0.960 3 1 3 -0.126 -0.302 0.591
1 1 4 -0.334 -0.751 0.904 3 1 4 -0.114 -0.281 0.536
1 2 2 -0.318 -0.699 0.973 3 2 2 -0.097 -0.228 0.605
1 2 3 -0.297 -0.658 0.904 3 2 3 -0.076 -0.187 0.536
1 2 4 -0.285 -0.637 0.849 3 2 4 -0.064 -0.166 0.481
1 3 3 -0.275 -0.617 0.835 3 3 3 -0.055 -0.147 0.467
1 3 4 -0.264 -0.596 0.780 3 3 4 -0.043 -0.125 0.412
1 4 4 -0.252 -0.574 0.725 3 4 4 -0.031 -0.104 0.356
2 1 1 -0.258 -0.579 0.893 4 1 1 -0.163 -0.396 0.591
2 1 2 -0.208 -0.464 0.838 4 1 2 -0.114 -0.281 0.536
2 1 3 -0.187 -0.423 0.769 4 1 3 -0.093 -0.240 0.467
2 1 4 -0.175 -0.402 0.714 4 1 4 -0.081 -0.219 0.411
2 2 2 -0.159 -0.349 0.783 4 2 2 -0.064 -0.166 0.481
2 2 3 -0.138 -0.309 0.714 4 2 3 -0.043 -0.125 0.412
2 2 4 -0.126 -0.287 0.658 4 2 4 -0.031 -0.104 0.356
2 3 3 -0.117 -0.268 0.645 4 3 3 -0.022 -0.084 0.343
2 3 4 -0.105 -0.246 0.589 4 3 4 -0.010 -0.063 0.287
2 4 4 -0.093 -0.225 0.534 4 4 4 0.002 -0.042 0.232
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Finally, let us consider Operation 3. Set p = da(T ), q = db(T ) and r = dc(T ), s = de(T )

in Figure 3. We may assume that 1 ≤ p ≤ q ≤ 4, in other words, we perform Operation

3 by moving the vertex adjacent to x (different from y) with the least degree. We also

assume that 1 ≤ r ≤ s ≤ 4. Moreover, we will apply Operation 3 when p 6= 2, q 6= 2, r 6= 2,

and s 6= 2. Then under these conditions, the values of ϕ (T )− ϕ(T̂ ) are given in Table 5.

Table 5. Values of ϕ (T )− ϕ(T̂ ) in Operation 3 for ABC, eABC and eGA indices

p q r s ABC eABC eGA p q r s ABC eABC eGA

1 1 1 1 -0.080 -0.191 0.417 3 4 1 1 -0.180 -0.391 0.606
1 1 1 3 -0.009 -0.035 0.293 3 4 1 3 -0.109 -0.235 0.482
1 1 1 4 0.003 -0.014 0.237 3 4 1 4 -0.097 -0.214 0.426
1 3 1 3 -0.159 -0.350 0.537 3 4 3 3 -0.039 -0.079 0.358
1 3 1 4 -0.147 -0.328 0.482 3 4 3 4 -0.027 -0.058 0.302
1 4 1 4 -0.168 -0.369 0.551 3 4 4 4 -0.015 -0.036 0.247
3 3 1 1 -0.159 -0.350 0.537 4 4 1 1 -0.168 -0.369 0.551
3 3 1 3 -0.088 -0.194 0.413 4 4 1 3 -0.097 -0.214 0.426
3 3 1 4 -0.076 -0.173 0.357 4 4 1 4 -0.085 -0.192 0.371
3 3 3 3 -0.017 -0.038 0.289 4 4 3 3 -0.027 -0.058 0.302
3 3 3 4 -0.005 -0.017 0.233 4 4 3 4 -0.015 -0.036 0.247
3 3 4 4 0.007 0.004 0.178 4 4 4 4 -0.003 -0.015 0.191

3 Maximal value of the ABC index among chemical

trees

The following lemmas are useful in the sequel.

Lemma 3.1. Suppose that xy is an edge of T ∈ Cn such that dx = dy = 2 as in Figure 1.

If (da, db) 6= (4, 4) then we can find a tree T̂ ∈ Cn such that ABC (T ) < ABC(T̂ ).

Proof. This is a consequence of Proposition 2.1 and Table 3.

Lemma 3.2. Suppose that xy is an edge of T ∈ Cn such that dx = 2 and dy = 3 as

in Figure 2. If da 6= 4 or (db, dc) 6= (4, 4) then we can find a tree T̂ ∈ Cn such that

ABC (T ) < ABC(T̂ ).

Proof. This is a consequence of Proposition 2.2 and Table 4.

Lemma 3.3. Suppose that xy is an edge of T ∈ Cn such that dx = dy = 3 as in Figure 3.

