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Abstract

The eccentricity of a vertex u in a connected graph G is the distance between
u and a vertex farthest from it; the eccentric sequence of G is the nondecreasing
sequence of the eccentricities of G. In this paper, we determine the unique tree
that minimises the Wiener index, i.e. the sum of distances between all unordered
vertex pairs, among all trees with a given eccentric sequence. We show that the
same tree maximises the number of subtrees among all trees with a given eccentric
sequence, thus providing another example of negative correlation between the num-
ber of subtrees and the Wiener index of trees. Furthermore, we provide formulas for
the corresponding extreme values of these two invariants in terms of the eccentric
sequence. As a corollary to our results, we determine the unique tree that minimises
the edge Wiener index, the vertex-edge Wiener index, the Schulz index (or degree
distance), and the Gutman index among all trees with a given eccentric sequence.

1 Introduction

The eccentricity eccG(u) of a vertex u in a connected graph G is defined as the distance

between u and a vertex farthest from it, that is

eccG(u) = max
v∈V (G)

dG(u, v) ,

where dG(u, v) denotes the distance between u and v in G, i.e. the length of a shortest

u− v path in G. The eccentric sequence of G is defined as the non-decreasing sequence of
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the eccentricities of G. It is the second oldest sequence associated with a graph, after the

degree sequence. A sequence of positive integers is said to be eccentric if it is the eccentric

sequence of some graph. The study of eccentric sequences in graphs was initiated in a

1975 paper [21] by Lesniak who showed that each entry, except possibly the smallest in

an eccentric sequence, appears at least twice. In [3] Behzad and Simpson gave a further

necessary condition for a sequence to be eccentric, and also found few properties of graphs

with a given eccentric sequence. Deciding if a given sequence of integers is eccentric is, in

general, difficult [4, Problem 1]. An eccentric sequence S with m distinct entries is called

minimal if it has no proper eccentric subsequence with m distinct entries. Lesniak [21]

showed that S is eccentric if and only if it has a subsequence with m distinct entries

which is eccentric. Unfortunately, deciding if a given sequence of integers is a minimal

eccentric sequence appears to be difficult [17, 18, 25]. Considering a restriction to graph

classes, Dankelmann et al. [13] found a characterization of eccentric sequences of maximal

outerplanar graphs; Lesniak [21] provided a complete characterization of tree eccentric

sequences. A sequence of integers is tree eccentric if it is the eccentric sequence of some

tree. A tree is said to be a caterpillar if removing all pendant vertices, i.e. vertices

of degree 1, produces a path. It was shown implicitly in [21] that every tree eccentric

sequence is the eccentric sequence of some caterpillar. The same observation was later

explicitly made by Skurnik [29], who also determined the exact number of nonisomorphic

caterpillars with a given eccentric sequence.

This paper is concerned with two problems: Determine both an exact sharp lower

bound on the Wiener index of trees and an exact sharp upper bound on the number of

subtrees of trees with a prescribed eccentric sequence. The Wiener index of a graph G is

defined as the sum of distances between all unordered pairs of vertices of G, while the

number of subtrees of G is the number of subgraphs of G which are trees.

The Wiener index was introduced in 1947 by the chemist H. Wiener [36] who observed

its correlation with the physical, chemical and biological properties of certain molecules

and molecular compounds. Besides its chemical applications, the Wiener index is also

of great interest in graph theory [26]. Moreover, research has shown a ‘negative’ corre-

lation between the Wiener index and other distance-based topological indices [32]. The

minimum and maximum Wiener indices of a connected graph in terms of order (number

of vertices) are attained by the complete graph and the path, respectively. By placing
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further restrictions on graphs, one obtains interesting subclasses: see [14] for a survey on

extremal results for the Wiener index of trees. In particular, the maximum and minimum

Wiener indices of a n-vertex tree are attained by the path and the star, respectively.

Cambie [5] obtained an asymptotically (as n → ∞) sharp upper bound for the Wiener

index of a graph with order n and diameter (the maximum eccentricity) at most d > 2,

and also proved a somewhat analogous result for trees. There are other similar results for

the Wiener index which prescribe constraints such as minimum degree, edge-connectivity,

vertex-connectivity, independence number [8–11,23]; see also the survey [40] for more in-

formation. Considering trees with a prescribed degree sequence, the so-called greedy trees

minimize the Wiener index [33, 34, 41], while the maximization problem can be reduced

to the study of caterpillars [6, 28]. The recent paper [22] studied trees that minimize the

Wiener index in the class of all trees with a given segment sequence. In [2] the authors

showed that the problem of maximizing the Wiener index with a given segment sequence

leads to the study of the so-called quasi-caterpillars. We mention that paper [38] explored

the relationship between the Wiener index of trees and the so-called first and second

Zagreb eccentricity indices.

