Communications in Mathematical and in Computer Chemistry

ISSN 0340 - 6253

On Chemical Trees That Maximize Atom–Bond Connectivity Index, Its Exponential Version, and Minimize Exponential Geometric–Arithmetic Index

Roberto Cruz, Juan Monsalve, Juan Rada

Instituto de Matemáticas, Universidad de Antioquia Medellín, Colombia

roberto.cruz@udea.edu.co, daniel.monsalve@udea.edu.co pablo.rada@udea.edu.co

(Received April 17, 2020)

Abstract

A chemical tree is a tree that has no vertex of degree greater than 4. We denote the set of chemical trees with n vertices as C_n . The \mathcal{ABC} index of a chemical tree T is defined as

$$\mathcal{ABC}\left(T\right) = \sum_{1 \le i \le j \le 4} m_{i,j}\left(T\right) \sqrt{\frac{i+j-2}{ij}},$$

where $m_{i,j}(T)$ is the number of edges in T joining vertices of degree i and j. Furtula, Graovac and Vukičević in 2009 found trees with maximal \mathcal{ABC} index among all trees in \mathcal{C}_n , when $n \equiv 1 \mod 4$. In this paper we find the trees with maximal \mathcal{ABC} index in \mathcal{C}_n for all n. Using the same technique, we find the trees with maximal $e^{\mathcal{ABC}}$ and minimal $e^{\mathcal{GA}}$ over \mathcal{C}_n for all n, where

$$e^{\mathcal{ABC}}(T) = \sum_{1 \le i \le j \le 4} m_{i,j}(T) e^{\sqrt{\frac{i+j-2}{ij}}}$$

and

$$e^{\mathcal{GA}}(T) = \sum_{1 \le i \le j \le 4} m_{i,j}(T) e^{\frac{2\sqrt{ij}}{i+j}} .$$

1 Introduction

Let T be a tree with n vertices. We denote by $n_j = n_j(T)$ the number of vertices in T of degree j, and by $m_{i,j} = m_{i,j}(T)$ the number of edges in T joining vertices of degree i and j. A chemical tree is a tree that has no vertex of degree greater than 4. We denote the set of chemical trees with n vertices as C_n . The following relations are well known for a chemical tree $T \in C_n$.

$$2m_{1,1} + m_{1,2} + m_{1,3} + m_{1,4} = n_1 m_{1,2} + 2m_{2,2} + m_{2,3} + m_{2,4} = 2n_2 m_{1,3} + m_{2,3} + 2m_{3,3} + m_{3,4} = 3n_3 ,$$
(1)
$$m_{1,4} + m_{2,4} + m_{3,4} + 2m_{4,4} = 4n_4$$

$$n_1 + n_2 + n_3 + n_4 = n, (2)$$

and

$$\sum_{\leq i \leq j \leq 4} m_{i,j} = n - 1. \tag{3}$$

A vertex-degree-based (VDB) topological index defined over C_n is a function $\varphi : C_n \longrightarrow \mathbb{R}$ induced by numbers $\{\varphi(i, j)\}_{(i,j)\in K}$, where

$$K = \{(i, j) \in \mathbb{N} \times \mathbb{N} : 1 \le i \le j \le 4\},\$$

defined for every $T \in \mathcal{C}_n$ as

$$\varphi(T) = \sum_{(i,j)\in K} m_{i,j}(T) \varphi(i,j).$$
(4)

In the particular case when $\varphi(i, j) = \frac{1}{\sqrt{ij}}$ we obtain the connectivity index χ , introduced by Randić in 1975 [27], one of the best known and widely used molecular descriptor in QSPR/QSAR studies [32, 33]. However, in this paper our main concern is the atombond connectivity index (\mathcal{ABC}) proposed by Estrada et al. in [14], a valuable predictive molecular descriptor in the study of heat formation in alkanes [14, 15]. It is defined as in (4), where $\varphi(i, j) = \sqrt{\frac{i+j-2}{ij}}$. Also we will study $e^{\mathcal{ABC}}$, the exponential of \mathcal{ABC} induced by the numbers $\varphi(i, j) = e^{\sqrt{\frac{i+j-2}{ij}}}$ [26]. For recent results on \mathcal{ABC} and $e^{\mathcal{ABC}}$ we refer to [3, 4, 6, 7, 11, 13, 16, 19, 30, 35, 36].

Furtula, Graovac and Vukičević considered in 2009 [17] the problem of finding the trees with maximal \mathcal{ABC} among all trees in \mathcal{C}_n . They showed that when n = 4k + 1 $(k \ge 1)$, the tree T_k shown in Table 1 has maximal \mathcal{ABC} index over \mathcal{C}_n . In this paper we give the complete solution for all n to the maximal \mathcal{ABC} and $e^{\mathcal{ABC}}$ over \mathcal{C}_n . The results are shown

	Maximal \mathcal{ABC}	Maximal e^{ABC}				
$n = 4k + 1$ $(k \ge 1)$	$T_k \bigcirc \begin{matrix} \circ \\ - \\ \circ \\ 0 \end{matrix} \\ 0 \bigg \\ $	$T_k \bigcirc \begin{matrix} \circ \\ - \\ \circ \\ 0 \end{matrix} \\ 0 \bigg$ \\ 0 \bigg \\ 0 \bigg\bigg \\ 0 \bigg\bigg\bigg \\ 0 \bigg\bigg \\ 0 \bigg\bigg\bigg \\ 0 \bigg\bigg \\ 0 \bigg\bigg\bigg \\ 0 \bigg\bigg\bigg\bigg \\ 0 \bigg\bigg\bigg\bigg \\ 0 \bigg\bigg\bigg\bigg \\ 0 \bigg\bigg\bigg\bigg\bigg \\ 0 \bigg\bigg\bigg\bigg\bigg\bigg \\ 0 \bigg\bigg\bigg\bigg\bigg\bigg\bigg \\ 0 \bigg\bigg\bigg\bigg\bigg\bigg\bigg\bigg\bigg\bigg				
$n = 4k$ $(k \ge 2)$	$P_k \bigcirc $	$P_k \bigcirc $				
$n = 4k + 3$ $(k \ge 2)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$n = 4k + 2$ $(k \ge 3)$	$T'_k \begin{array}{c} \circ & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ &$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Table 1. Maximal trees with respect to \mathcal{ABC} and $e^{\mathcal{ABC}}$ indices over \mathcal{C}_n

in Table 1. As you can see, when n = 4k + 2 $(k \ge 3)$, the maximal value of \mathcal{ABC} and the maximal value of $e^{\mathcal{ABC}}$ are attained in different trees.

Another important VDB topological index is the geometric-arithmetic index \mathcal{GA} , introduced by Vukičević and Furtula in 2009 [34], defined for a chemical tree T as in (4), with $\varphi(i, j) = \frac{2\sqrt{ij}}{i+j}$. For recent results in \mathcal{GA} see ([1, 2, 5, 18, 20–25, 28, 29, 31]) and the survey [10]. The minimal value of \mathcal{GA} over \mathcal{C}_n was solved in [34] for all n. In this paper we consider the exponential of \mathcal{GA} [26], denoted by $e^{\mathcal{GA}}$, and induced by the numbers $\varphi(i, j) = e^{\frac{2\sqrt{ij}}{i+j}}$ in (4). We solve the minimal value of $e^{\mathcal{GA}}$ over \mathcal{C}_n , for all n. The results are shown in Table 2. We note in this case that when n = 3k + 1, the minimal value of \mathcal{GA} and the minimal value of $e^{\mathcal{GA}}$ are attained in different trees.

The maximal value of $e^{\mathcal{ABC}}$ and the minimal value of $e^{\mathcal{CA}}$ over \mathcal{C}_n were both open problems proposed in [9].

2 Operations in chemical trees

There are three functions which play an important role in the variation of a VDB topological index φ , when operations are performed in chemical trees:

$$f(p,q) = [\varphi(2,p) - \varphi(3,p)] + [\varphi(2,q) - \varphi(3,q)],$$
(5)

$$g(p,q,r) = [\varphi(2,p) - \varphi(4,p)] + [\varphi(3,q) - \varphi(4,q)] + [\varphi(3,r) - \varphi(4,r)],$$
(6)

	Minimal \mathcal{GA}	Minimal $e^{\mathcal{GA}}$
$n = 3k + 2$ $(k \ge 1)$	$H_k \bigcirc -\bigcirc -$	$H_k \bigcirc - \bigcirc$
$n = 3k$ $(k \ge 3)$	$F_k \begin{array}{c} 0 \\ -0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ -1 \\ 2 \\ -3 \end{array} \qquad \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ -1 \\ 2 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 $	$F_k \xrightarrow{O} \begin{array}{c} 0 \\ -0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2$
$n = 3k + 1$ $(k \ge 4)$	$G'_k \begin{array}{c} \circ & \circ \\ \circ & \circ \\ - & \circ \\ \circ \\ - & - \\ \circ \\ - \\ \circ \\ - \\ \circ \\ - \\ - \\ - \\ - \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 2. Minimal trees with respect to \mathcal{GA} and $e^{\mathcal{GA}}$ indices over \mathcal{C}_n

and

$$h(p,q,r,s) = [\varphi(3,p) - \varphi(4,p)] + [\varphi(3,q) - \varphi(2,q)] + [\varphi(3,r) - \varphi(4,r)] + [\varphi(3,s) - \varphi(4,s)],$$
(7)

where p, q, r, s are integers such that $1 \le p, q, r, s \le 4$. In fact, these functions appear when we perform the operations described below.