If dz = 2 for some z ∈ {a, b, c, e} , then we can find a tree T̂ ∈ Cn such that ABC (T ) <

ABC(T̂ ).
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Proof. Assume that da = 2. Then ax is an edge of T such that da = 2 and dx = 3.

Moreover, (db, dy) 6= (4, 4). It follows from Lemma 3.2 that there exists a tree T̂ ∈ Cn
such that ABC (T ) < ABC(T̂ ).

From now on we will say that a tree T ∈ Cn is maximal with respect to ABC over Cn
if

ABC (S) ≤ ABC (T ) ,

for all S ∈ Cn.

Proposition 3.4. Let n ≥ 10. If T is maximal with respect to ABC over Cn, then

m1,3 (T ) = 0.

Proof. Assume that m1,3 (T ) > 0. Then T is of the form depicted in Figure 4, where we

may assume 1 ≤ dc ≤ dx ≤ 4. We consider four cases:

x y b

c

T

Figure 4. Form of T ∈ Cn when m1,3(T ) > 0.

1. dx = 1. Then dc = 1 which implies n = 4, a contradiction.

2. dx = 2. Then xy is an edge of T such that dx = 2, dy = 3. Moreover, (db, dc) =

(1, dc) 6= (4, 4). By Lemma 3.2 we arrive at a contradiction.

a x y e

cb

T

Figure 5. Form of T ∈ Cn when m1,3(T ) > 0 and dx = 3.

3. dx = 3. Then T has the form depicted in Figure 5. By Lemma 3.3, da 6= 2, db 6= 2,

and dc 6= 2. Now, since xy is an edge of T such that dx = dy = 3, we apply

Proposition 2.3 and Table 5 to deduce that dc = 4, da = db = 1. In this case, we

construct the tree T ′ in Figure 6. Then

ABC (T )−ABC (T ′) = 3

√
2

3
+

√
4

9
+

√
5

12
+

√
dw + 2

4dw

−2

√
1

2
− 3

√
3

4
−
√

6

16
(11)

< 0,
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for all 2 ≤ dw ≤ 4. A contradiction. So the only case left is when du = dv = dw = 1,

but in this case n = 9, a contradiction.

a x y

cb

u
v

w

T

a x y

cb

vu

w

T ′

Figure 6. Operation on T ∈ Cn when m1,3(T ) > 0, dx = 3, da = db = 1 and dc = 4.

4. dx = 4. Then T has the form depicted in Figure 7. Let T ′′ be the tree shown in

Figure 7. It follows that

w

x y b

cu

v

T

w

x y b

uc

v

T ′′

Figure 7. Operation on T ∈ Cn when m1,3(T ) > 0, dx = 4 and 2 ≤ dw ≤ 4.

ABC (T )−ABC (T ′′) =

√
dw + 2

4dw
+

√
2

3
−
√
dw + 1

3dw
−
√

3

4
< 0, (12)

for all 2 ≤ dw ≤ 4. A contradiction. So we may assume that du = dv = dw = 1,

x y b

c

T

Figure 8. Form of T ∈ Cn when m1,3(T ) > 0, dx = 4 and du = dv = dw = 1.

as shown in Figure 8. If dc = 1 then n = 7, a contradiction. If dc = 2 then we

get a contradiction by Lemma 3.2. If dc = 3, then we repeat the argument of case

3. So we may assume that dc = 4. In this case we again apply the same operation

considered in Figure 7, to conclude that all three vertices adjacent to c (different

from y) have degree 1, and so n = 10, a contradiction.
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Proposition 3.5. Let n ≥ 7. If T is maximal with respect to ABC over Cn, then

m1,2 (T ) = 0.

a x b
T

Figure 9. Form of T ∈ Cn when m1,2(T ) > 0.

Proof. Assume that m1,2 (T ) > 0 so T has the form depicted in Figure 9. If da = 1, then

n = 3, a contradiction. If da = 2 then ax is an edge of T such that da = dx = 2. Then we

get a contradiction by Lemma 3.1. If da = 3, then xa is an edge of T such that dx = 2

and da = 3. So we get a contradiction using Lemma 3.2. So we may assume that da = 4.

Then we construct the tree T ′ shown in Figure 10. Therefore

w

a

x b

u

vT

w a

x

b

u

v
T ′

Figure 10. Operation on T ∈ Cn when m1,2(T ) > 0 and da = 4.

ABC (T )−ABC (T ′) =

√
dw + 2

4dw
−
√

3

4
< 0, (13)

for all 2 ≤ dw ≤ 4. Hence we may assume that du = dv = dw = 1, but in this case n = 6,

a contradiction. Consequently, m1,2 (T ) = 0.