A subtree of a tree T is a connected subgraph of T . The parameter number of subtrees

of a tree has received much attention and is still attracting researchers. The first extremal

results on this parameter are due to Székely and Wang [30, 31]: the structure of binary

trees with n leaves that maximize the number of subtrees is given in [31], while [30] solves

the analogue minimization problem and also studies n-vertex trees that extremise the

number of subtrees. For instance, it is known that the n-vertex path (resp. n-vertex

star) has n(n + 1)/2 (resp. n − 1 + 2n−1) subtrees, and these minimise and maximise,

respectively, the number of subtrees among all trees of given order. The so-called good

binary trees (resp. binary caterpillars) maximise (resp. minimise) the number of subtrees

among all binary trees with n leaves. Recently, Chen [7] characterized n-vertex trees with

diameter d that have the maximum number of subtrees, and also solved the minimization

problem in the special case where d < 6. Results on the number of subtrees with a given

degree or segment sequence can be found in [42,43]. Paper [37] mentions that the number

of subtrees of a graph was shown in [44] to correlate with the reliability of a network with

possible vertex/edge failure in the sense that networks with smaller number of subtrees

would be less reliable.
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In this note, we shall determine the structure of all trees that minimize the Wiener

index or maximize the number of subtrees, given the eccentric sequence. It will be shown

that those extremal trees are caterpillars and coincide in both cases. We shall also provide

formulas for the corresponding extreme values of these two invariants. Finally, we mention

that the very same tree minimizes the edge Wiener index, the vertex-edge Wiener index,

the Schultz index, and the Gutman index among all trees with a given eccentric sequence.

2 Preliminaries and main results

For graph theoretical terminology not specified here, we refer to [35]. If A is a subset of

vertices (resp. edges) of G, then we write G − A to mean the graph obtained from G

by deleting all elements of A. We simply write G − l instead of G − {l}. The set of all

neighbors of v ∈ V (G) in G will be denoted by NG(v). If T is a caterpillar, then the path

that remains after removing its pendant vertices will be called the backbone of T .

The following lemma is well-known; see for instance [21]. It shall be used without

further reference.

Lemma 1 ( [21]). Let u, v be two vertices at the maximum distance in a tree T . Then we

have

ecc(w) = max{dT (u,w), dT (w, v)}

for all w ∈ V (T ).

The next result is due to Lesniak [21] and characterizes tree eccentric sequence.

Theorem 2. For n > 2, a non-decreasing sequence S = (a1, a2, . . . , an) of positive integers

is a tree eccentric sequence if and only if

i) a1 = an/2 and a1 6= a2, or a1 = a2 = (1 + an)/2 and a2 6= a3,

ii) for every integer a1 < k ≤ an, we have aj = aj+1 = k for some 2 ≤ j ≤ n− 1.

There are usually many vertices having the same eccentricity in a graph G. For this

reason, we shall write (b
(m1)
1 , b

(m2)
2 , . . . , b

(ml)
l ) for the eccentric sequence of G, where we

mean that G has precisely l distinct eccentricities b1 < b2 < · · · < bl whose multiplicities

are m1,m2, . . . ,ml. Thus b1 (resp. bl) is the radius (resp. diameter) of G and |V (G)| =

m1 + m2 + · · · + ml. Theorem 1 in [21] states that bj+1 = bj + 1 for all 1 ≤ j ≤ l − 1.
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Therefore, the sequence (b
(m1)
1 , b

(m2)
2 , . . . , b

(ml)
l ) is completely determined by knowing the

values of b1, l,m1, . . . ,ml. The parameter l, number of distinct eccentricities, is a subject

of very recent study in [1] – there, it is called the eccentric complexity of G. For trees,

m1 = 1 and bl = 2b1, or m1 = 2 and bl = 2b1 − 1.

Given a tree eccentric sequence S = (b
(m1)
1 , b

(m2)
2 , . . . , b

(ml)
l ), we shall denote by TS the

set of all trees whose eccentric sequence is S, and by CS the set of all caterpillars whose

eccentric sequence is S. Throughout the paper, we assume that m1 +m2 + · · ·+ml > 2.