Proposition 2.1. (Operation 1) Let φ be a VDB topological index. Let xy be an edge of T such that $d_x = d_y = 2$ and \widehat{T} as in Figure 1. Then

$$\varphi(T) - \varphi(\widehat{T}) = f(d_a, d_b) + \varphi(2, 2) - \varphi(1, 3).$$
(8)

Figure 1. Operation 1 on T.

Proof. Note that

$$\begin{split} \varphi\left(T\right) - \varphi(\widehat{T}) &= \varphi\left(2, d_a\right) + \varphi\left(2, 2\right) + \varphi\left(2, d_b\right) \\ &-\varphi\left(1, 3\right) - \varphi\left(3, d_a\right) - \varphi\left(3, d_b\right) \\ &= f\left(d_a, d_b\right) + \varphi\left(2, 2\right) - \varphi\left(1, 3\right). \end{split}$$

Proposition 2.2. (Operation 2) Let φ be a VDB topological index. Let xy be an edge of T such that $d_x = 2, d_y = 3$ and \hat{T} as in Figure 2. Then

$$\varphi(T) - \varphi(T) = g(d_a, d_b, d_c) + \varphi(2, 3) - \varphi(1, 4).$$
(9)

Figure 2. Operation 2 on T.

Proof. In fact,

$$\begin{split} \varphi \left(T \right) - \varphi (\widehat{T}) &= \varphi \left(2, d_a \right) + \varphi \left(2, 3 \right) + \varphi \left(3, d_b \right) + \varphi \left(3, d_c \right) \\ &- \varphi \left(1, 4 \right) - \varphi \left(4, d_a \right) - \varphi \left(4, d_b \right) - \varphi \left(4, d_c \right) \\ &= g \left(d_a, d_b, d_c \right) + \varphi \left(2, 3 \right) - \varphi \left(1, 4 \right). \end{split}$$

Proposition 2.3. (Operation 3) Let φ be a VDB topological index. Let xy be an edge of T such that $d_x = d_y = 3$ and \hat{T} as in Figure 3. Then

$$\varphi(T) - \varphi(\widehat{T}) = h(d_a, d_b, d_c, d_e) + \varphi(3, 3) - \varphi(2, 4).$$
(10)

Figure 3. Operation 3 on T.

Proof. Note that

$$\begin{split} \varphi\left(T\right) - \varphi(\hat{T}) &= \varphi\left(3, d_{a}\right) + \varphi\left(3, d_{b}\right) + \varphi\left(3, 3\right) + \varphi\left(3, d_{c}\right) + \varphi\left(3, d_{e}\right) \\ &- \varphi\left(2, d_{b}\right) - \varphi\left(2, 4\right) - \varphi\left(4, d_{a}\right) - \varphi\left(4, d_{c}\right) - \varphi\left(4, d_{e}\right) \\ &= h\left(d_{a}, d_{b}, d_{c}, d_{e}\right) + \varphi\left(3, 3\right) - \varphi\left(2, 4\right). \end{split}$$

-696-

It is of great interest to us to determine the sign of $\varphi(T) - \varphi(\widehat{T})$, because this information indicates whether φ increases or decreases when the correspondent operation is carried out. We will do this for the topological indices \mathcal{ABC} , $e^{\mathcal{ABC}}$ and $e^{\mathcal{GA}}$.

We begin with Operation 1. Let us denote by $p = d_a(T)$ and $q = d_b(T)$ in Figure 1. Without loosing generality, we may assume that $1 \le p \le q \le 4$. The values of $\varphi(T) - \varphi(\hat{T})$ are given in Table 3.

Table 3. Values of $\varphi(T) - \varphi(\hat{T})$ in Operation 1 for \mathcal{ABC} , $e^{\mathcal{ABC}}$ and $e^{\mathcal{GA}}$ indices

p	q	\mathcal{ABC}	$e^{\mathcal{ABC}}$	$e^{\mathcal{GA}}$	р	q	\mathcal{ABC}	$e^{\mathcal{ABC}}$	$e^{\mathcal{GA}}$
1	1	-0.328	-0.703	0.720	2	3	-0.069	-0.154	0.341
1	2	-0.219	-0.469	0.585	2	4	-0.048	-0.113	0.272
1	3	-0.178	-0.389	0.476	3	3	-0.029	-0.074	0.232
1	4	-0.157	-0.348	0.407	3	4	-0.007	-0.033	0.163
2	2	-0.109	-0.234	0.450	4	4	0.014	0.008	0.094

Now we consider Operation 2. Assume that $p = d_a(T)$ and $q = d_b(T)$, $r = d_c(T)$ in Figure 2. Clearly $1 \le p \le 4$ and we may assume that $1 \le q \le r \le 4$. Then the values of $\varphi(T) - \varphi(\widehat{T})$ are given in Table 4.

Table 4. Values of $\varphi(T) - \varphi(\hat{T})$ in Operation 2 for \mathcal{ABC} , $e^{\mathcal{ABC}}$ and $e^{\mathcal{GA}}$ indices

р	q	r	ABC	$e^{\mathcal{ABC}}$	$e^{\mathcal{GA}}$	р	q	r	ABC	$e^{\mathcal{ABC}}$	$e^{\mathcal{GA}}$
1	1	1	-0.417	-0.928	1.084	3	1	1	-0.196	-0.458	0.716
1	1	2	-0.367	-0.814	1.029	3	1	2	-0.147	-0.343	0.660
1	1	3	-0.346	-0.773	0.960	3	1	3	-0.126	-0.302	0.591
1	1	4	-0.334	-0.751	0.904	3	1	4	-0.114	-0.281	0.536
1	2	2	-0.318	-0.699	0.973	3	2	2	-0.097	-0.228	0.605
1	2	3	-0.297	-0.658	0.904	3	2	3	-0.076	-0.187	0.536
1	2	4	-0.285	-0.637	0.849	3	2	4	-0.064	-0.166	0.481
1	3	3	-0.275	-0.617	0.835	3	3	3	-0.055	-0.147	0.467
1	3	4	-0.264	-0.596	0.780	3	3	4	-0.043	-0.125	0.412
1	4	4	-0.252	-0.574	0.725	3	4	4	-0.031	-0.104	0.356
2	1	1	-0.258	-0.579	0.893	4	1	1	-0.163	-0.396	0.591
2	1	2	-0.208	-0.464	0.838	4	1	2	-0.114	-0.281	0.536
2	1	3	-0.187	-0.423	0.769	4	1	3	-0.093	-0.240	0.467
2	1	4	-0.175	-0.402	0.714	4	1	4	-0.081	-0.219	0.411
2	2	2	-0.159	-0.349	0.783	4	2	2	-0.064	-0.166	0.481
2	2	3	-0.138	-0.309	0.714	4	2	3	-0.043	-0.125	0.412
2	2	4	-0.126	-0.287	0.658	4	2	4	-0.031	-0.104	0.356
2	3	3	-0.117	-0.268	0.645	4	3	3	-0.022	-0.084	0.343
2	3	4	-0.105	-0.246	0.589	4	3	4	-0.010	-0.063	0.287
2	4	4	-0.093	-0.225	0.534	4	4	4	0.002	-0.042	0.232

Finally, let us consider Operation 3. Set $p = d_a(T)$, $q = d_b(T)$ and $r = d_c(T)$, $s = d_e(T)$ in Figure 3. We may assume that $1 \le p \le q \le 4$, in other words, we perform Operation 3 by moving the vertex adjacent to x (different from y) with the least degree. We also assume that $1 \le r \le s \le 4$. Moreover, we will apply Operation 3 when $p \ne 2$, $q \ne 2$, $r \ne 2$, and $s \ne 2$. Then under these conditions, the values of $\varphi(T) - \varphi(\hat{T})$ are given in Table 5.

