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Abstract

Using standard tools of electric networks we find two new lower bounds for both
the multiplicative and additive degree-Kirchhoff indices, K∗(G) and K+(G), of a
graph G = (V,E) in terms of a small number of parameters: |V |, |E|, and the
smallest and largest degrees. The bounds are attained by the complete graph and
by a large family of strongly regular graphs.

1 Introduction

In what follows we will work with a simple connected graph G = (V,E) whose vertex set

is V = {1, 2, . . . , n}, whose edge set is E and whose degree sequence is ∆ = d1 ≥ d2 ≥

· · · ≥ dn = δ. Reference [30] contains all concepts from Graph Theory used here and not

explicitly defined.

One of the most thoroughly studied indices or descriptors of a graph G is the Kirchhoff

index, introduced in [18] by Klein and Randić, and defined by

K(G) =
∑
i<j

Rij,

where Rij denotes the effective resistance computed between the vertices i and j by means

of Ohm’s laws. The multiplicative degree-Kirchhoff index is a related resistive descriptor,
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proposed by Chen and Zhang in [5], and defined by

K∗(G) =
∑
i<j

didjRij.

References [1], [4], [10], [13], [16], [21], [23] [24] and [33] are a sample of earlier articles

related to the index K∗(G). More recently a lot of interest has been placed in finding

maximal graphs among certain families of graphs (see [9]) and also in computing the value

of the index, and the number of spanning trees, in certain intricate graphs by finding the

eigenvalues µi of the normalized Laplacian of these graphs (see [14], [19]), and exploiting

the characterization

K∗(G) = 2|E|
∑
i

1

µi
(1)

in terms of these eigenvalues.

A close relative of the indices above is the additive degree-Kirchhoff index, introduced

in [11] and defined as

K+(G) =
∑
i<j

(di + dj)Rij. (2)

The articles [2], [8], [15], [17], [20] [26], [27], [31] and [32] are examples of research

focused on finding bounds, extremal graphs and closed-form formulas for several families

of graphs with respect to this index.

2 Bounds for the multiplicative degree–Kirchhoff

index

In [23], through an expression equivalent to (1) but in terms of the eigenvalues of the

transition probability matrix of the random walk on G, we proved the inequality

K∗(G) ≥ 2|E|
(
n− 2 +

1

n

)
(3)

for an arbitrary G.

In [24] we improved (3) to

K∗(G) ≥ 2|E|
(
n− 2 +

1

∆ + 1

)
. (4)

This bound was used to prove that the star graph Sn attains the minimum of R∗(G) for

all G.
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In [1], using majorization, we found the bound

K∗(G) ≥ 2|E|

(
1

1 + σ√
n−1

+
(n− 2)2

n− 1− σ√
n−1

)
, (5)

where σ2 =
2

n

∑
(i,j)∈E

1

didj
=

2

n
R−1(G), and R−1(G) is the generalized Randić index with

α = −1.

Later in [28], refining the arguments in [24], we improved (4) to

K∗(G) ≥ n− 1 + 2|E|(n− 2). (6)

The equalities in (3) through (6) are attained by the complete graph Kn. The one in

(6) is also attained by the star graph Sn

Next we will present a couple of new inequalities for the multiplicative degree-Kirchhoff

index, using some electric ideas that have been exploited in the literature in several

different scenarios. The first bound involves only the parameters n, |E| and δ; the second

uses additionally the parameter ∆.

Theorem 1 The multiplicative degree-Kirchhoff index of an n-vertex graph G satisfies

K∗(G) ≥ δ2(n− 1) + 2δ

((
n

2

)
− |E|

)
, (7)

and

K∗(G) ≥ δ2(n− 1) + 2|E|(n− 1−∆). (8)

These lower bounds are attained by Kn.