Definition 3. Given an integer q > 0, we define T(t1, t2, . . . , tr) to be the caterpillar

constructed from the path P : v0, v1, . . . , vq+1 by attaching tj pendant vertices at vj for

all 1 ≤ j ≤ r, where r = q/2 if q is even, and r = (q + 1)/2 if q is odd.

Our main result reads as follows:

Main result: Let S = (b
(m1)
1 , b

(m2)
2 , . . . , b

(ml)
l ) be a given tree eccentric sequence such

that m1 +m2 + · · ·+ml > 2. Then T(ml− 2,ml−1− 2, . . . ,m2− 2) minimizes the Wiener

index and maximizes the number of subtrees among all trees whose eccentric sequence is

S. In each case, T(ml − 2,ml−1 − 2, . . . ,m2 − 2) is unique with this property.

The proof for the minimum Wiener index as well as the corresponding formula is

given in Section 3; that of the maximum number of subtrees as well as the corresponding

formula is referred to Section 4. In the final section, we mention other variants of the

Wiener index that the very same tree minimizes among all trees with a given eccentric

sequence.

3 Minimum Wiener index

In this section, we determine the minimum Wiener index of a tree with a given eccentric

sequence S, and also characterize all trees attaining the bound.

Theorem 4. Let S = (b
(m1)
1 , b

(m2)
2 , . . . , b

(ml)
l ) be a given tree eccentric sequence such that

m1 +m2 + · · ·+ml > 2. Then we have

W (T ) > W (T(ml − 2,ml−1 − 2, . . . ,m2 − 2))
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for all T ∈ TS such that T is not isomorphic to T(ml−2,ml−1−2, . . . ,m2−2). Moreover,

W
(
T(ml − 2,ml−1 − 2, . . . ,m2 − 2)

)
=

(
bl + 2

3

)
+ 2

l∑
j=2

(
mj − 2

2

)

+
∑

2≤i<j≤l

(mi − 2)(mj − 2)(2 + j − i) +
l−1∑
j=1

((j + 1

2

)
+

(
bl + 1− j

2

))
(ml+1−j − 2)

+ (bl + 1)
(

2− 2l +
l∑

j=2

mj

)
.

Proof. Let T ∈ TS be a tree that minimizes the Wiener index among all trees whose

eccentric sequence is S. Let v0 and vd be two vertices at distance d := bl in T , and denote

by P = v0, v1, . . . , vd the path from v0 to vd in T .

Claim 1: T is a caterpillar.

Suppose to the contrary that T is not a caterpillar. Then P contains a vertex vj which

has a neighbor u not on P , that is not a pendant vertex. We fix vj and u. We may assume

that j ≥ 1
2
d since otherwise, if j < 1

2
d, we just reverse the numbering of the vertices v0 to

vd. In order to prove Claim 1, we modify T to obtain a tree T ′ with the same eccentric

sequence but smaller Wiener index, a contradiction to our choice of T .

Denote by U the set of vertices that are in a component of T − u not containing P .

Let L and R be the set of vertices in V (T )− U that are in the component of T − vjvj+1

containing vj and vj+1, respectively. Define the tree T ′ as follows: Delete all edges uy with

y ∈ NT (u)−{vj}, and add all edges vj+1y with y ∈ NT (u)−{vj}. Clearly V (T ) = V (T ′).

It is easy to see that for two vertices x and y of T we have dT ′(x, y) 6= dT (x, y) only if

x ∈ U and y ∈ R ∪ {u}, or vice versa. For such a pair we have

dT ′(x, y) =

{
dT (x, y)− 2 if x ∈ U and y ∈ R,

dT (x, y) + 2 if x ∈ U and y = u.

Hence, since R contains more than one vertex, we obtain

W (T ′)−W (T ) = |U |(2− 2|R|) < 0.

For the proof that T and T ′ have the same eccentric sequence, it suffices, by Lemma 1,

to show that all vertices in U ⊂ V (T ) preserve their eccentricities in T ′. First note that

P is also a longest path in T ′. By j ≥ d− j, we get

eccT (y) = max{dT (y, v0), dT (y, vd)} = dT (y, u) + 1 + j

= dT ′(y, vj+1) + 1 + j = eccT ′(y)
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for all y ∈ U . Hence S is the eccentric sequence of T ′ whereas W (T ′) < W (T ). This is a

contradiction to our choice of T , which proves Claim 1.

As a next step, we bound the Wiener index of a caterpillar T ∈ CS from below.

