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Abstract

The kth Steiner (revised) Szeged index is defined from Steiner distance, in order
to generalize the (revised) Szeged index. In this paper, we obtain some upper and
lower bounds on the kth Steiner (revised) Szeged index of graphs. Then we give
Nordhaus-Gaddum-type results of the kth Steiner (revised) Szeged index of graphs.
Moreover, we determine a formula on rSzk(G) for trees in general, and present a
lower bound on the third Steiner Szeged index for trees of order n and characterize
the graphs which attained the bound. Finally, we prove that the path Pn gives the
maximum value of the third Steiner Szeged index among the star-like trees of order
n ≥ 10.

1 Introduction

All graphs considered in this paper are simple, finite and undirected. Let G be a connected

graph with vertex set V (G) and edge set E(G). The degree of a vertex v in G, denoted

by dG(v), is equal to |NG(v)|, where NG(v) = {u : uv ∈ E(G)}. For u, v ∈ V (G), d(u, v)

denotes the distance between vertices u and v. The Wiener index of G is defined as

W (G) =
∑
{u,v}⊆V

d(u, v).
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This topological index has been extensively studied in the mathematical literature [9,10].

Let e = uv be an edge of G, and define three sets as follows:

Nu(e) =
{
w ∈ V (G) : d(u,w) < d(v, w)

}
,

Nv(e) =
{
w ∈ V (G) : d(v, w) < d(u,w)

}
,

N0(e) =
{
w ∈ V (G) : d(u,w) = d(v, w)

}
.

Thus,
{
Nu(e), Nv(e), N0(e)

}
is a partition of the vertices of G with respect to e. The

number of vertices in Nu(e), Nv(e) and N0(e) are denoted by nu(e), nv(e) and n0(e), re-

spectively. A long time known property of the Wiener index is the formula [21]:

W (G) =
∑
e=uv

nu(e)nv(e),

which is applicable for trees. Using the above formula, Gutman [8] introduced a graph

invariant named the Szeged index as an extention of the Wiener index and defined it by

Sz(G) =
∑
e=uv

nu(e)nv(e).

Randić [19] observed that the Szeged index does not take into account the contributions

of the vertices at equal distances from the endpoints of an edge, and so he conceived a

modified version of the Szeged index which is named the revised Szeged index. The revised

Szeged index of a connected graph G is defined as

rSz(G) =
∑
e=uv

(
nu(e) +

n0(e)

2

)(
nv(e) +

n0(e)

2

)
.

Some properties and applications of the Szeged index and the revised Szeged index have

been reported in [2, 6, 11,17,18,20,22].

The Steiner distance dG(S) of a set S of vertices in a connected graph G is the

minimum size among all connected subgraphs of G containing S. That is, dG(S) =

min
{
|E(T )|, S ⊆ V (T )

}
, where T is a subtree of G. In [12], Li et al. proposed a gener-

alization of the concept of Wiener index, using Steiner distance. The kth Steiner Wiener

index SWk(G) of a connected graph G is defined by

SWk(G) =
∑

S ⊆ V (G)
|S| = k

dG(S).

Let e = uv be an edge of graph G. For an integer k (2 ≤ k ≤ |V (G)| − 1), we can

similarly construct three distinct kinds of (k − 1)-subsets of V (G) as follows:

Nu(e; k) =
{
S ⊆ V (G), |S| = k − 1 : dG(S ∪ {u}) < dG(S ∪ {v}), u, v /∈ S

}
,
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Nv(e; k) =
{
S ⊆ V (G), |S| = k − 1 : dG(S ∪ {v}) < dG(S ∪ {u}), u, v /∈ S

}
,

N0(e; k) =
{
S ⊆ V (G), |S| = k − 1 : dG(S ∪ {u}) = dG(S ∪ {v}), u, v /∈ S

}
.

The cardinality of Nu(e; k), Nv(e; k) and N0(e; k) are denoted by nu(e; k), nv(e; k) and

n0(e; k), respectively. Evidently, if n is the number of vertices of the graph G, then

nu(e; k) + nv(e; k) + n0(e; k) =

(
n− 2

k − 1

)
.