Proposition 3.6. Let n ≥ 11. If T is maximal with respect to ABC over Cn, then

m2,2 (T ) = 0.

w

a x y

u

v
b

u′

v′

w′

T

w

a x y

u

v
b

u′

v′

w′

T ′

Figure 11. Operation on T ∈ Cn when m2,2(T ) > 0 and da = db = 4.
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Proof. If m2,2 (T ) > 0 then T has the form depicted in Figure 1. Then by Lemma 3.1,

da = db = 4. Let T ′ be the tree in Figure 11. Then

ABC (T )−ABC (T ′) =

√
dw + 2

4dw
−
√

1

2
< 0, (14)

for all 3 ≤ dw ≤ 4. So we may assume that all vertices u, v, w, u′, v′, w′ have degree ≤ 2.

If they are all 1’s, then n = 10, a contradiction. So one of them has degree 2, say dw = 2.

Then we define the tree T ′′ in Figure 12. Hence

w

a

x y

u

v
z

T

w

a x

y

u

v z

T ′′

Figure 12. Operation on T ∈ Cn when m2,2(T ) > 0, da = db = 4 and dw = 2.

ABC (T )−ABC (T ′′) = 3

√
1

2
−
√

3

4
−
√

5

12
−
√
dz + 1

3dz
< 0, (15)

for all 1 ≤ dz ≤ 4. This is a contradiction. In conclusion, m2,2 (T ) = 0.

Proposition 3.7. If T is maximal with respect to ABC over Cn, then m3,3 (T ) = 0.

Proof. If m3,3 (T ) > 0 then T has the form depicted in Figure 3. By Lemma 3.3, da 6= 2,

db 6= 2, dc 6= 2, and de 6= 2. We also know by Proposition 3.4 that da 6= 1, db 6= 1, dc 6= 1,

and de 6= 1. Now we apply Proposition 2.3 and Table 5 to deduce that da = db = 3 and

dc = de = 4. Then T has the form shown in Figure 13. Since db = dx = da = 3, we repeat

the same argument to the edges bx and ax of T to conclude that du = dv = db′ = dz = 4.

Now we define T ′ as in Figure 13. Then

b′

a

x y

e

z

b

v

u

c

T

b′

a

x y

e

z

b

v

u

c

T ′

Figure 13. Operation on T ∈ Cn when m3,3(T ) > 0, da = db = 3 and dc = de = 4.

ABC (T )−ABC (T ′) = 3

√
4

9
− 2

√
1

2
−
√

6

16
< 0. (16)
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This is a contradiction. Hence m3,3 (T ) = 0.

Proposition 3.8. If T is maximal with respect to ABC over Cn, then m2,3 (T ) ≤ 1.

a c

b

u

v

w

T

Figure 14. Form of T ∈ Cn when m2,3(T ) ≥ 2.

Proof. Assume that m2,3 (T ) ≥ 2. By Lemma 3.2, T is of the form depicted in Figure 14,

where da = db = dc = du = dv = dw = 4 (u = c is possible). Define T ′ as in Figure 15.

Then

c

b

u

v

w

a

T ′

Figure 15. Operation on T ∈ Cn when m2,3(T ) ≥ 2.

ABC (T )−ABC (T ′) = 4

√
5

12
− 2

√
1

2
− 2

√
6

16
< 0, (17)

this is a contradiction. Hence, m2,3 (T ) ≤ 1.

Proposition 3.9. Let T be maximal with respect to ABC over Cn.

1. If m2,3 (T ) = 0 then n3 (T ) = 0;

2. If m2,3 (T ) = 1 then n3 (T ) = 1.

Proof.

1. Suppose that m2,3 (T ) = 0 and n3 (T ) > 0. Consider the tree T ′ defined from T as

indicated in Figure 16. From the Propositions 3.4, 3.7 and the fact that m2,3 (T ) = 0, we

deduce that da = db = dc = de = 4. Hence

ABC (T )−ABC (T ′) = 3

√
5

12
+

√
3

4
− 4

√
1

2
< 0, (18)

a contradiction. Consequently, n3 (T ) = 0.
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a c

e

b

T
a c

e b
T ′

Figure 16. Operation on T ∈ Cn when m2,3(T ) = 0 and n3(T ) > 0.

2. Assume that m2,3 (T ) = 1. Then n3 (T ) ≥ 1 and T has the form depicted in Figure 17.

As in part 1., it is clear that da = db = dc = 4 is not possible. Then by Propositions 3.4

and 3.7, dz = 2 for some z ∈ {a, b, c}. In other words, every vertex of degree 3 has at least

one neighbor of degree 2. Consequently, if n3 (T ) ≥ 2, then m2,3 (T ) ≥ 2, a contradiction.

In conclusion, n3 (T ) = 1.

b

a

c

T

Figure 17. Form of T ∈ Cn when m2,3(T ) = 1 and n3(T ) ≥ 1.