Proof. According to Foster’s first sum rule (see [12]) we have
∑

i<j:d(i,j)=1Rij = n−1,

and this together with the inequality (see [6])

Rij ≥
1

di
+

1

dj
,

that holds when i and j are not neighbors, allows us to get

K∗(G) =
∑

i<j:d(i,j)=1

didjRij +
∑

i<j:d(i,j)>1

didjRij ≥ δ2(n− 1) +
∑

i<j:d(i,j)>1

didjRij

≥ δ2(n− 1) +
∑

i<j:d(i,j)>1

didj

(
1

di
+

1

dj

)
= δ2(n− 1) +

∑
i<j:d(i,j)>1

(di + dj). (9)
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Now we may choose to bound di + dj ≥ 2δ in (9), and using this we get the bound (7).

Alternatively, we may write∑
i<j:d(i,j)>1

(di + dj) =
∑
i<j

(di + dj)−
∑

i<j:d(i,j)=1

(di + dj)

= 2|E|(n− 1)−
∑

i<j:d(i,j)=1

(di + dj) ≥ 2|E|(n− 1)− 2|E|∆,

and using this in (9) we get (8).

It is clear that for G = Kn both lower bounds are equal to (n− 1)3 = K∗(Kn)

If all degrees in either (7) or (8) are equal to d we obtain the following result that was

first found in [22]:

Theorem 2 If the graph is d-regular the multiplicative degree-Kirchhoff index satisfies

K∗(G) ≥ d(n2 − n− d). (10)

We will prove now that the equality in (10) (and thus also in (7) and (8)) is attained,

in addition to Kn, by a particular set of strongly regular graphs. The discussion of this

family of graphs follows, and improves, the material in [25]. Denote by N(i) the set of all

neighbors of the vertex i, and by D the diameter of the graph, that is, D = maxi,j{d(i, j) :

i, j ∈ V }. Then we can prove

Theorem 3 If G is d-regular, has diameter D = 2 and satisfies |N(i)∩N(j)| = d for all

non-neighboring vertices, then the bound (10) is attained by G.

Proof. Suppose that i and j are not neighbors; since they share d neighbors, by

deleting all other edges but the ones between i, j and their neighbors, and applying

the monotonicity principle ( [7]), the effective resistance Rij is bounded above by the

resistance of a circuit built with d paths of length 2 laid out in parallel between i and j,

which is
2

d
. Using also Foster’s first sum rule we obtain

K∗(G) = d2K(G) = d2

n− 1 +
∑

i<j:d(i,j)=2

Rij

 ≤ d2

n− 1 +
∑

i<j:d(i,j)=2

2

d


= d2(n− 1) + 2d

∑
i<j:d(i,j)=2

1 = d2(n− 1) + 2d

((
n

2

)
− nd

2

)
,
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which is the same as (10)

The conditions in the previous proposition are met by strongly regular graphs (see [3])

with parameters (n, d, ν, d), for some ν. Such graphs include the class of complete r-

partite graph Ks,s,...,s, for r ≥ 2, s ≥ 2, with d = (r − 1)s and ν = (r − 2)s. We suspect

there are no other strongly regular graphs satisfying the condition that the second and

fourth parameters are equal, and no other diameter 2 regular graphs satisfying theorem

3.

Remark 1. The new bounds (7) and (8) are not comparable to (6), and they are

not comparable to one another. To see this, notice first that (6) attains the actual value

K∗(Sn), for n ≥ 3, whereas (7) and (8) do not. Conversely, for G a d-regular graph, the

bound (6) becomes

K∗(G) ≥ n− 1 + nd(n− 2),

which is worse than (10) as long as d < n− 1. In other words, (6) is outperformed by (7)

and (8) on regular graphs other than the complete graph.

Also, the bound given by (8) is strictly smaller than the one given by (7) when ∆ =

n− 1 and the graph is not the complete graph. Finally, for the linear graph on n vertices

(7) gives the bound (n− 1)2 and (8) gives the bound (n− 1)(2n− 5). Therefore (7) and

(8) are not comparable.