Given the backbone v1, . . . , vq of the caterpillar T , fix vertices v0 ∈ N (v1) − {v2} and

vq+1 ∈ N (vq) − {vq−1}. Then P := v0, v1, . . . , vq+1 is a longest path of T . For every

i ∈ {1, 2, . . . , q}, let Ci be the set of pendant vertices adjacent to vi and not on P . For

1 ≤ j ≤ d q
2
e define Dj to be the set Cj ∪ Cq+1−j. For 1 ≤ j ≤ dq/2e the set Dj contains

all vertices of eccentricity q + 2 − j, except two vertices that are on P . Note that by

S = (b
(m1)
1 , b

(m2)
2 , . . . , b

(ml)
l ) being the eccentric sequence of T , we have

b1 = dbl/2e, bl = q + 1, and l = b(q + 1)/2c+ 1.

Hence |Dj| = ml+1−j − 2. Moreover, the sets V (P ), D1, D2, . . . , Dd q
2
e form a partition

of V (T ). If A and B are subsets of V (T ), then we write WT (A) for the sum of the

distances in T between all unordered pairs of vertices in A, and WT (A,B) for the sum of

the distances dT (a, b), where a ∈ A and b ∈ B. With this notation, we get

W (T ) = WT (V (P )) +

dq/2e∑
j=1

WT (Dj) +
∑

1≤i<j≤dq/2e

WT (Di, Dj) +

dq/2e∑
j=1

WT (Dj, V (P )) .

We consider each of the four terms separately. Clearly

WT (V (P )) = W (P ) =

(
q + 3

3

)
.

The distance between any two vertices in Dj is at least 2. Therefore,

WT (Dj) ≥ 2

(
|Dj|

2

)
= 2

(
ml+1−j − 2

2

)
.

Note that equality holds only if all vertices in Dj are adjacent to the same vertex of P ,

i.e., if Cj is empty or Cq+1−j is empty.

To bound WT (Di, Dj) for i < j, note that for v ∈ Di and w ∈ Dj, we have dT (v, w) =

dT (v′, w′) + 2, where v′ and w′ is the unique vertex adjacent to v and w, respectively, and

v′ ∈ {vi, vq+1−i}, w′ ∈ {vj, vq+1−j}. Since by i < j, we have

dT (vi, vj) = dT (vq+1−i, vq+1−j) = j − i ,

dT (vi, vq+1−j) = dT (vq+1−i, vj) = q + 1− i− j ≥ j − i ,
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we derive that dT (v, w) ≥ 2 + j − i, with equality only if j = (q + 1)/2, or

if j 6= (q + 1)/2 and v ∈ Ci and w ∈ Cj, or if j 6= (q + 1)/2 and v ∈ cq+1−i and w ∈ Cq+1−j.

Summation yields

WT (Di, Dj) ≥ |Di| · |Dj|(2 + j − i) = (ml+1−i − 2)(ml+1−j − 2)(2 + j − i) ,

with equality only if j = (q + 1)/2, or

if j 6= (q + 1)/2 and Ci = Cj = ∅, or if j 6= (q + 1)/2 and Cq+1−i = Cq+1−j = ∅.

To evaluate WT (Dj, V (P )), note that for every vertex v ∈ Cj we have∑
w∈V (P )

dT (v, w) =
∑

w∈V (P )

(1 + dT (vj, w)) = (q + 2) +WT ({vj}, V (P )),

and similarly for v ∈ Cq+1−j, we have∑
w∈V (P )

dT (v, w) = (q + 2) +WT ({vq+1−j}, V (P )).

A simple calculation shows that

WT ({vj}, V (P )) = WT ({vq+1−j}, V (P )) =
1

2

(
j(j + 1) + (q + 1− j)(q + 2− j)

)
=

(
j + 1

2

)
+

(
q + 2− j

2

)
.

Hence

WT (Dj, V (P )) =
(

(q + 2) +

(
j + 1

2

)
+

(
q + 2− j

2

))
|Dj|

=
(

(q + 2) +

(
j + 1

2

)
+

(
q + 2− j

2

))
(ml+1−j − 2) .

In total, we have established that

W (T ) = WT (V (P )) +

dq/2e∑
j=1

WT (Dj) +
∑

1≤i<j≤dq/2e

WT (Di, Dj) +

dq/2e∑
j=1

WT (Dj, V (P ))

≥
(
q + 3

3

)
+

dq/2e∑
j=1

(ml+1−j − 2)(ml+1−j − 3)

+
∑

1≤i<j≤dq/2e

(ml+1−i − 2)(ml+1−j − 2)(2 + j − i)

+

dq/2e∑
j=1

(
(q + 2) +

(
j + 1

2

)
+

(
q + 2− j

2

))
(ml+1−j − 2) .