Corollary 3.10. If T is maximal with respect to ABC over Cn then T ∈ U or T ∈ V,

where

U = {T ∈ Cn : m1,2 = m2,2 = n3 = 0}

or

V = {T ∈ Cn : m1,3 = m1,2 = m2,2 = 0,m2,3 = n3 = 1 } .

Proof. If T is maximal with respect to ABC over Cn, then by Propositions 3.4, 3.5, 3.6,

3.7

m1,3 = m1,2 = m2,2 = m3,3 = 0.

By Proposition 3.8, m2,3 ≤ 1. If m2,3 = 0 then by Proposition 3.9, n3 = 0. Hence T ∈ U .

If m2,3 = 1, then n3 = 1 again by Proposition 3.9 and T ∈ V .

Next we compute the ABC index of the trees in U and in V . From now on we use the

following notation:

α =
1

2

(√
3

4
+

√
1

2

)
, β =

1

2

(√
3

4
− 3

√
1

2
+ 2

√
6

16

)
,

γ =
1

2

(
3

√
3

4
− 5

√
1

2

)
, δ =

(
2

√
3

4
− 5

√
1

2
+ 2

√
5

12

)
.
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Proposition 3.11. Let T ∈ Cn.

1. If T ∈ U then

ABC (T ) = αn+ βm4,4 + γ;

2. If T ∈ V then

ABC (T ) = αn+ βm4,4 + δ.

Proof. 1. If T ∈ U then by relations (1)

m1,4 = n1

m2,4 = 2n2

m1,4 +m2,4 + 2m4,4 = 4n4

.

It follows from relation (2) that

n = n1 + n2 + n4

= m1,4 +
1

2
m2,4 +

1

4
(m1,4 +m2,4 + 2m4,4) ,

and from relation (3),

n− 1 = m1,4 +m2,4 +m4,4.

In other words, we have the relations

4n = 5m1,4 + 3m2,4 + 2m4,4

n = m1,4 +m2,4 +m4,4 + 1
.

As a consequence, we can express both m1,4 and m2,4 in terms of n and m4,4:

2m1,4 = n+ 3 +m4,4 (19)

2m2,4 = n− 5− 3m4,4. (20)

Hence,

2ABC (T ) = 2m1,4

√
3

4
+ 2m2,4

√
1

2
+ 2m4,4

√
6

16

= (n+ 3 +m4,4)

√
3

4
+ (n− 5− 3m4,4)

√
1

2
+ 2m4,4

√
6

16

=

(√
3

4
+

√
1

2

)
n+

(√
3

4
− 3

√
1

2
+ 2

√
6

16

)
m4,4

+

(
3

√
3

4
− 5

√
1

2

)
.
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2. If T ∈ V then by relations (1)

m1,4 = n1

1 +m2,4 = 2n2

1 +m3,4 = 3
m1,4 +m2,4 + 2 + 2m4,4 = 4n4

.

In particular, m3,4 = 2. It follows from relation (2) that

n = n1 + n2 + 1 + n4

= m1,4 +
1

2
(1 +m2,4) + 1 +

1

4
(m1,4 +m2,4 + 2 + 2m4,4) ,

and from relation (3),

n− 1 = m1,4 + 1 +m2,4 + 2 +m4,4.

In other words, we have the relations

4n = 5m1,4 + 3m2,4 + 2m4,4 + 8
n = m1,4 +m2,4 +m4,4 + 4.

.

From here we deduce that
2m1,4 = n+ 4 +m4,4

2m2,4 = n− 12− 3m4,4
.

Hence,

2ABC (T ) = 2m1,4

√
3

4
+ 2m2,3

√
1

2
+ 2m2,4

√
1

2
+ 2m3,4

√
5

12
+ 2m4,4

√
6

16

= (n+ 4 +m4,4)

√
3

4
+ 2

√
1

2
+ (n− 12− 3m4,4)

√
1

2
+ 4

√
5

12
+ 2m4,4

√
6

16

=

(√
3

4
+

√
1

2

)
n+

(√
3

4
− 3

√
1

2
+ 2

√
6

16

)
m4,4

+

(
4

√
3

4
− 10

√
1

2
+ 4

√
5

12

)
.

Remark 3.12. The coefficient β that appears with m4,4 in the expression for ABC (T )

when T ∈ U or T ∈ V in Proposition 3.11 is β ≈ −1. 527 5× 10−2 < 0. Hence, the ABC

index is strictly decreasing on m4,4 over U and over V.

By Corollary 3.10 we know that if T is maximal with respect to ABC over Cn, then

T ∈ U or T ∈ V . Furthermore, based on the Remark 3.12, we next show that T belongs

to

Ui = {T ∈ U : m4,4 = i}
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or

Vi = {T ∈ V : m4,4 = i} ,

for some i = 0, 1, 2, 3.