Table 5. Values of $\varphi(T) - \varphi(\widehat{T})$ in Operation 3 for \mathcal{ABC} , $e^{\mathcal{ABC}}$ and $e^{\mathcal{GA}}$ indices

р	q	r	\mathbf{S}	\mathcal{ABC}	e^{ABC}	$e^{\mathcal{GA}}$	р	q	r	\mathbf{S}	\mathcal{ABC}	e^{ABC}	$e^{\mathcal{G}\mathcal{A}}$
1	1	1	1	-0.080	-0.191	0.417	3	4	1	1	-0.180	-0.391	0.606
1	1	1	3	-0.009	-0.035	0.293	3	4	1	3	-0.109	-0.235	0.482
1	1	1	4	0.003	-0.014	0.237	3	4	1	4	-0.097	-0.214	0.426
1	3	1	3	-0.159	-0.350	0.537	3	4	3	3	-0.039	-0.079	0.358
1	3	1	4	-0.147	-0.328	0.482	3	4	3	4	-0.027	-0.058	0.302
1	4	1	4	-0.168	-0.369	0.551	3	4	4	4	-0.015	-0.036	0.247
3	3	1	1	-0.159	-0.350	0.537	4	4	1	1	-0.168	-0.369	0.551
3	3	1	3	-0.088	-0.194	0.413	4	4	1	3	-0.097	-0.214	0.426
3	3	1	4	-0.076	-0.173	0.357	4	4	1	4	-0.085	-0.192	0.371
3	3	3	3	-0.017	-0.038	0.289	4	4	3	3	-0.027	-0.058	0.302
3	3	3	4	-0.005	-0.017	0.233	4	4	3	4	-0.015	-0.036	0.247
3	3	4	4	0.007	0.004	0.178	4	4	4	4	-0.003	-0.015	0.191

3 Maximal value of the *ABC* index among chemical trees

The following lemmas are useful in the sequel.

Lemma 3.1. Suppose that xy is an edge of $T \in C_n$ such that $d_x = d_y = 2$ as in Figure 1. If $(d_a, d_b) \neq (4, 4)$ then we can find a tree $\widehat{T} \in C_n$ such that $ABC(T) < ABC(\widehat{T})$.

Proof. This is a consequence of Proposition 2.1 and Table 3.

Lemma 3.2. Suppose that xy is an edge of $T \in C_n$ such that $d_x = 2$ and $d_y = 3$ as in Figure 2. If $d_a \neq 4$ or $(d_b, d_c) \neq (4, 4)$ then we can find a tree $\widehat{T} \in C_n$ such that $\mathcal{ABC}(T) < \mathcal{ABC}(\widehat{T})$.

Proof. This is a consequence of Proposition 2.2 and Table 4.

Lemma 3.3. Suppose that xy is an edge of $T \in C_n$ such that $d_x = d_y = 3$ as in Figure 3. If $d_z = 2$ for some $z \in \{a, b, c, e\}$, then we can find a tree $\widehat{T} \in C_n$ such that $ABC(T) < ABC(\widehat{T})$. Proof. Assume that $d_a = 2$. Then ax is an edge of T such that $d_a = 2$ and $d_x = 3$. Moreover, $(d_b, d_y) \neq (4, 4)$. It follows from Lemma 3.2 that there exists a tree $\widehat{T} \in C_n$ such that $\mathcal{ABC}(T) < \mathcal{ABC}(\widehat{T})$.

From now on we will say that a tree $T \in C_n$ is maximal with respect to \mathcal{ABC} over C_n if

$$ABC(S) \leq ABC(T)$$
,

for all $S \in \mathcal{C}_n$.

Proposition 3.4. Let $n \ge 10$. If T is maximal with respect to ABC over C_n , then $m_{1,3}(T) = 0$.

Proof. Assume that $m_{1,3}(T) > 0$. Then T is of the form depicted in Figure 4, where we may assume $1 \le d_c \le d_x \le 4$. We consider four cases:

Figure 4. Form of $T \in C_n$ when $m_{1,3}(T) > 0$.

- 1. $d_x = 1$. Then $d_c = 1$ which implies n = 4, a contradiction.
- 2. $d_x = 2$. Then xy is an edge of T such that $d_x = 2, d_y = 3$. Moreover, $(d_b, d_c) = (1, d_c) \neq (4, 4)$. By Lemma 3.2 we arrive at a contradiction.

Figure 5. Form of $T \in C_n$ when $m_{1,3}(T) > 0$ and $d_x = 3$.

3. $d_x = 3$. Then T has the form depicted in Figure 5. By Lemma 3.3, $d_a \neq 2, d_b \neq 2$, and $d_c \neq 2$. Now, since xy is an edge of T such that $d_x = d_y = 3$, we apply Proposition 2.3 and Table 5 to deduce that $d_c = 4, d_a = d_b = 1$. In this case, we construct the tree T' in Figure 6. Then

$$\mathcal{ABC}(T) - \mathcal{ABC}(T') = 3\sqrt{\frac{2}{3}} + \sqrt{\frac{4}{9}} + \sqrt{\frac{5}{12}} + \sqrt{\frac{d_w + 2}{4d_w}} -2\sqrt{\frac{1}{2}} - 3\sqrt{\frac{3}{4}} - \sqrt{\frac{6}{16}}$$
(11)
< 0,

for all $2 \le d_w \le 4$. A contradiction. So the only case left is when $d_u = d_v = d_w = 1$, but in this case n = 9, a contradiction.

Figure 6. Operation on $T \in \mathcal{C}_n$ when $m_{1,3}(T) > 0$, $d_x = 3$, $d_a = d_b = 1$ and $d_c = 4$.

4. $d_x = 4$. Then T has the form depicted in Figure 7. Let T'' be the tree shown in Figure 7. It follows that

Figure 7. Operation on $T \in \mathcal{C}_n$ when $m_{1,3}(T) > 0$, $d_x = 4$ and $2 \le d_w \le 4$.

$$\mathcal{ABC}(T) - \mathcal{ABC}(T'') = \sqrt{\frac{d_w + 2}{4d_w}} + \sqrt{\frac{2}{3}} - \sqrt{\frac{d_w + 1}{3d_w}} - \sqrt{\frac{3}{4}} < 0, \quad (12)$$

for all $2 \leq d_w \leq 4$. A contradiction. So we may assume that $d_u = d_v = d_w = 1$,

Figure 8. Form of $T \in \mathcal{C}_n$ when $m_{1,3}(T) > 0$, $d_x = 4$ and $d_u = d_v = d_w = 1$.

as shown in Figure 8. If $d_c = 1$ then n = 7, a contradiction. If $d_c = 2$ then we get a contradiction by Lemma 3.2. If $d_c = 3$, then we repeat the argument of case 3. So we may assume that $d_c = 4$. In this case we again apply the same operation considered in Figure 7, to conclude that all three vertices adjacent to c (different from y) have degree 1, and so n = 10, a contradiction.

-700-

Proposition 3.5. Let $n \ge 7$. If T is maximal with respect to ABC over C_n , then $m_{1,2}(T) = 0$.

Figure 9. Form of $T \in C_n$ when $m_{1,2}(T) > 0$.

Proof. Assume that $m_{1,2}(T) > 0$ so T has the form depicted in Figure 9. If $d_a = 1$, then n = 3, a contradiction. If $d_a = 2$ then ax is an edge of T such that $d_a = d_x = 2$. Then we get a contradiction by Lemma 3.1. If $d_a = 3$, then xa is an edge of T such that $d_x = 2$ and $d_a = 3$. So we get a contradiction using Lemma 3.2. So we may assume that $d_a = 4$. Then we construct the tree T' shown in Figure 10. Therefore

Figure 10. Operation on $T \in C_n$ when $m_{1,2}(T) > 0$ and $d_a = 4$.

$$\mathcal{ABC}(T) - \mathcal{ABC}(T') = \sqrt{\frac{d_w + 2}{4d_w}} - \sqrt{\frac{3}{4}} < 0, \tag{13}$$

for all $2 \le d_w \le 4$. Hence we may assume that $d_u = d_v = d_w = 1$, but in this case n = 6, a contradiction. Consequently, $m_{1,2}(T) = 0$.

Proposition 3.6. Let $n \ge 11$. If T is maximal with respect to ABC over C_n , then $m_{2,2}(T) = 0$.

Figure 11. Operation on $T \in C_n$ when $m_{2,2}(T) > 0$ and $d_a = d_b = 4$.

Proof. If $m_{2,2}(T) > 0$ then T has the form depicted in Figure 1. Then by Lemma 3.1, $d_a = d_b = 4$. Let T' be the tree in Figure 11. Then

$$\mathcal{ABC}(T) - \mathcal{ABC}(T') = \sqrt{\frac{d_w + 2}{4d_w}} - \sqrt{\frac{1}{2}} < 0, \tag{14}$$

for all $3 \le d_w \le 4$. So we may assume that all vertices u, v, w, u', v', w' have degree ≤ 2 . If they are all 1's, then n = 10, a contradiction. So one of them has degree 2, say $d_w = 2$. Then we define the tree T'' in Figure 12. Hence

Figure 12. Operation on $T \in C_n$ when $m_{2,2}(T) > 0$, $d_a = d_b = 4$ and $d_w = 2$.

$$\mathcal{ABC}(T) - \mathcal{ABC}(T'') = 3\sqrt{\frac{1}{2}} - \sqrt{\frac{3}{4}} - \sqrt{\frac{5}{12}} - \sqrt{\frac{d_z+1}{3d_z}} < 0,$$
(15)

for all $1 \leq d_z \leq 4$. This is a contradiction. In conclusion, $m_{2,2}(T) = 0$.

Proposition 3.7. If T is maximal with respect to ABC over C_n , then $m_{3,3}(T) = 0$.