3 Bounds for the additive degree–Kirchhoff index

In [27] we showed that for all G

K+(G) ≥ K+(Kn) = 2(n− 1)2. (11)

Later in [2] we showed a cornucopia of lower bounds in different scenarios, working with

properties on electric networks and majorization: bounds in terms of the inverse index,

bounds with a fixed number of pendant vertices, bounds dependent on the sum H =∑
i<j

di
dj

, etc. An example of these is:

K+(G) ≥ n(n− 4) + 2|E|
n∑
i=1

1

di
. (12)

Several of these bounds depended on a large number of parameters and were attained

only by the complete graph Kn.
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In [31] Yang and Klein obtained the inequality

K+(G) ≥
(
δ +

2|E|
n

)(
n− 1 +

n

δ
− δ + 1

n− 1

)
, (13)

in terms of three parameters, and where the equality is attained by the complete graph

Kn.

Similar results were obtained in [26], such as the following inequalities

K+(G) ≥ 4|E|
∆

(
n− 2 +

1

∆ + 1

)
, (14)

and

K+(G) ≥ (n− 1)2 + n

(
n− 2 +

1

∆ + 1

)
≥ 2(n− 1)2, (15)

where the latter obviously improves (11), and both are attained by Kn.

A common trait of the inequalities in [31] and [26] for K+(G) is that they were obtained

as corollaries of other inequalities for K∗(G).

Here the approach is different: we work with properties of electric networks applied

directly to K+(G) and find two lower bounds, both of which depend only on the param-

eters n, |E|, δ and ∆, and which are attained by Kn and the same family of strongly

regular graphs as in the previous section.

Theorem 4 The additive degree-Kirchhoff index of an n-vertex graph G satisfies

K+(G) ≥ 2δ

[
(n− 1) +

2

∆

((
n

2

)
− |E|

)]
, (16)

and

K+(G) ≥ 2δ(n− 1) +
4|E|
∆

(n− 1−∆). (17)

These lower bounds are attained by Kn and by all the graphs in theorem 3.

Proof. With similar arguments to those in the proof of theorem 1 we get

K+(G) =
∑

i<j:d(i,j)=1

(di + dj)Rij +
∑

i<j:d(i,j)>1

(di + dj)Rij

≥ 2δ(n− 1) +
∑

i<j:d(i,j)>1

(di + dj)

(
1

di
+

1

dj

)
≥ 2δ(n− 1) +

2

∆

∑
i<j:d(i,j)>1

(di + dj).

Now we may choose either of the two bounds used in theorem 1 for the summation∑
i<j:d(i,j)>1(di + dj), and (16) and (17) follow.

For G = Kn both lower bounds are equal to 2(n− 1)2 = K+(Kn)
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If all degrees in either (16) or (17) are equal to d we obtain

K+(G) ≥ 2(n2 − n− d), (18)

and since in this case K+(G) = 2dK(G), the argument in theorem 3, with the necessary

changes being made, yields that the equality is attained by the family of d-regular graphs

with diameter 2 satisfying |N(i) ∩N(j)| = d

Remark 2. The same examples in remark 1 show that (16) and (17) are not com-

parable. It would be a bit tedious to go through all the comparisons between the new

bounds and all the previous ones in order to show that they are not comparable. Suffice

to say that when the graph is d-regular the bounds (12), (13), (14) and (15) become

K+(G) ≥ 2(n2 − 2n), (19)

K+(G) ≥ 2d

(
n− 1 +

n

d
− d+ 1

n− 1

)
, (20)

K+(G) ≥ 2(n2 − 2n+
n

d+ 1
), (21)

and

K+(G) ≥ 2n2 − 4n+ 1 +
n

d+ 1
, (22)

respectively, all of which are weaker than (18). It is immediate to see this for (19), (21)

and (22). Perhaps (20) deserves a short explanation: in the interval 2 ≤ d ≤ n − 1, the

parabola f(d) = d(n2 − n − 1 − d) attains its maximum value at the right end of the

interval, i.e., f(d) ≤ f(n− 1) for all d, or in other words

d(n2 − n− 1− d) ≤ (n− 2)(n− 1)n.

Multiplying by 2
n−1 both sides of the prior equation, and then adding 2n − 2d to both

sides we get

2d

(
n− 1 +

n

d
− d+ 1

n− 1

)
≤ 2(n2 − n− d),

as claimed.
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