Proposition 3.13. Let n be a positive integer. Then:

1. U0 6= ∅ if and only if n ≡ 1 mod 4 (n ≥ 5);

2. U1 6= ∅ if and only if n ≡ 0 mod 4 (n ≥ 8);

3. U2 6= ∅ if and only if n ≡ 3 mod 4 (n ≥ 11);

4. U3 6= ∅ if and only if n ≡ 2 mod 4 (n ≥ 14).

Proof. 1. If n ≡ 1 mod 4, say n = 4k + 1 with k ≥ 1, then the tree Tk defined in Table

1 satisfies

n (Tk) = 5 + 4 (k − 1) = 4k + 1 = n,

and Tk ∈ U0.

Conversely, assume that T ∈ U0. Then by (1) and (3),

m1,4 +m2,4 = 4n4

m1,4 +m2,4 = n− 1.

Consequently, n = 4n4 + 1 and so n ≡ 1 mod 4.

2. If n ≡ 0 mod 4, say n = 4k with k ≥ 2, then the tree Pk defined in Table 1 satisfies

n (Pk) = 8 + 4 (k − 2) = 4k = n,

and Pk ∈ U1.

Conversely, assume that P ∈ U1. Then by (1) and (3),

m1,4 +m2,4 + 2 = 4n4

m1,4 +m2,4 + 1 = n− 1.

Consequently, n = 4n4 and so n ≡ 0 mod 4.

3. If n ≡ 3 mod 4, say n = 4k + 3 with k ≥ 2, then the tree Qk defined in Table 1

satisfies

n (Qk) = 11 + 4 (k − 2) = 4k + 3 = n
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and Qk ∈ U2.

Conversely, assume that Q ∈ U2. Then by (1) and (3),

m1,4 +m2,4 + 4 = 4n4

m1,4 +m2,4 + 2 = n− 1.

Consequently, n = 4 (n4 − 1) + 3 and so n ≡ 3 mod 4.

4. If n ≡ 2 mod 4, say n = 4k + 2 with k ≥ 3, then the tree Rk defined in Table 1

satisfies

n (Rk) = 14 + 4 (k − 3) = 4k + 2 = n

and Rk ∈ U3.

Conversely, assume that R ∈ U3. Then by (1) and (3),

m1,4 +m2,4 + 6 = 4n4

m1,4 +m2,4 + 3 = n− 1.

Consequently, n = 4 (n4 − 1) + 2 and so n ≡ 2 mod 4.

We also have a similar result to Proposition 3.13 relative to the sets Vi.

Proposition 3.14. Let n be a positive integer.

1. V0 6= ∅ if and only if n ≡ 2 mod 4 (n ≥ 14);

2. V1 6= ∅ if and only if n ≡ 1 mod 4 (n ≥ 17);

3. V2 6= ∅ if and only if n ≡ 0 mod 4 (n ≥ 20);

4. V3 6= ∅ if and only if n ≡ 3 mod 4 (n ≥ 23).

Proof. 1. If n ≡ 2 mod 4, say n = 4k + 2 with k ≥ 3, then the tree T ′k defined in Table

1 satisfies

n (T ′k) = 14 + 4 (k − 3) = 4k + 2 = n

and T ′k ∈ V0.

Conversely, assume that T ′ ∈ V0. Then by (1) and (3), m3,4 = 2 and so

m1,4 +m2,4 + 2 = 4n4

m1,4 +m2,4 + 3 = n− 1.
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Consequently, n = 4n4 + 2 and so n ≡ 2 mod 4.

2. If n ≡ 1 mod 4, say n = 4k + 1 with k ≥ 4, then the tree P ′k defined in Figure 18

satisfies

P ′k

k>4

1 2 k−4

Figure 18. Tree P ′k ∈ V1.

n (P ′k) = 17 + 4 (k − 4) = 4k + 1 = n,

and P ′k ∈ V1.

Conversely, assume that P ′ ∈ V1. Then by (1) and (3), m3,4 = 2 and

m1,4 +m2,4 + 4 = 4n4

m1,4 +m2,4 + 4 = n− 1.

Consequently, n = 4n4 + 1 and so n ≡ 1 mod 4.

3. If n ≡ 0 mod 4, say n = 4k with k ≥ 5, then the tree Q′k defined in Figure 19

satisfies

Q′k

1 2 k−5

Figure 19. Tree Q′k ∈ V2.

n (Q′k) = 20 + 4 (k − 5) = 4k = n,

and Q′k ∈ V2.

Conversely, assume that Q′ ∈ V2. Then by (1) and (3), m3,4 = 2 and

m1,4 +m2,4 + 6 = 4n4

m1,4 +m2,4 + 5 = n− 1.