Proof. If $m_{3,3}(T) > 0$ then T has the form depicted in Figure 3. By Lemma 3.3, $d_a \neq 2$, $d_b \neq 2, d_c \neq 2$, and $d_e \neq 2$. We also know by Proposition 3.4 that $d_a \neq 1, d_b \neq 1, d_c \neq 1$, and $d_e \neq 1$. Now we apply Proposition 2.3 and Table 5 to deduce that $d_a = d_b = 3$ and $d_c = d_e = 4$. Then T has the form shown in Figure 13. Since $d_b = d_x = d_a = 3$, we repeat the same argument to the edges bx and ax of T to conclude that $d_u = d_v = d_{b'} = d_z = 4$. Now we define T' as in Figure 13. Then

Figure 13. Operation on $T \in C_n$ when $m_{3,3}(T) > 0$, $d_a = d_b = 3$ and $d_c = d_e = 4$.

$$\mathcal{ABC}(T) - \mathcal{ABC}(T') = 3\sqrt{\frac{4}{9}} - 2\sqrt{\frac{1}{2}} - \sqrt{\frac{6}{16}} < 0.$$
 (16)

This is a contradiction. Hence $m_{3,3}(T) = 0$.

Proposition 3.8. If T is maximal with respect to ABC over C_n , then $m_{2,3}(T) \leq 1$.

Figure 14. Form of $T \in C_n$ when $m_{2,3}(T) \ge 2$.

Proof. Assume that $m_{2,3}(T) \ge 2$. By Lemma 3.2, T is of the form depicted in Figure 14, where $d_a = d_b = d_c = d_u = d_v = d_w = 4$ (u = c is possible). Define T' as in Figure 15. Then

Figure 15. Operation on $T \in C_n$ when $m_{2,3}(T) \ge 2$.

$$\mathcal{ABC}(T) - \mathcal{ABC}(T') = 4\sqrt{\frac{5}{12}} - 2\sqrt{\frac{1}{2}} - 2\sqrt{\frac{6}{16}} < 0,$$
 (17)

this is a contradiction. Hence, $m_{2,3}(T) \leq 1$.

Proposition 3.9. Let T be maximal with respect to ABC over C_n .

- 1. If $m_{2,3}(T) = 0$ then $n_3(T) = 0$;
- 2. If $m_{2,3}(T) = 1$ then $n_3(T) = 1$.

Proof.

1. Suppose that $m_{2,3}(T) = 0$ and $n_3(T) > 0$. Consider the tree T' defined from T as indicated in Figure 16. From the Propositions 3.4, 3.7 and the fact that $m_{2,3}(T) = 0$, we deduce that $d_a = d_b = d_c = d_e = 4$. Hence

$$\mathcal{ABC}(T) - \mathcal{ABC}(T') = 3\sqrt{\frac{5}{12}} + \sqrt{\frac{3}{4}} - 4\sqrt{\frac{1}{2}} < 0,$$
 (18)

a contradiction. Consequently, $n_3(T) = 0$.

Figure 16. Operation on $T \in C_n$ when $m_{2,3}(T) = 0$ and $n_3(T) > 0$.

2. Assume that $m_{2,3}(T) = 1$. Then $n_3(T) \ge 1$ and T has the form depicted in Figure 17. As in part 1., it is clear that $d_a = d_b = d_c = 4$ is not possible. Then by Propositions 3.4 and 3.7, $d_z = 2$ for some $z \in \{a, b, c\}$. In other words, every vertex of degree 3 has at least one neighbor of degree 2. Consequently, if $n_3(T) \ge 2$, then $m_{2,3}(T) \ge 2$, a contradiction. In conclusion, $n_3(T) = 1$.

Figure 17. Form of $T \in C_n$ when $m_{2,3}(T) = 1$ and $n_3(T) \ge 1$.

Corollary 3.10. If T is maximal with respect to ABC over C_n then $T \in U$ or $T \in \mathcal{V}$, where

$$\mathcal{U} = \{T \in \mathcal{C}_n : m_{1,2} = m_{2,2} = n_3 = 0\}$$

or

$$\mathcal{V} = \{T \in \mathcal{C}_n : m_{1,3} = m_{1,2} = m_{2,2} = 0, m_{2,3} = n_3 = 1 \}.$$

Proof. If T is maximal with respect to \mathcal{ABC} over \mathcal{C}_n , then by Propositions 3.4, 3.5, 3.6, 3.7

$$m_{1,3} = m_{1,2} = m_{2,2} = m_{3,3} = 0.$$

By Proposition 3.8, $m_{2,3} \leq 1$. If $m_{2,3} = 0$ then by Proposition 3.9, $n_3 = 0$. Hence $T \in \mathcal{U}$. If $m_{2,3} = 1$, then $n_3 = 1$ again by Proposition 3.9 and $T \in \mathcal{V}$.

Next we compute the \mathcal{ABC} index of the trees in \mathcal{U} and in \mathcal{V} . From now on we use the following notation:

$$\alpha = \frac{1}{2} \left(\sqrt{\frac{3}{4}} + \sqrt{\frac{1}{2}} \right), \beta = \frac{1}{2} \left(\sqrt{\frac{3}{4}} - 3\sqrt{\frac{1}{2}} + 2\sqrt{\frac{6}{16}} \right),$$

$$\gamma = \frac{1}{2} \left(3\sqrt{\frac{3}{4}} - 5\sqrt{\frac{1}{2}} \right), \delta = \left(2\sqrt{\frac{3}{4}} - 5\sqrt{\frac{1}{2}} + 2\sqrt{\frac{5}{12}} \right).$$

Proposition 3.11. Let $T \in C_n$.

1. If $T \in \mathcal{U}$ then

$$\mathcal{ABC}\left(T\right) = \alpha n + \beta m_{4,4} + \gamma;$$

2. If $T \in \mathcal{V}$ then

$$\mathcal{ABC}\left(T\right) = \alpha n + \beta m_{4,4} + \delta.$$

Proof. 1. If $T \in \mathcal{U}$ then by relations (1)

$$m_{1,4} = n_1$$

$$m_{2,4} = 2n_2$$

$$m_{1,4} + m_{2,4} + 2m_{4,4} = 4n_4$$

It follows from relation (2) that

$$\begin{split} n &= n_1 + n_2 + n_4 \\ &= m_{1,4} + \frac{1}{2} m_{2,4} + \frac{1}{4} \left(m_{1,4} + m_{2,4} + 2 m_{4,4} \right), \end{split}$$

and from relation (3),

$$n - 1 = m_{1,4} + m_{2,4} + m_{4,4}.$$

In other words, we have the relations

$$\begin{aligned} 4n &= 5m_{1,4} + 3m_{2,4} + 2m_{4,4} \\ n &= m_{1,4} + m_{2,4} + m_{4,4} + 1 \end{aligned} .$$

As a consequence, we can express both $m_{1,4}$ and $m_{2,4}$ in terms of n and $m_{4,4}$:

$$2m_{1,4} = n + 3 + m_{4,4} \tag{19}$$

$$2m_{2,4} = n - 5 - 3m_{4,4}. \tag{20}$$

Hence,

$$2\mathcal{ABC}(T) = 2m_{1,4}\sqrt{\frac{3}{4}} + 2m_{2,4}\sqrt{\frac{1}{2}} + 2m_{4,4}\sqrt{\frac{6}{16}}$$

= $(n+3+m_{4,4})\sqrt{\frac{3}{4}} + (n-5-3m_{4,4})\sqrt{\frac{1}{2}} + 2m_{4,4}\sqrt{\frac{6}{16}}$
= $\left(\sqrt{\frac{3}{4}} + \sqrt{\frac{1}{2}}\right)n + \left(\sqrt{\frac{3}{4}} - 3\sqrt{\frac{1}{2}} + 2\sqrt{\frac{6}{16}}\right)m_{4,4}$
 $+ \left(3\sqrt{\frac{3}{4}} - 5\sqrt{\frac{1}{2}}\right).$

2. If $T \in \mathcal{V}$ then by relations (1)

$$\begin{array}{c} m_{1,4}=n_1\\ 1+m_{2,4}=2n_2\\ 1+m_{3,4}=3\\ m_{1,4}+m_{2,4}+2+2m_{4,4}=4n_4 \end{array}$$