(1)
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For q > 1 and T ∈ CS, equality holds in (1) only if Ci = Cj = ∅ for all 1 ≤ i < j ≤ dq/2e,

or if Cq+1−i = Cq+1−j = ∅ for all 1 ≤ i < j ≤ dq/2e. In other words, equality holds in (1)

for q > 1 only if T is isomorphic to the caterpillar T(ml − 2,ml−1 − 2, . . . ,m2 − 2).

On the other hand, for q = 1, the set CS contains only one element which is the tree

T(m2 − 2). This completes the proof of the theorem.

Below we give a simple example illustrating Theorem 4.

Example 1. It is easy to verify that S = (6(2), 7(4), 8(4), 9(3), 10(7), 11(5)) is a tree eccentric

sequence. Thus l = 6 and bl = 11. Using the formula in Theorem 4, one computes that

W (T(5−2, 7−2, 3−2, 4−2, 4−2)) = 1324 is the minimum Wiener index of a tree whose

eccentric sequence is S.

Remark 1. It is not hard to see from the proof of Theorem 4 that

T(0, 0, . . . , 0︸ ︷︷ ︸
bd/2c−1 0′s

, n− d− 1)

is the tree of order n and diameter d > 1 that has the minimum Wiener index; see also [45].

However, it is a challenging and open problem to determine an exact sharp upper bound

on the Wiener index of a graph (or tree) with prescribed order and diameter > 4. Even in

the special case of trees of diameter 5 or 6, only asymptotically sharp upper bounds are

known; see [24] and the references cited therein. Cambie [5] obtained an asymptotically

(as n→∞) sharp upper bound for the Wiener index of a graph with order n and diameter

at most d > 2, and also proved a somewhat analogous result for trees. This suggests that

the problem of finding the maximum Wiener index among all trees with a prescribed

eccentric sequence can be very difficult.

4 Maximum number of subtrees

We denote the n-vertex star by Sn. By N(T ) we mean the number of subtrees of a tree

T . For u ∈ V (T ), we denote by N(T )u those subtrees of T that contain u.

We begin with the following simple lemma, whose proof is left to the reader.

Lemma 5. Let t > 0 and n1, . . . , nt ≥ 0 be fixed integers. Then the function

F (x1, . . . , xt) = (2x1 − 1) · · · (2xt − 1) + (2n1−x1 − 1) · · · (2nt−xt − 1)
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defined by the inequalities 0 ≤ xj ≤ nj for all 1 ≤ j ≤ t, reaches its maximum only at

x1 = · · · = xt = 0, or at x1 = n1, . . . , xt = nt.

Theorem 6. Let S = (b
(m1)
1 , b

(m2)
2 , . . . , b

(ml)
l ) be a given tree eccentric sequence such that

m1 +m2 + · · ·+ml > 2. Then we have

N(T ) < N(T(ml − 2,ml−1 − 2, . . . ,m2 − 2))

for all T ∈ TS such that T is not isomorphic to T(ml− 2,ml−1− 2, . . . ,m2− 2). Further-

more,

N(T(ml − 2,ml−1 − 2, . . . ,m2 − 2)) =

(
bl
2

)
− 2(l − 2) +

l∑
j=2

mj

+

bl−2∑
p=0

∑
L⊆{0,1,...,p}

L6=∅

bbl/2c∑
j=1

∏
i∈L

j+i≤bbl/2c

(2aj+i − 1) ,

where

a1 = ml and aj = ml+1−j − 2 for all j 6= 1.

Proof. Let T ∈ TS be a tree that maximizes the number of subtrees. By mimicking the

proof of Theorem 4, we first show that T must be a caterpillar.

Claim 1: T is a caterpillar.

Suppose to the contrary that T is not a caterpillar. Let v0 and vd be two vertices at

distance d := bl in T , and denote by P = v0, v1, . . . , vd the path from v0 to vd in T . Then

P contains a vertex vj which has a neighbor u not on P , that is not a pendant vertex. We

fix vj and u. Clearly, we may assume that j ≥ 1
2
d. In order to prove Claim 1, we modify

T to obtain a tree T ′ with the same eccentric sequence but greater number of subtrees, a

contradiction to our choice of T .

Denote by U the set of vertices that are in a component of T − u not containing P .