Hence n = 4n4 and so n ≡ 0 mod 4.
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4. If n ≡ 3 mod 4, say n = 4k + 3 with k ≥ 5, then the tree R′k defined in Figure 20

satisfies

R′k

1 2 k−5

Figure 20. Tree R′k ∈ V3.

n (R′k) = 23 + 4 (k − 5) = 4k + 3 = n

and R′k ∈ V3.

Conversely, assume that R′ ∈ V3. Then by (1) and (3), m3,4 = 2 and

m1,4 +m2,4 + 8 = 4n4

m1,4 +m2,4 + 6 = n− 1.

Consequently, n = 4 (n4 − 1) + 3 and so n ≡ 3 mod 4.

Corollary 3.15. Let T be maximal with respect to ABC over Cn.

1. If n ≡ 0 mod 4 then T ∈ U1 or T ∈ V2;

2. If n ≡ 1 mod 4 then T ∈ U0 or T ∈ V1;

3. If n ≡ 2 mod 4 then T ∈ U3 or T ∈ V0;

4. If n ≡ 3 mod 4 then T ∈ U2 or T ∈ V3.

Proof. By Corollary 3.10, T ∈ U or T ∈ V . If T ∈ U then by Proposition 3.11,

ABC (T ) = αn+ βm4,4 (T ) + γ.

Consider the following cases:

1. n ≡ 0 mod 4. Then by Proposition 3.13, there exists U ∈ U1 and m4,4 (T ) 6=

0,m4,4 (T ) 6= 2 and m4,4 (T ) 6= 3. If T 6∈ U1 then m4,4 (T ) 6= 1 and since β < 0, we

conclude that

ABC (T )−ABC (U) = β (m4,4 (T )− 1) < 0,

a contradiction. Hence T ∈ U1.
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2. n ≡ 1 mod 4. Then by Proposition 3.13, there exists U ∈ U0 and m4,4 (T ) 6=

1,m4,4 (T ) 6= 2 and m4,4 (T ) 6= 3. If T 6∈ U0 then m4,4 (T ) 6= 0 and since β < 0, we

conclude that

ABC (T )−ABC (U) = βm4,4 (T ) < 0,

a contradiction. Hence T ∈ U0.

3. n ≡ 2 mod 4. Then by Proposition 3.13, there exists U ∈ U3 and m4,4 (T ) 6=

0,m4,4 (T ) 6= 1 and m4,4 (T ) 6= 2. If T 6∈ U3 then m4,4 (T ) 6= 3 and since β < 0, we

conclude that

ABC (T )−ABC (U) = β (m4,4 (T )− 3) < 0,

a contradiction. Hence T ∈ U3.

4. n ≡ 3 mod 4. Then by Proposition 3.13, there exists U ∈ U2 and m4,4 (T ) 6=

0,m4,4 (T ) 6= 1 and m4,4 (T ) 6= 3. If T 6∈ U2 then m4,4 (T ) 6= 2 and since β < 0, we

conclude that

ABC (T )−ABC (U) = β (m4,4 (T )− 2) < 0,

a contradiction. Hence T ∈ U2.

If T ∈ V then by Proposition 3.11,

ABC (T ) = αn+ βm4,4 (T ) + δ,

where δ =
(

2
√

3
4
− 5
√

1
2

+ 2
√

5
12

)
. A similar argument based on Proposition 3.14 shows

that T ∈ V2 if n ≡ 0; T ∈ V1 if n ≡ 1 mod 4; T ∈ V0 if n ≡ 2 mod 4; and T ∈ V3 if

n ≡ 3 mod 4.

Theorem 3.16. Let n be a positive integer. The maximal value of ABC over Cn is attained

in

1. U1 if n ≡ 0 mod 4 (n ≥ 8), with maximal value

1

2

(√
3

4
+

√
1

2

)
n+

√
6

16
+ 2

√
3

4
− 4

√
1

2
.

2. U0 if n ≡ 1 mod 4 (n ≥ 5), with maximal value

1

2

(√
3

4
+

√
1

2

)
n+

3

2

√
3

4
− 5

2

√
1

2
.

3. V0 if n ≡ 2 mod 4 (n ≥ 14), with maximal value

1

2

(√
3

4
+

√
1

2

)
n+ 2

√
3

4
− 5

√
1

2
+ 2

√
5

12
.
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4. U2 if n ≡ 3 mod 4 (n ≥ 11), with maximal value

1

2

(√
3

4
+

√
1

2

)
n+ 2

√
6

16
+

5

2

√
3

4
− 11

2

√
1

2
.

Proof. Let T be maximal with respect to ABC over Cn.

1. If n ≡ 0 mod 4 then by Corollary 3.15, T ∈ U1 or T ∈ V2. By Proposition 3.11,

ABC is constant in U1 with value

αn+ β + γ,

and is constant in V2 with value

αn+ 2β + δ.