In particular, $m_{3,4} = 2$. It follows from relation (2) that

$$n = n_1 + n_2 + 1 + n_4$$

= $m_{1,4} + \frac{1}{2} (1 + m_{2,4}) + 1 + \frac{1}{4} (m_{1,4} + m_{2,4} + 2 + 2m_{4,4}),$

and from relation (3),

$$n-1 = m_{1,4} + 1 + m_{2,4} + 2 + m_{4,4}.$$

In other words, we have the relations

$$4n = 5m_{1,4} + 3m_{2,4} + 2m_{4,4} + 8$$

$$n = m_{1,4} + m_{2,4} + m_{4,4} + 4.$$

From here we deduce that

$$2m_{1,4} = n + 4 + m_{4,4}$$

$$2m_{2,4} = n - 12 - 3m_{4,4}$$

Hence,

$$\begin{aligned} 2\mathcal{ABC}\left(T\right) &= 2m_{1,4}\sqrt{\frac{3}{4}} + 2m_{2,3}\sqrt{\frac{1}{2}} + 2m_{2,4}\sqrt{\frac{1}{2}} + 2m_{3,4}\sqrt{\frac{5}{12}} + 2m_{4,4}\sqrt{\frac{6}{16}} \\ &= (n+4+m_{4,4})\sqrt{\frac{3}{4}} + 2\sqrt{\frac{1}{2}} + (n-12-3m_{4,4})\sqrt{\frac{1}{2}} + 4\sqrt{\frac{5}{12}} + 2m_{4,4}\sqrt{\frac{6}{16}} \\ &= \left(\sqrt{\frac{3}{4}} + \sqrt{\frac{1}{2}}\right)n + \left(\sqrt{\frac{3}{4}} - 3\sqrt{\frac{1}{2}} + 2\sqrt{\frac{6}{16}}\right)m_{4,4} \\ &+ \left(4\sqrt{\frac{3}{4}} - 10\sqrt{\frac{1}{2}} + 4\sqrt{\frac{5}{12}}\right). \end{aligned}$$

Remark 3.12. The coefficient β that appears with $m_{4,4}$ in the expression for $\mathcal{ABC}(T)$ when $T \in \mathcal{U}$ or $T \in \mathcal{V}$ in Proposition 3.11 is $\beta \approx -1.5275 \times 10^{-2} < 0$. Hence, the \mathcal{ABC} index is strictly decreasing on $m_{4,4}$ over \mathcal{U} and over \mathcal{V} .

By Corollary 3.10 we know that if T is maximal with respect to \mathcal{ABC} over \mathcal{C}_n , then $T \in \mathcal{U}$ or $T \in \mathcal{V}$. Furthermore, based on the Remark 3.12, we next show that T belongs to

$$\mathcal{U}_i = \{T \in \mathcal{U} : m_{4,4} = i\}$$

or

$$\mathcal{V}_i = \{T \in \mathcal{V} : m_{4,4} = i\},\$$

for some i = 0, 1, 2, 3.

Proposition 3.13. Let n be a positive integer. Then:

- 1. $\mathcal{U}_0 \neq \emptyset$ if and only if $n \equiv 1 \mod 4$ $(n \geq 5)$;
- 2. $\mathcal{U}_1 \neq \emptyset$ if and only if $n \equiv 0 \mod 4$ $(n \ge 8)$;
- 3. $\mathcal{U}_2 \neq \emptyset$ if and only if $n \equiv 3 \mod 4$ $(n \ge 11)$;
- 4. $\mathcal{U}_3 \neq \emptyset$ if and only if $n \equiv 2 \mod 4$ $(n \ge 14)$.

Proof. 1. If $n \equiv 1 \mod 4$, say n = 4k + 1 with $k \ge 1$, then the tree T_k defined in Table 1 satisfies

$$n(T_k) = 5 + 4(k - 1) = 4k + 1 = n,$$

and $T_k \in \mathcal{U}_0$.

Conversely, assume that $T \in \mathcal{U}_0$. Then by (1) and (3),

$$m_{1,4} + m_{2,4} = 4n_4$$
$$m_{1,4} + m_{2,4} = n - 1.$$

Consequently, $n = 4n_4 + 1$ and so $n \equiv 1 \mod 4$.

2. If $n \equiv 0 \mod 4$, say n = 4k with $k \ge 2$, then the tree P_k defined in Table 1 satisfies

$$n(P_k) = 8 + 4(k - 2) = 4k = n,$$

and $P_k \in \mathcal{U}_1$.

Conversely, assume that $P \in \mathcal{U}_1$. Then by (1) and (3),

$$m_{1,4} + m_{2,4} + 2 = 4n_4$$
$$m_{1,4} + m_{2,4} + 1 = n - 1$$

Consequently, $n = 4n_4$ and so $n \equiv 0 \mod 4$.

3. If $n \equiv 3 \mod 4$, say n = 4k + 3 with $k \ge 2$, then the tree Q_k defined in Table 1 satisfies

$$n(Q_k) = 11 + 4(k-2) = 4k + 3 = n$$

and $Q_k \in \mathcal{U}_2$.

Conversely, assume that $Q \in \mathcal{U}_2$. Then by (1) and (3),

$$m_{1,4} + m_{2,4} + 4 = 4n_4$$
$$m_{1,4} + m_{2,4} + 2 = n - 1$$

Consequently, $n = 4(n_4 - 1) + 3$ and so $n \equiv 3 \mod 4$.

4. If $n \equiv 2 \mod 4$, say n = 4k + 2 with $k \ge 3$, then the tree R_k defined in Table 1 satisfies

$$n(R_k) = 14 + 4(k - 3) = 4k + 2 = n$$

and $R_k \in \mathcal{U}_3$.

Conversely, assume that $R \in \mathcal{U}_3$. Then by (1) and (3),

$$m_{1,4} + m_{2,4} + 6 = 4n_4$$
$$m_{1,4} + m_{2,4} + 3 = n - 1.$$

Consequently, $n = 4(n_4 - 1) + 2$ and so $n \equiv 2 \mod 4$.

We also have a similar result to Proposition 3.13 relative to the sets \mathcal{V}_i .

Proposition 3.14. Let n be a positive integer.

- 1. $\mathcal{V}_0 \neq \emptyset$ if and only if $n \equiv 2 \mod 4$ $(n \ge 14)$;
- 2. $\mathcal{V}_1 \neq \emptyset$ if and only if $n \equiv 1 \mod 4$ $(n \geq 17)$;
- 3. $\mathcal{V}_2 \neq \emptyset$ if and only if $n \equiv 0 \mod 4$ $(n \ge 20)$;
- 4. $\mathcal{V}_3 \neq \emptyset$ if and only if $n \equiv 3 \mod 4$ $(n \geq 23)$.

Proof. 1. If $n \equiv 2 \mod 4$, say n = 4k + 2 with $k \ge 3$, then the tree T'_k defined in Table 1 satisfies

$$n(T'_k) = 14 + 4(k-3) = 4k + 2 = n$$

and $T'_k \in \mathcal{V}_0$.

Conversely, assume that $T' \in \mathcal{V}_0$. Then by (1) and (3), $m_{3,4} = 2$ and so

$$m_{1,4} + m_{2,4} + 2 = 4n_4$$
$$m_{1,4} + m_{2,4} + 3 = n - 1$$

Consequently, $n = 4n_4 + 2$ and so $n \equiv 2 \mod 4$.

2. If $n \equiv 1 \mod 4$, say n = 4k + 1 with $k \ge 4$, then the tree P'_k defined in Figure 18 satisfies

Figure 18. Tree $P'_k \in \mathcal{V}_1$.

$$n(P'_k) = 17 + 4(k - 4) = 4k + 1 = n$$

and $P'_k \in \mathcal{V}_1$.

Conversely, assume that $P' \in \mathcal{V}_1$. Then by (1) and (3), $m_{3,4} = 2$ and

$$m_{1,4} + m_{2,4} + 4 = 4n_4$$
$$m_{1,4} + m_{2,4} + 4 = n - 1$$

Consequently, $n = 4n_4 + 1$ and so $n \equiv 1 \mod 4$.

3. If $n \equiv 0 \mod 4$, say n = 4k with $k \ge 5$, then the tree Q'_k defined in Figure 19 satisfies

Figure 19. Tree $Q'_k \in \mathcal{V}_2$.

$$n(Q'_k) = 20 + 4(k - 5) = 4k = n,$$

and $Q'_k \in \mathcal{V}_2$.

Conversely, assume that $Q' \in \mathcal{V}_2$. Then by (1) and (3), $m_{3,4} = 2$ and

$$m_{1,4} + m_{2,4} + 6 = 4n_4$$

 $m_{1,4} + m_{2,4} + 5 = n - 1.$

Hence $n = 4n_4$ and so $n \equiv 0 \mod 4$.

4. If $n \equiv 3 \mod 4$, say n = 4k + 3 with $k \ge 5$, then the tree R'_k defined in Figure 20 satisfies

Figure 20. Tree $R'_k \in \mathcal{V}_3$.

 $n(R'_k) = 23 + 4(k - 5) = 4k + 3 = n$

and $R'_k \in \mathcal{V}_3$.

Conversely, assume that $R' \in \mathcal{V}_3$. Then by (1) and (3), $m_{3,4} = 2$ and

$$m_{1,4} + m_{2,4} + 8 = 4n_4$$
$$m_{1,4} + m_{2,4} + 6 = n - 1$$

Consequently, $n = 4(n_4 - 1) + 3$ and so $n \equiv 3 \mod 4$.

Corollary 3.15. Let T be maximal with respect to ABC over C_n .