As a natural counterpart of the generalized (revised) Szeged index, Ghorbani et al.

introduced the concept of the Steiner (revised) Szeged index in [7]. Then the kth Steiner

Szeged index Szk(G) and the kth Steiner revised Szeged index rSzk(G) of a graph G are

defined as

Szk(G) =
∑
e=uv

(
nu(e; k) + 1

)(
nv(e; k) + 1

)
and

rSzk(G) =
∑
e=uv

(
nu(e; k) +

n0(e; k)

2
+ 1

)(
nv(e; k) +

n0(e; k)

2
+ 1

)
,

respectively. If k = 2, then Sz2(G) = Sz(G) and rSz2(G) = rSz(G).

The results on the Steiner Wiener index, Steiner degree distance, Steiner Gutman

index and the kth Steiner (revised) Szeged index are very limited, some basic results can

be found in [1, 5, 7, 12–16]. We denote by Sn and Pn, the star and path on n vertices,

respectively, throughout this paper. By S(n1, n2, . . . , nq) we denote the starlike tree

which has a vertex v1 of degree q ≥ 3 and which has the property

S(n1, n2, . . . , nq)− v1 = Pn1 ∪ Pn2 ∪ . . . ∪ Pnq .

This tree has n1 + n2 + · · · + nq + 1 = n vertices. Clearly, the parameters n1, n2, . . . , nq

determine the starlike tree up to isomorphism. In what follows, it will be assumed that

n1 ≥ n2 ≥ · · · ≥ nq ≥ 1. We say that the starlike tree S(n1, n2, . . . , nq) has q branches,

the lengths of which are n1, n2, . . . , nq respectively. In particular, S(1, 1, . . . , 1︸ ︷︷ ︸
n−1

) ∼= Sn

and S(n− n2 − 1, n2, 0, . . . , 0︸ ︷︷ ︸
q

) ∼= Pn. Other undefined notations and terminology on the

graph theory can be found in [3].

The rest of this paper is organized as follows. We give some upper and lower bounds

on Szk(G) and rSzk(G) in Section 2. In Section 3, we obtain Nordhaus-Gaddum-type

results on rSzk(G) + rSzk(G). In Section 4, we determine a formula on rSzk(G) for
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trees in general and give a lower bound on Sz3(T ) in terms of n for any tree T and

characterize the graphs which attained the bound. Finally, we prove that the path Pn

gives the maximum value of Sz3 among the star-like trees of order n ≥ 10. In Section 5,

we add concluding remarks and future work.

2 Upper and lower bounds on the Steiner (revised)

Szeged index

In this section we give some upper and lower bounds on the Steiner (revised) Szeged index

of graphs. We begin this section with a definition that is used in our later proofs. Let

e = uv be an edge of G, we define

D(u|e) =
∑

S ⊆ V (G)
|S| = k − 1
u, v /∈ S

dG(S ∪ {u}).

Lemma 1. Let G be a connected graph and e = uv be an edge of G. Then nu(e; k) =

nv(e; k) if and only if D(u|e) = D(v|e).

Proof. Consider all the (k − 1)-subsets of V (G)\{u, v}. Let

Nu(e; k) = {S1, S2, . . . , Sp}, Nv(e; k) = {T1, T2, . . . , Tq}, N0(e; k) = {R1, R2, . . . , Rr}.

Now,

D(u|e) =
∑

S ⊆ V (G)
|S| = k − 1
u, v /∈ S

dG(S ∪ {u})

=

p∑
i=1

dG(Si ∪ {u}) +

q∑
i=1

dG(Ti ∪ {u}) +
r∑

i=1

dG(Ri ∪ {u})

=

p∑
i=1

dG(Si ∪ {u}) +

q∑
i=1

[
dG(Ti ∪ {v}) + 1

]
+

r∑
i=1

dG(Ri ∪ {u})

=q +

p∑
i=1

dG(Si ∪ {u}) +

q∑
i=1

dG(Ti ∪ {v}) +
r∑

i=1

dG(Ri ∪ {u}).

Similarly, we obtain

D(v|e) = p +

p∑
i=1

dG(Si ∪ {u}) +

q∑
i=1

dG(Ti ∪ {v}) +
r∑

i=1

dG(Ri ∪ {v}).

Since dG(Ri ∪ {u}) = dG(Ri ∪ {v}) (i = 1, . . . , r), from the above results, we obtain

D(u|e)−D(v|e) = q − p = nv(e; k)− nu(e; k)

and the result follows.
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Now, we give an upper bound of rSzk(G) and Szk(G) in terms of n and m.