Let L and R be the components of (T −U)− vjvj+1 containing vj and vj+1, respectively.

Define the tree T ′ as follows: Delete all edges uy with y ∈ NT (u) − {vj}, and add all

edges vj+1y with y ∈ NT (u)−{vj}. It was shown in the proof of Theorem 4 that S is the

eccentric sequence of T ′. Since T − U is isomorphic to T ′ − U , the number of subtrees of

T −U equals the number of subtrees of T ′ −U . Also the number of subtrees with vertex

set contained in U is the same for T and T ′. Thus in order to prove that N(T ′) > N(T ),

it suffices to compare the number of subtrees of T that contain both a vertex in U and a
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vertex of T −U with the number of subtrees of T ′ that contain both a vertex in U and a

vertex of T ′ − U . It is easy to see that the following hold:

N(T − U)u = 1 + N(L− u)vj(1 + N(R)vj+1
) ,

N(T ′ − U)vj+1
= N(R)vj+1

(1 + 2 N(L− u)vj) .

The difference between these two quantities gives

N(T ′ − U)vj+1
− N(T − U)u = (N(L− u)vj + 1)(N(R)vj+1

− 1) > 0 ,

where the strict inequality is due to the fact that R contains more than one element.

Let B be the tree induced by U ∪ {u} in T , and B′ the tree induced by U ∪ {vj+1} in

T ′. Every subtree of T that involves both a vertex in U and a vertex of T − U can be

obtained by merging at u a u-containing subtree of B and a u-containing subtree of T−U .

Similarly, every subtree of T ′ that involves both a vertex in U and a vertex of T ′ − U

can be obtained by merging at vj+1 a vj+1-containing subtree of B′ and a vj+1-containing

subtree of T ′ − U . Thus by N(B)u = N(B′)vj+1
, we get

N(T ′)− N(T ) = N(B′)vj+1
· N(T ′ − U)vj+1

− N(B)u · N(T − U)u

= N(B)u[N(T ′ − U)vj+1
− N(T − U)u] > 0 ,

which is a contradiction to the maximality of T . Hence, every vertex of T not lying on P

must be adjacent to some vertex of P , that is T must be a caterpillar.

We now derive the structure of the specific caterpillar whose eccentric sequence is S

and that has the maximum number of subtrees. Note that N(Sn) = 2n−1 +n− 1 for all n.

We shall frequently make use of Lemma 5. Fix a caterpillar T ∈ CS and let P = v1, . . . , vq

be the backbone of T . Fix vertices v0 ∈ N (v1)− {v2} and vq+1 ∈ N (vq)− {vq−1}. Then

v0, v1, . . . , vq+1 is a longest path of T . For every i ∈ {1, 2, . . . , q} let Ci be the set of

pendant vertices adjacent to vi. For 1 ≤ j ≤ d q
2
e define Dj to be the set Cj ∪Cq+1−j. For

1 ≤ j ≤ dq/2e the set Dj contains all vertices of eccentricity q+ 2− j, except two vertices

that are on P in the case where j /∈ {1, q}. Thus by S = (b
(m1)
1 , b

(m2)
2 , . . . , b

(ml)
l ) being the

eccentric sequence of T , we have

|D1| = ml and |Dj| = ml+1−j − 2 for all j 6= 1.

Moreover, the sets V (P ), D1, D2, . . . , Dd q
2
e form a partition of V (T ). Note that this par-

tition is slightly different from the partition of V (T ) given in the proof of Theorem 4.
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If A1, A2, . . . , Ak are subsets of V (T ), then we write NT (A1) for the sum of the number

of subtrees induced in T by all (non-empty) subsets of A1, and NT (A1, A2, . . . , Ak) for the

sum of the number of subtrees induced in T by all subsets Y = Y1 ∪ Y2 ∪ · · · ∪ Yk where

for every j ∈ {1, 2, . . . , k}, Yj is a non-empty subset of Aj. With this notation, we get

N(T ) = NT (V (P )) +

dq/2e∑
j=1

NT (Dj) +

dq/2e∑
k=2

∑
1≤i1<···<ik≤dq/2e

NT (Di1 , . . . , Dik)

+

dq/2e∑
k=1

∑
1≤i1<···<ik≤dq/2e

NT (Di1 , . . . , Dik , V (P )) .

(2)

Clearly,

NT (V (P )) = N(P ) =

(
q + 1

2

)
and NT (Dj) = |Dj|.