1. If $n \equiv 0 \mod 4$ then $T \in \mathcal{U}_1$ or $T \in \mathcal{V}_2$;

- 2. If $n \equiv 1 \mod 4$ then $T \in \mathcal{U}_0$ or $T \in \mathcal{V}_1$;
- 3. If $n \equiv 2 \mod 4$ then $T \in \mathcal{U}_3$ or $T \in \mathcal{V}_0$;
- 4. If $n \equiv 3 \mod 4$ then $T \in \mathcal{U}_2$ or $T \in \mathcal{V}_3$.

Proof. By Corollary 3.10, $T \in \mathcal{U}$ or $T \in \mathcal{V}$. If $T \in \mathcal{U}$ then by Proposition 3.11,

$$\mathcal{ABC}(T) = \alpha n + \beta m_{4,4}(T) + \gamma.$$

Consider the following cases:

1. $n \equiv 0 \mod 4$. Then by Proposition 3.13, there exists $U \in \mathcal{U}_1$ and $m_{4,4}(T) \neq 0$, $m_{4,4}(T) \neq 2$ and $m_{4,4}(T) \neq 3$. If $T \notin \mathcal{U}_1$ then $m_{4,4}(T) \neq 1$ and since $\beta < 0$, we conclude that

$$\mathcal{ABC}(T) - \mathcal{ABC}(U) = \beta \left(m_{4,4}(T) - 1 \right) < 0,$$

a contradiction. Hence $T \in \mathcal{U}_1$.

-710-

2. $n \equiv 1 \mod 4$. Then by Proposition 3.13, there exists $U \in \mathcal{U}_0$ and $m_{4,4}(T) \neq 1$, $m_{4,4}(T) \neq 2$ and $m_{4,4}(T) \neq 3$. If $T \notin \mathcal{U}_0$ then $m_{4,4}(T) \neq 0$ and since $\beta < 0$, we conclude that

$$\mathcal{ABC}(T) - \mathcal{ABC}(U) = \beta m_{4,4}(T) < 0,$$

a contradiction. Hence $T \in \mathcal{U}_0$.

3. $n \equiv 2 \mod 4$. Then by Proposition 3.13, there exists $U \in \mathcal{U}_3$ and $m_{4,4}(T) \neq 0$, $m_{4,4}(T) \neq 1$ and $m_{4,4}(T) \neq 2$. If $T \notin \mathcal{U}_3$ then $m_{4,4}(T) \neq 3$ and since $\beta < 0$, we conclude that

$$\mathcal{ABC}(T) - \mathcal{ABC}(U) = \beta (m_{4,4}(T) - 3) < 0,$$

a contradiction. Hence $T \in \mathcal{U}_3$.

4. $n \equiv 3 \mod 4$. Then by Proposition 3.13, there exists $U \in \mathcal{U}_2$ and $m_{4,4}(T) \neq 0$, $m_{4,4}(T) \neq 1$ and $m_{4,4}(T) \neq 3$. If $T \notin \mathcal{U}_2$ then $m_{4,4}(T) \neq 2$ and since $\beta < 0$, we conclude that

$$\mathcal{ABC}(T) - \mathcal{ABC}(U) = \beta (m_{4,4}(T) - 2) < 0,$$

a contradiction. Hence $T \in \mathcal{U}_2$.

If $T \in \mathcal{V}$ then by Proposition 3.11,

$$\mathcal{ABC}\left(T\right) = \alpha n + \beta m_{4,4}\left(T\right) + \delta,$$

where $\delta = \left(2\sqrt{\frac{3}{4}} - 5\sqrt{\frac{1}{2}} + 2\sqrt{\frac{5}{12}}\right)$. A similar argument based on Proposition 3.14 shows that $T \in \mathcal{V}_2$ if $n \equiv 0$; $T \in \mathcal{V}_1$ if $n \equiv 1 \mod 4$; $T \in \mathcal{V}_0$ if $n \equiv 2 \mod 4$; and $T \in \mathcal{V}_3$ if $n \equiv 3 \mod 4$.

Theorem 3.16. Let n be a positive integer. The maximal value of ABC over C_n is attained in

1. \mathcal{U}_1 if $n \equiv 0 \mod 4$ $(n \geq 8)$, with maximal value

$$\frac{1}{2}\left(\sqrt{\frac{3}{4}} + \sqrt{\frac{1}{2}}\right)n + \sqrt{\frac{6}{16}} + 2\sqrt{\frac{3}{4}} - 4\sqrt{\frac{1}{2}}.$$

2. \mathcal{U}_0 if $n \equiv 1 \mod 4 \ (n \geq 5)$, with maximal value

$$\frac{1}{2}\left(\sqrt{\frac{3}{4}} + \sqrt{\frac{1}{2}}\right)n + \frac{3}{2}\sqrt{\frac{3}{4}} - \frac{5}{2}\sqrt{\frac{1}{2}}.$$

3. \mathcal{V}_0 if $n \equiv 2 \mod 4$ $(n \geq 14)$, with maximal value

$$\frac{1}{2}\left(\sqrt{\frac{3}{4}} + \sqrt{\frac{1}{2}}\right)n + 2\sqrt{\frac{3}{4}} - 5\sqrt{\frac{1}{2}} + 2\sqrt{\frac{5}{12}}.$$

4. \mathcal{U}_2 if $n \equiv 3 \mod 4$ $(n \ge 11)$, with maximal value

$$\frac{1}{2}\left(\sqrt{\frac{3}{4}} + \sqrt{\frac{1}{2}}\right)n + 2\sqrt{\frac{6}{16}} + \frac{5}{2}\sqrt{\frac{3}{4}} - \frac{11}{2}\sqrt{\frac{1}{2}}.$$

Proof. Let T be maximal with respect to \mathcal{ABC} over \mathcal{C}_n .

1. If $n \equiv 0 \mod 4$ then by Corollary 3.15, $T \in \mathcal{U}_1$ or $T \in \mathcal{V}_2$. By Proposition 3.11, \mathcal{ABC} is constant in \mathcal{U}_1 with value

$$\alpha n + \beta + \gamma,$$

and is constant in \mathcal{V}_2 with value

$$\alpha n + 2\beta + \delta$$
.

Now the value of \mathcal{ABC} is larger in \mathcal{U}_1 than in \mathcal{V}_2 since

$$(\alpha n + \beta + \gamma) - (\alpha n + 2\beta + \delta) = \gamma - \beta - \delta \approx 0.06 > 0.$$

Hence $T \in \mathcal{U}_1$.

2. If $n \equiv 1 \mod 4$ then by Corollary 3.15, $T \in \mathcal{U}_0$ or $T \in \mathcal{V}_1$. By Proposition 3.11, \mathcal{ABC} is constant in \mathcal{U}_0 with value

 $\alpha n + \gamma$,

and is constant in \mathcal{V}_1 with value

$$\alpha n + \beta + \delta$$
.

Since

$$(\alpha n + \gamma) - (\alpha n + \beta + \delta) = \gamma - \beta - \delta \approx 0.06 > 0,$$

we conclude that $T \in \mathcal{U}_0$.

3. If $n \equiv 2 \mod 4$ then by Corollary 3.15, $T \in \mathcal{U}_3$ or $T \in \mathcal{V}_0$. By Proposition 3.11, \mathcal{ABC} is constant in \mathcal{U}_3 with value

$$\alpha n + 3\beta + \gamma$$
,

and is constant in \mathcal{V}_0 with value

$$\alpha n + \delta$$
.

Since

$$(\alpha n + 3\beta + \gamma) - (\alpha n + \delta) = 3\beta + \gamma - \delta \approx -2.0653 \times 10^{-3} < 0.$$

it follows that $T \in \mathcal{V}_0$.

4. If $n \equiv 3 \mod 4$ then by Corollary 3.15, $T \in \mathcal{U}_2$ or $T \in \mathcal{V}_3$. By Proposition 3.11, \mathcal{ABC} is constant in \mathcal{U}_2 with value

$$\alpha n + 2\beta + \gamma,$$

and is constant in \mathcal{V}_3 with value

$$\alpha n + 3\beta + \delta.$$

Since

$$(\alpha n + 2\beta + \gamma) - (\alpha n + 3\beta + \delta) = \gamma - \beta - \delta \approx 0.06 > 0$$

we deduce that $T \in \mathcal{U}_2$.

4 Maximal value of $e^{\mathcal{ABC}}$ among chemical trees

Recall that the exponential of \mathcal{ABC} is denoted by $e^{\mathcal{ABC}}$ and defined for a tree $T \in \mathcal{C}_n$ as

$$e^{\mathcal{ABC}}(T) = \sum_{(i,j)\in K} m_{i,j}(T) e^{\sqrt{\frac{i+j-2}{ij}}}.$$

We will find in this section the maximal value of $e^{\mathcal{ABC}}$ over \mathcal{C}_n . The arguments in the previous section work for $e^{\mathcal{ABC}}$, mainly because the behaviour of $e^{\mathcal{ABC}}$ in Tables 3-5 is similar to the behaviour of \mathcal{ABC} , in other words, the increasing properties of \mathcal{ABC} and $e^{\mathcal{ABC}}$ are similar when the operations 1-3 are performed. Also, the signs in relations (11), (12), (13), (14), (15), (16), (17), and (18) hold when \mathcal{ABC} is changed to $e^{\mathcal{ABC}}$.