Now the value of ABC is larger in U1 than in V2 since

(αn+ β + γ)− (αn+ 2β + δ) = γ − β − δ ≈ 0.06 > 0.

Hence T ∈ U1.

2. If n ≡ 1 mod 4 then by Corollary 3.15, T ∈ U0 or T ∈ V1. By Proposition 3.11,

ABC is constant in U0 with value

αn+ γ,

and is constant in V1 with value

αn+ β + δ.

Since

(αn+ γ)− (αn+ β + δ) = γ − β − δ ≈ 0.06 > 0,

we conclude that T ∈ U0.

3. If n ≡ 2 mod 4 then by Corollary 3.15, T ∈ U3 or T ∈ V0. By Proposition 3.11,

ABC is constant in U3 with value

αn+ 3β + γ,

and is constant in V0 with value

αn+ δ.

Since

(αn+ 3β + γ)− (αn+ δ) = 3β + γ − δ ≈ −2. 065 3× 10−3 < 0.

it follows that T ∈ V0.
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4. If n ≡ 3 mod 4 then by Corollary 3.15, T ∈ U2 or T ∈ V3. By Proposition 3.11,

ABC is constant in U2 with value

αn+ 2β + γ,

and is constant in V3 with value

αn+ 3β + δ.

Since

(αn+ 2β + γ)− (αn+ 3β + δ) = γ − β − δ ≈ 0.06 > 0.

we deduce that T ∈ U2.

4 Maximal value of eABC among chemical trees

Recall that the exponential of ABC is denoted by eABC and defined for a tree T ∈ Cn as

eABC (T ) =
∑

(i,j)∈K

mi,j (T ) e

√
i+j−2

ij .

We will find in this section the maximal value of eABC over Cn. The arguments in the

previous section work for eABC, mainly because the behaviour of eABC in Tables 3-5 is

similar to the behaviour of ABC, in other words, the increasing properties of ABC and

eABC are similar when the operations 1-3 are performed. Also, the signs in relations (11),

(12), (13), (14), (15), (16), (17), and (18) hold when ABC is changed to eABC.

The only difference appears in Table 4, where eABC increases even when p = 4 and

(q, r) = (4, 4). This situation has important implications which simplify the analysis of

the study of the maximal value of eABC in Cn. In fact, by Proposition 2.2 and Table 4 we

deduce immediately that if T is maximal with respect to eABC over Cn, then m2,3 (T ) = 0.

Hence, we have

Corollary 4.1. If T is maximal with respect to eABC over Cn then T ∈ U .

As in Proposition 3.11:

Proposition 4.2. If T ∈ U , then

eABC (T ) =
1

2

(
e
√

3
4 + e

√
1
2

)
n+

1

2

(
e
√

3
4 − 3e

√
1
2 + 2e

√
6
16

)
m4,4

+
1

2

(
3e
√

3
4 − 5e

√
1
2

)
.
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It is important to note that the companion coefficient of m4,4 in this expression is

1

2

(
e
√

3
4 − 3e

√
1
2 + 2e

√
6
16

)
≈ −8. 648 2× 10−3 < 0,

so again eABC is decreasing on m4,4 over U . Consequently, as in Corollary 3.15, we have

Corollary 4.3. Let T be maximal with respect to eABC over Cn.

1. If n ≡ 0 mod 4 then T ∈ U1;

2. If n ≡ 1 mod 4 then T ∈ U0;

3. If n ≡ 2 mod 4 then T ∈ U3;

4. If n ≡ 3 mod 4 then T ∈ U2.

Following the proof of Theorem 3.16 we deduce the maximal value of eABC over Cn.

Theorem 4.4. Let n be a positive integer. The maximal value of eABC over Cn is attained

in

1. U1 if n ≡ 0 mod 4 (n ≥ 8), with maximal value

1

2

(
e
√

3
4 + e

√
1
2

)
n+ 2e

√
3
4 + e

√
6
16 − 4e

√
1
2 ;

2. U0 if n ≡ 1 mod 4 (n ≥ 5), with maximal value

1

2

(
e
√

3
4 + e

√
1
2

)
n+

3

2
e
√

3
4 − 5

2
e
√

1
2 ;

3. U3 if n ≡ 2 mod 4 (n ≥ 14), with maximal value

1

2

(
e
√

3
4 + e

√
1
2

)
n+ 3e

√
3
4 + 3e

√
6
16 − 7e

√
1
2 ;

4. U2 if n ≡ 3 mod 4 (n ≥ 11), with maximal value

1

2

(
e
√

3
4 + e

√
1
2

)
n+

5

2
e
√

3
4 − 11

2
e
√

1
2 + 2e

√
6
16 .