For a subtree B of T to contain both a vertex in Ci and a vertex in Cj for i < j, it is

necessary for B to contain the entire path vi, vi+1, . . . , vj. Thus

NT (Di1 , . . . , Dik) = 0 for all i1 < · · · < ik such that k > 1.

Moreover, only those subsets of V (P ) that induce a path in T contribute to the quan-

tity NT (Di1 , . . . , Dik , V (P )). In addition, for given integers k ≥ 1, p ≥ 0 and a set

{vj, vj+1, . . . , vj+p} ⊆ V (P ), only those indices i1, . . . , ik such that

it ∈ {j, j + 1, . . . , j + p} or iq+1−t ∈ {j, j + 1, . . . , j + p} for all 1 ≤ t ≤ k

contribute to NT (Di1 , . . . , Dik , {vj, vj+1, . . . , vj+p}). Therefore, we have

dq/2e∑
k=1

∑
1≤i1<···<ik≤dq/2e

NT (Di1 , . . . , Dik , {vj, vj+1, . . . , vj+p}∗)

=
∑

L⊆{0,1,...,p}
L 6=∅

∏
i∈L

(2|Cj+i| − 1)

for all 0 ≤ p ≤ q−1 and all 1 ≤ j ≤ q−p, where by NT (Di1 , . . . , Dik , {vj, vj+1, . . . , vj+p}∗)

we mean the number of those subtrees that involve entirely vj, vj+1, . . . , vj+p. Hence, the

last sum in (2) can be obtained by summing∑
L⊆{0,1,...,p}

L6=∅

∏
i∈L

(2|Cj+i| − 1)

over all possible values of p and j, namely

dq/2e∑
k=1

∑
1≤i1<···<ik≤dq/2e

NT (Di1 , . . . , Dik , V (P )) =

q−1∑
p=0

∑
L⊆{0,1,...,p}

L6=∅

q−max{l: l∈L}∑
j=1

∏
i∈L

(2|Cj+i| − 1) .
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Furthermore, by fixing p, L, j, we get∏
i∈L

(2|Cj+i| − 1) +
∏
i∈L

(2|Cq+1−j−i| − 1) ≤
∏
i∈L

(2|Dj+i| − 1)

if j + max{l : l ∈ L} ≤ dq/2e and j + l′ 6= dq/2e when q is odd and L = {l′}. Likewise,

by fixing p, L, j, we get∏
i∈L

(2|Cj+i| − 1) +
∏
i∈L

(2|Cq+1−j−i| − 1)

=

( ∏
i∈L

j+i≤q+1−j−max{l: l∈L}

(2|Cj+i| − 1) +
∏
i∈L

j+i≤q+1−j−max{l: l∈L}

(2|Cq+1−j−i| − 1)

)
∏
i∈L

q+2−j−max{l: l∈L}≤j+i≤j+max{l: l∈L}−1

(2|Cj+i| − 1)

≤
∏
i∈L

j+i≤q+1−j−max{l: l∈L}

(2|Dj+i| − 1)
∏
i∈L

q+2−j−max{l: l∈L}≤j+i≤dq/2e

(2|Dj+i| − 1)

=
∏
i∈L

j+i≤dq/2e

(2|Dj+i| − 1)

if j + max{l : l ∈ L} > dq/2e. In every case, equality holds only if Cj+i = ∅ for all i ∈ L

such that j + i ≤ bq/2c, or if Cq+1−j−i = ∅ for all i ∈ L such that j + i ≤ bq/2c.

It follows that

dq/2e∑
k=1

∑
1≤i1<···<ik≤dq/2e

NT (Di1 , . . . , Dik , V (P )) ≤
q−1∑
p=0

∑
L⊆{0,1,...,p}

L6=∅

dq/2e∑
j=1

∏
i∈L

j+i≤dq/2e

(2|Dj+i| − 1) ,

with equality only if C1 = · · · = Cbq/2c = ∅, or Cdq/2e+1 = · · · = Cq = ∅. Recall that

q + 1 = bl, bl − b1 = bbl/2c = dq/2e and that

|D1| = ml and |Dj| = ml+1−j − 2 for all j 6= 1.