The only difference appears in Table 4, where e^{ABC} increases even when p = 4 and (q, r) = (4, 4). This situation has important implications which simplify the analysis of the study of the maximal value of e^{ABC} in C_n . In fact, by Proposition 2.2 and Table 4 we deduce immediately that if T is maximal with respect to e^{ABC} over C_n , then $m_{2,3}(T) = 0$. Hence, we have

Corollary 4.1. If T is maximal with respect to e^{ABC} over C_n then $T \in U$.

As in Proposition 3.11:

Proposition 4.2. If $T \in U$, then

$$e^{\mathcal{ABC}}(T) = \frac{1}{2} \left(e^{\sqrt{\frac{3}{4}}} + e^{\sqrt{\frac{1}{2}}} \right) n + \frac{1}{2} \left(e^{\sqrt{\frac{3}{4}}} - 3e^{\sqrt{\frac{1}{2}}} + 2e^{\sqrt{\frac{6}{16}}} \right) m_{4,4} \\ + \frac{1}{2} \left(3e^{\sqrt{\frac{3}{4}}} - 5e^{\sqrt{\frac{1}{2}}} \right).$$

It is important to note that the companion coefficient of $m_{4,4}$ in this expression is

$$\frac{1}{2}\left(e^{\sqrt{\frac{3}{4}}} - 3e^{\sqrt{\frac{1}{2}}} + 2e^{\sqrt{\frac{6}{16}}}\right) \approx -8.6482 \times 10^{-3} < 0.6482 \times 10^{-3} < 0.$$

so again e^{ABC} is decreasing on $m_{4,4}$ over \mathcal{U} . Consequently, as in Corollary 3.15, we have

Corollary 4.3. Let T be maximal with respect to $e^{\mathcal{ABC}}$ over \mathcal{C}_n .

- 1. If $n \equiv 0 \mod 4$ then $T \in \mathcal{U}_1$;
- 2. If $n \equiv 1 \mod 4$ then $T \in \mathcal{U}_0$;
- 3. If $n \equiv 2 \mod 4$ then $T \in \mathcal{U}_3$;
- 4. If $n \equiv 3 \mod 4$ then $T \in \mathcal{U}_2$.

Following the proof of Theorem 3.16 we deduce the maximal value of $e^{\mathcal{ABC}}$ over \mathcal{C}_n .

Theorem 4.4. Let n be a positive integer. The maximal value of e^{ABC} over C_n is attained in

1. \mathcal{U}_1 if $n \equiv 0 \mod 4$ $(n \ge 8)$, with maximal value

$$\frac{1}{2}\left(e^{\sqrt{\frac{3}{4}}} + e^{\sqrt{\frac{1}{2}}}\right)n + 2e^{\sqrt{\frac{3}{4}}} + e^{\sqrt{\frac{6}{16}}} - 4e^{\sqrt{\frac{1}{2}}};$$

2. \mathcal{U}_0 if $n \equiv 1 \mod 4 \ (n \geq 5)$, with maximal value

$$\frac{1}{2}\left(e^{\sqrt{\frac{3}{4}}} + e^{\sqrt{\frac{1}{2}}}\right)n + \frac{3}{2}e^{\sqrt{\frac{3}{4}}} - \frac{5}{2}e^{\sqrt{\frac{1}{2}}};$$

3. \mathcal{U}_3 if $n \equiv 2 \mod 4$ $(n \geq 14)$, with maximal value

$$\frac{1}{2}\left(e^{\sqrt{\frac{3}{4}}}+e^{\sqrt{\frac{1}{2}}}\right)n+3e^{\sqrt{\frac{3}{4}}}+3e^{\sqrt{\frac{6}{16}}}-7e^{\sqrt{\frac{1}{2}}};$$

4. \mathcal{U}_2 if $n \equiv 3 \mod 4$ $(n \geq 11)$, with maximal value

$$\frac{1}{2}\left(e^{\sqrt{\frac{3}{4}}}+e^{\sqrt{\frac{1}{2}}}\right)n+\frac{5}{2}e^{\sqrt{\frac{3}{4}}}-\frac{11}{2}e^{\sqrt{\frac{1}{2}}}+2e^{\sqrt{\frac{6}{16}}}$$

In conclusion, the maximal value of $e^{\mathcal{ABC}}$ and \mathcal{ABC} are attained in the same trees except when $n \equiv 2 \mod 4$. When $n \equiv 2 \mod 4$ the \mathcal{ABC} index attains its maximal value in \mathcal{V}_0 and $e^{\mathcal{ABC}}$ attains its maximal value in \mathcal{U}_3 .

5 Minimal value of $e^{\mathcal{GA}}$ among chemical trees

 $e^{\mathcal{G}\mathcal{A}}$ is defined for a chemical tree T as

$$e^{\mathcal{GA}}(T) = \sum_{(i,j)\in K} m_{i,j}(T) e^{\frac{2\sqrt{ij}}{i+j}}.$$

If we look at Tables 3-5 we note that the behavior of $e^{\mathcal{G}\mathcal{A}}$ is even more favorable than the previous ones but with opposite signs. So when the operations 1-3 are performed, $e^{\mathcal{G}\mathcal{A}}$ decreases and the minimal value of $e^{\mathcal{G}\mathcal{A}}$ over \mathcal{C}_n is obtained. In fact, the version of Lemmas 3.1, 3.2, and 3.3 for $e^{\mathcal{G}\mathcal{A}}$ are as follows:

Lemma 5.1. Let xy be an edge of $T \in C_n$ such that $d_x = d_y = 2$ as in Figure 1. Then we can find a tree $\widehat{T} \in C_n$ such that $e^{\mathcal{GA}}(T) > e^{\mathcal{GA}}(\widehat{T})$.

Lemma 5.2. Let xy be an edge of $T \in C_n$ such that $d_x = 2$ and $d_y = 3$ as in Figure 2. Then we can find a tree $\widehat{T} \in C_n$ such that $e^{\mathcal{GA}}(T) > e^{\mathcal{GA}}(\widehat{T})$.

Lemma 5.3. Let xy be an edge of $T \in C_n$ such that $d_x = d_y = 3$ as in Figure 3. If $d_z = 2$ for some $z \in \{a, b, c, e\}$, then we can find a tree $\widehat{T} \in C_n$ such that $e^{\mathcal{GA}}(T) > e^{\mathcal{GA}}(\widehat{T})$.

Note that Lemmas 5.1 and 5.2 already imply that $m_{2,2}(T) = m_{2,3}(T) = 0$ when T is minimal with respect to $e^{\mathcal{GA}}$ over \mathcal{C}_n . Moreover, following the results in Section 3, one proves:

Corollary 5.4. If T is minimal with respect to $e^{\mathcal{GA}}$ over \mathcal{C}_n then $T \in \mathcal{U}$.

We also can compute $e^{\mathcal{GA}}$ for trees in \mathcal{U} as in the previous sections.

Proposition 5.5. If $T \in U$, then

$$e^{\mathcal{GA}}(T) = \frac{1}{2} \left(e^{\frac{2\sqrt{4}}{5}} + e^{\frac{2\sqrt{3}}{6}} \right) n + \frac{1}{2} \left(e^{\frac{2\sqrt{4}}{5}} - 3e^{\frac{2\sqrt{3}}{6}} + 2e^{\frac{2\sqrt{3}}{8}} \right) m_{4,4} + \frac{1}{2} \left(3e^{\frac{2\sqrt{4}}{5}} - 5e^{\frac{2\sqrt{3}}{6}} \right).$$

Since the companion coefficient of $m_{4,4}$ in this expression is

$$\frac{1}{2} \left(e^{\frac{2\sqrt{4}}{5}} - 3e^{\frac{2\sqrt{8}}{6}} + 2e^{\frac{2\sqrt{16}}{8}} \right) \approx -1.9722 \times 10^{-2} < 0,$$

it follows that $e^{\mathcal{G}\mathcal{A}}$ is decreasing on $m_{4,4}$ over \mathcal{U} . From now on everything changes, because we are searching for the minimal value of $e^{\mathcal{G}\mathcal{A}}$ over \mathcal{U} . In other words, we now have to consider subsets of \mathcal{U} with large $m_{4,4}$. From equation (20), it is clear that the maximal number of $m_{4,4}$ in \mathcal{U} occur in the trees F_k, G_k , and H_k shown in Table 2, depending on the congruence of n modulo 3. So let us define

$$\begin{split} \mathcal{U}_{\frac{n-9}{3}} &= \left\{ T \in \mathcal{U} : m_{4,4} = \frac{n-9}{3} \right\};\\ \mathcal{U}_{\frac{n-13}{3}} &= \left\{ T \in \mathcal{U} : m_{4,4} = \frac{n-13}{3} \right\};\\ \mathcal{U}_{\frac{n-5}{3}} &= \left\{ T \in \mathcal{U} : m_{4,4} = \frac{n-5}{3} \right\}. \end{split}$$

Clearly, $F_k \in \mathcal{U}_{\frac{n-9}{3}}, G_k \in \mathcal{U}_{\frac{n-13}{3}}$, and $H_k \in \mathcal{U}_{\frac{n-5}{3}}$. It is easy to see that

Proposition 5.6. Let n be a positive integer. Then:

- 1. $\mathcal{U}_{\frac{n-9}{2}} \neq \emptyset$ if and only if $n \equiv 0 \mod 3$ $(n \ge 9)$;
- 2. $\mathcal{U}_{\frac{n-13}{2}} \neq \emptyset$ if and only if $n \equiv 1 \mod 3$ $(n \ge 13)$;
- 3. $\mathcal{U}_{\frac{n-5}{3}} \neq \emptyset$ if and only if $n \equiv 2 \mod 3$ $(n \ge 5)$.