In conclusion, the maximal value of eABC and ABC are attained in the same trees

except when n ≡ 2 mod 4. When n ≡ 2 mod 4 the ABC index attains its maximal

value in V0 and eABC attains its maximal value in U3.
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5 Minimal value of eGA among chemical trees

eGA is defined for a chemical tree T as

eGA (T ) =
∑

(i,j)∈K

mi,j (T ) e
2
√
ij

i+j .

If we look at Tables 3-5 we note that the behavior of eGA is even more favorable than

the previous ones but with opposite signs. So when the operations 1-3 are performed,

eGA decreases and the minimal value of eGA over Cn is obtained. In fact, the version of

Lemmas 3.1, 3.2, and 3.3 for eGA are as follows:

Lemma 5.1. Let xy be an edge of T ∈ Cn such that dx = dy = 2 as in Figure 1. Then

we can find a tree T̂ ∈ Cn such that eGA (T ) > eGA(T̂ ).

Lemma 5.2. Let xy be an edge of T ∈ Cn such that dx = 2 and dy = 3 as in Figure 2.

Then we can find a tree T̂ ∈ Cn such that eGA (T ) > eGA(T̂ ).

Lemma 5.3. Let xy be an edge of T ∈ Cn such that dx = dy = 3 as in Figure 3. If dz = 2

for some z ∈ {a, b, c, e} , then we can find a tree T̂ ∈ Cn such that eGA (T ) > eGA(T̂ ).

Note that Lemmas 5.1 and 5.2 already imply that m2,2 (T ) = m2,3 (T ) = 0 when T is

minimal with respect to eGA over Cn. Moreover, following the results in Section 3, one

proves:

Corollary 5.4. If T is minimal with respect to eGA over Cn then T ∈ U .

We also can compute eGA for trees in U as in the previous sections.

Proposition 5.5. If T ∈ U , then

eGA (T ) =
1

2

(
e

2
√

4
5 + e

2
√

8
6

)
n+

1

2

(
e

2
√
4

5 − 3e
2
√

8
6 + 2e

2
√

16
8

)
m4,4

+
1

2

(
3e

2
√

4
5 − 5e

2
√
8

6

)
.

Since the companion coefficient of m4,4 in this expression is

1

2

(
e

2
√
4

5 − 3e
2
√
8

6 + 2e
2
√

16
8

)
≈ −1. 972 2× 10−2 < 0,

it follows that eGA is decreasing on m4,4 over U . From now on everything changes, because

we are searching for the minimal value of eGA over U . In other words, we now have to

consider subsets of U with large m4,4. From equation (20), it is clear that the maximal
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number of m4,4 in U occur in the trees Fk, Gk, and Hk shown in Table 2, depending on

the congruence of n modulo 3. So let us define

Un−9
3

=

{
T ∈ U : m4,4 =

n− 9

3

}
;

Un−13
3

=

{
T ∈ U : m4,4 =

n− 13

3

}
;

Un−5
3

=

{
T ∈ U : m4,4 =

n− 5

3

}
.

Clearly, Fk ∈ Un−9
3
, Gk ∈ Un−13

3
, and Hk ∈ Un−5

3
. It is easy to see that

Proposition 5.6. Let n be a positive integer. Then:

1. Un−9
3
6= ∅ if and only if n ≡ 0 mod 3 (n ≥ 9);

2. Un−13
3
6= ∅ if and only if n ≡ 1 mod 3 (n ≥ 13);

3. Un−5
3
6= ∅ if and only if n ≡ 2 mod 3 (n ≥ 5).

So we conclude the following:

Corollary 5.7. Let T be minimal with respect to eGA over Cn.

1. If n ≡ 0 mod 3 (n ≥ 9) then T ∈ Un−9
3

;

2. If n ≡ 1 mod 3 (n ≥ 13) then T ∈ Un−13
3

;

3. If n ≡ 2 mod 3 (n ≥ 5) then T ∈ Un−5
3
.

Finally we obtain:

Theorem 5.8. Let n be a positive integer. The minimal value of eGA over Cn is attained

in

1. Un−9
3

if n ≡ 0 mod 3 (n ≥ 9) with minimal value

1

3

(
2e

2
√

4
5 + e

2
√

16
8

)
n+ 2e

2
√

8
6 − 3e

2
√
16
8 ;

2. Un−13
3

if n ≡ 1 mod 3 (n ≥ 13), with minimal value

1

3

(
2e

2
√

4
5 + e

2
√

16
8

)
n+ 4e

2
√

8
6 − 2

3
e

2
√

4
5 − 13

3
e

2
√
16
8 ;
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3. Un−5
3

if n ≡ 2 mod 3 (n ≥ 5) with minimal value

1

3

(
2e

2
√

4
5 + e

2
√

16
8

)
n+

2

3
e

2
√

4
5 − 5

3
e

2
√
16
8 .

Note that when n = 3k + 1, the minimal value of GA and the minimal value of eGA

are attained in different trees (see Table 2).
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