In total, we have established that

N(T ) = NT (V (P )) +

dq/2e∑
j=1

NT (Dj) +

dq/2e∑
k=1

∑
1≤i1<···<ik≤dq/2e

NT (Di1 , . . . , Dik , V (P ))

≤
(
q + 1

2

)
+

dq/2e∑
j=1

|Dj|+
q−1∑
p=0

∑
L⊆{0,1,...,p}

L6=∅

dq/2e∑
j=1

∏
i∈L

j+i≤dq/2e

(2|Dj+i| − 1) ,

with equality for T ∈ CS only if T is isomorphic to the caterpillar T(ml − 2,ml−1 −

2, . . . ,m2 − 2). This completes the proof of the theorem.
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Below we give a simple example illustrating Theorem 6.

Example 2. Consider the tree eccentric sequence S = (3(1), 4(7), 5(2), 6(3)). We have l = 4

and bl = 6. Using the formula in Theorem 6, one computes that N
(
T(m4−2,m3−2,m2−

2)
)

= 790 is the maximum number of subtrees of a tree whose eccentric sequence is S.

Remark 2. It is not hard to see from the proof of Theorem 6 that

T(0, 0, . . . , 0︸ ︷︷ ︸
bd/2c−1 0′s

, n− d− 1)

is the tree of order n and diameter d > 1 that has the maximum number of subtrees; see

also [7]. However, it is an open problem to determine an exact sharp lower bound on the

number of subtrees with order n and diameter d > 5. This suggests that the problem

of finding the minimum number of subtrees among all trees with a prescribed eccentric

sequence can be very difficult.

5 Concluding remarks

Let G be a connected graph whose vertex and edge sets are V (G) and E(G), respec-

tively. For u ∈ V (G) and e = vw ∈ E(G), the distance between vertex u and edge e is

min{d(u, v), d(u,w)}. For f ∈ E(G), the distance (as defined in [19]) between edges e and

f is min{d(v, f), d(w, f)}. There are some variants of the Wiener index of a graph, which

include the edge Wiener index We, the vertex-edge Wiener index Wve, the Schultz index

(also known as the degree distance) W+, and the Gutman index W−. They are defined as

We(G) =
∑

{e,f}⊆E(G)

d(e, f) , Wve(G) =
1

2

∑
v∈V (G)
e∈E(G)

d(v, e) ,

W+(G) =
∑

{u,v}⊆V (G)

d(u, v)(deg(u) + deg(v)) , W−(G) =
∑

{u,v}⊆V (G)

d(u, v) deg(u) deg(v) ,

where deg(u) denotes the degree of u in G. In [15, 19, 20] it was shown that for n-vertex

trees T , all the above invariants are closely related to the Wiener index, namely that

We(T ) = W (T )− (n− 1)2 , Wve(T ) = W (T )− n(n− 1)/2 ,

W+(T ) = 4W (T )− n(n− 1) , W−(T ) = 4W (T )− (n− 1)(2n− 1) .

We mention that in their paper [39] Xu et al. determined in the class of all n-vertex

graphs with m edges both the minimum Schultz index for m ≤ 2n− 4, and the minimum
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Gutman index for m = n +
(
k
2

)
− k and 2 ≤ k ≤ n− 1. In each case, they also obtained

the extremal graph structures.

There is yet another measure of distance between two edges. In [12] the distance

d′(e, f) between edges e and f of G is defined to be the distance between the corresponding

vertices in the line graph of G. It is easy to see that d′(e, f) = d(e, f) + 1 and that for

n-vertex trees T ,

W ′
e(T ) :=

∑
{e,f}⊆E(G)

d′(e, f) = We(T ) + n− 1 .

Corollary 7. Let I(.) ∈ {W ′
e(.),We(.),Wve(.),W+(.),W−(.)}. Then T(ml − 2,ml−1 −

2, . . . ,m2 − 2) is the unique tree with eccentric sequence S = (b
(m1)
1 , b

(m2)
2 , . . . , b

(ml)
l ) that

minimizes I(.).

On the other hand, there are other Wiener-type indices which are in no relation

with the Wiener index. Some of them were shown to correlate better with various

physico-chemical properties of certain molecules and molecular structures than the clas-

sical Wiener index [16,27]. Two such variants include

HW (G) =
∑

u,v⊆V (G)

(
1 + d(u, v)

2

)
and W (G;λ) =

∑
u,v⊆V (G)

d(u, v)λ,

where λ 6= 0 is any given real number. It seems (experimentally) that given the eccentric

sequence, the tree T(ml − 2,ml−1 − 2, . . . ,m2 − 2) minimises both HW (G) and W (G;λ)

for every λ ≥ 1. The authors are continuing this investigation.

Acknowledgments: The work is supported by the National Research Foundation (NRF)

of South Africa, grant number 118521.

References
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