So we conclude the following:

Corollary 5.7. Let T be minimal with respect to $e^{\mathcal{GA}}$ over \mathcal{C}_n .

- 1. If $n \equiv 0 \mod 3$ $(n \geq 9)$ then $T \in \mathcal{U}_{\frac{n-9}{2}}$;
- 2. If $n \equiv 1 \mod 3 \ (n \geq 13)$ then $T \in \mathcal{U}_{\frac{n-13}{2}}$;
- 3. If $n \equiv 2 \mod 3$ $(n \geq 5)$ then $T \in \mathcal{U}_{\frac{n-5}{2}}$.

Finally we obtain:

Theorem 5.8. Let n be a positive integer. The minimal value of $e^{\mathcal{GA}}$ over \mathcal{C}_n is attained in

1. $\mathcal{U}_{\frac{n-9}{2}}$ if $n \equiv 0 \mod 3$ $(n \ge 9)$ with minimal value

$$\frac{1}{3}\left(2e^{\frac{2\sqrt{4}}{5}} + e^{\frac{2\sqrt{16}}{8}}\right)n + 2e^{\frac{2\sqrt{8}}{6}} - 3e^{\frac{2\sqrt{16}}{8}};$$

2. $\mathcal{U}_{\frac{n-13}{2}}$ if $n \equiv 1 \mod 3$ $(n \geq 13)$, with minimal value

$$\frac{1}{3}\left(2e^{\frac{2\sqrt{4}}{5}}+e^{\frac{2\sqrt{16}}{8}}\right)n+4e^{\frac{2\sqrt{8}}{6}}-\frac{2}{3}e^{\frac{2\sqrt{4}}{5}}-\frac{13}{3}e^{\frac{2\sqrt{16}}{8}};$$

3. $\mathcal{U}_{\frac{n-5}{2}}$ if $n \equiv 2 \mod 3$ $(n \geq 5)$ with minimal value

$$\frac{1}{3}\left(2e^{\frac{2\sqrt{4}}{5}} + e^{\frac{2\sqrt{16}}{8}}\right)n + \frac{2}{3}e^{\frac{2\sqrt{4}}{5}} - \frac{5}{3}e^{\frac{2\sqrt{16}}{8}}.$$

Note that when n = 3k + 1, the minimal value of \mathcal{GA} and the minimal value of $e^{\mathcal{GA}}$ are attained in different trees (see Table 2).

Acknowledgment: J.M. and J.R. thanks to COLCIENCIAS and UNIVERSIDAD DE ANTIOQUIA (Convocatoria 811- Programa de estancias Postdoctorales 2018) for their support.

References

- M. Aouchiche, P. Hansen, The geometric-arithmetic index and the chromatic number of connected graphs, *Discr. Appl. Math.* 232 (2017) 207–212.
- [2] M. Bianchi, A. Cornaro, J. L. Palacios, A. Torriero, Lower bounds for the geometricarithmetic index of graphs with pendant and fully connected vertices, *Discr. Appl. Math.* 257 (2019) 53–59.
- [3] X. Chen, G. Hao, Extremal graphs with respect to generalized ABC index, Discr. Appl. Math. 243 (2018) 115–124.
- [4] X. Chen, K. Das, Solution to a conjecture on the maximum ABC index of graphs with given chromatic number, Discr. Appl. Math. 251 (2018) 126–134.
- [5] Y. Chen, B. Wu, On the geometric-arithmetic index of a graph, *Discr. Appl. Math.* 254 (2019) 268–273.
- [6] R. Cruz, J. Rada, The path and the star as extremal values of vertex-degree-based topological indices among trees, MATCH Commun. Math. Comput. Chem. 82 (2019) 715–732.
- [7] R. Cruz, J. Rada, Extremal values of exponential vertex-degree-based topological indices over graphs, *Kragujevac J. Math.* 46 (2022) 105–113.
- [8] R. Cruz, J. Monsalve, J. Rada, Trees with maximal exponential Randić index, *Discr. Appl. Math.*, in press.
- [9] R. Cruz, J. Monsalve, J. Rada, Extremal values of vertex-degree-based topological indices of chemical trees, *Appl. Math. Comput.*, in press.

- [10] K. Das, I. Gutman, B. Furtula, Survey on geometric-arithmetic indices of graphs, MATCH Commun. Math. Comput. Chem. 65 (2011) 595-644.
- [11] K. Das, S. Elumalai, I. Gutman, On ABC index of graphs, MATCH Commun. Math. Comput. Chem. 78 (2017) 459–468.
- [12] J. Devillers, A. T. Balaban (Eds.), Topological Indices and Related Descriptors in QSAR and QSPR, Gordon & Breach, Amsterdam, 1999.
- [13] D. Dimitrov, Z. Du, C. da Fonseca, The minimal-ABC trees with B1-branches, PLoS One 13 (2018) #e0195153.
- [14] E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, *Indian J. Chem.* **37A** (1998) 849–855.
- [15] E. Estrada, Atom-bond connectivity and the energetic of branched alkanes, *Chem. Phys. Lett.* 463 (2008) 422–425.
- [16] E. Estrada, The ABC matrix, J. Math. Chem. 55 (2017) 1021–1033.
- [17] B. Furtula, A. Graovac, D. Vukičević, Atom-bond connectivity index of trees, *Discr. Appl. Math.* **157** (2009) 2828–2835.
- [18] J. Hernández, J. Rodríguez, J. Sigarreta, On the geometric–arithmetic index by decompositions, J. Math. Chem. 55 (2017) 1376–1391.
- [19] J. Liu, R. Zheng, J. Chen, B. Liu, The extremal general atom-bond connectivity indices of unicyclic and bicyclic graphs, *MATCH Commun. Math. Comput. Chem.* 81 (2019) 345–360.
- [20] A. Martínez-Perez, J. Rodríguez, New lower bounds for the geometric-arithmetic index, MATCH Commun. Math. Comput. Chem. 79 (2018) 451–466.
- [21] A. Martínez-Perez, J. Rodríguez, Some results on lower bounds for topological indices, J. Math. Chem. 57 (2019) 1472–1495.
- [22] A. Martínez-Perez, J. Rodríguez, J. Sigarreta, A new approximation to the geometric-arithmetic index, J. Math. Chem. 56 (2018) 1865–1883.
- [23] E. I. Milovanović, I. Ž. Milovanović, M. M. Matejić, Remark on spectral study of the geometric–arithmetic index and some generalizations, *Appl. Math. Comput.* 334 (2018) 206–213.
- [24] D. Pestana, J. Sigarreta, E. Tourís, Geometric–arithmetic index and line graph, J. Math. Chem. 57 (2019) 1427–1447.

- [25] A. Portilla, J. Rodríguez, J. Sigarreta, Recent lower bounds for geometric–arithmetic index, *Discr. Math. Lett.* 1 (2019) 59–82.
- [26] J. Rada, Exponential vertex-degree-based topological indices and discrimination, MATCH Commun. Math. Comput. Chem. 82 (2019) 29–41.
- [27] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609–6615.
- [28] J. Rodríguez, J. Sigarreta, Spectral properties of geometric–arithmetic index, Appl. Math. Comput. 277 (2016) 142–153.
- [29] J. Rodríguez, J. Rodríguez-Velazquez, J. Sigarreta, New inequalities involving the geometric–arithmetic index, MATCH Commun. Math. Comput. Chem. 78 (2017) 361–374.
- [30] Z. Shao, P. Wu, Y. Gao, I. Gutman, X. Zhang, On the maximum ABC index of graphs without pendent vertices, Appl. Math. Comput. 315 (2017) 298–312.
- [31] M. Sohrabi-Haghighat, M. Rostami, The minimum value of geometric–arithmetic index of graphs with minimum degree 2, J. Comb. Optim. 34 (2017) 218–232.
- [32] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley–VCH, Weinheim, 2000.
- [33] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley– VCH, Weinheim, 2009.
- [34] D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 1369– 1376.
- [35] X. Zhang, Y. Sun, H. Wang, X. Zhang, On the ABC index of connected graphs with given degree sequences, J. Math. Chem. 56 (2018) 568–582.
- [36] R. Zheng, J. Liu, J. Chen, B. Liu, Bounds on the general atom-bond connectivity indices, MATCH Commun. Math. Comput. Chem. 83 (2020) 143–166.