Theorem 1. Let G be a connected graph of order n and size m. Then

rSzk(G) ≤ m

4

[(
n− 2

k − 1

)
+ 2

]2
with equality holding if and only if D(u|e) = D(v|e) for every edge e = uv in G.

Proof. Since n0(e; k) =
(
n−2
k−1

)
− nu(e; k)− nv(e; k), we have

rSzk(G) =
∑
e=uv

(
nu(e; k) +

n0(e; k)

2
+ 1

)(
nv(e; k) +

n0(e; k)

2
+ 1

)

=
∑
e=uv

((
n−2
k−1

)
+ nu(e; k)− nv(e; k) + 2

2

)((
n−2
k−1

)
− nu(e; k) + nv(e; k) + 2

2

)

=
1

4

∑
e=uv

[((
n− 2

k − 1

)
+ 2

)2

−
(
nu(e; k)− nv(e; k)

)2]

=
m

4

[(
n− 2

k − 1

)
+ 2

]2
− 1

4

∑
e=uv

(
nu(e; k)− nv(e; k)

)2
≤ m

4

[(
n− 2

k − 1

)
+ 2

]2
.

Moreover, the equality holds if and only if nu(e; k) = nv(e; k) for every edge e = uv in G.

By Lemma 1, the result follows.

Corollary 2. If G is (n− k + 1)-connected graph of order n and size m, then

rSzk(G) =
m

4

[(
n− 2

k − 1

)
+ 2

]2
.

Proof. Let e = uv be an edge of graph G. Since G is (n − k + 1)-connected, it follows

that for any S ⊆ V (G), |S| = k − 1 and u, v /∈ S, dG(S ∪ {u}) = dG(S ∪ {v}) = k − 1,

and hence nu(e; k) = nv(e; k) = 0. By Theorem 1, we get the required result.

Corollary 3. Let G be a connected graph of order n and size m. Then

Szk(G) ≤ m

4

[(
n− 2

k − 1

)
+ 2

]2
with equality holding if and only if D(u|e) = D(v|e) and n0(e; k) = 0 for every edge e = uv

in G.

Proof. From the definition, we have Szk(G) ≤ rSzk(G). The result follows from Theorem

1.
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Lemma 4. Let T be a tree of order n. Then T is a star graph if and only if n0(e; k) =

nu(e; k) = 0, nv(e; k) =
(
n−2
k−1

)
or n0(e; k) = nv(e; k) = 0, nu(e; k) =

(
n−2
k−1

)
for any edge

e = uv ∈ E(T ).

Proof. If T is a star graph, then every edge in E(T ) is a pendant edge. Obviously, we

have n0(e; k) = nu(e; k) = 0, nv(e; k) =
(
n−2
k−1

)
or n0(e; k) = nv(e; k) = 0, nu(e; k) =

(
n−2
k−1

)
.

Conversely, let n0(e; k) = nu(e; k) = 0, nv(e; k) =
(
n−2
k−1

)
or n0(e; k) = nv(e; k) = 0, nu(e; k)

=
(
n−2
k−1

)
for any edge e = uv ∈ E(T ). We have to prove that T is a star graph. By

contradiction, we prove this result. For this we assume that there exists a non-pendant

edge e = uv satisfying n0(e; k) = nu(e; k) = 0, nv(e; k) =
(
n−2
k−1

)
. By the definitions

of nu(e; k), nv(e; k) and n0(e; k), for every S ⊆ V (T ), |S| = k − 1, u, v /∈ S, we have

dT (S ∪ {v}) < dT (S ∪ {u}), that is, dT (S ∪ {v}) + 1 = dT (S ∪ {u}). Since e is a

non-pendant edge, then there exist two vertices w and x in T such that wu ∈ E(T )

and vx ∈ E(T ). For |S| = k − 1 ≥ 2, suppose that w, x ∈ S. Then dT (S ∪ {v}) =

dT (S ∪{u}) = dT (S ∪{v}) + 1, a contradiction. Otherwise, |S| = 1. Suppose that w ∈ S.

Then dT (S ∪ {v}) = 2 > 1 = dT (S ∪ {u}) = dT (S ∪ {v}) + 1, a contradiction. This

completes the proof of the result.

We now give a lower bound on rSzk(G) and Szk(G) of graph G.

Theorem 2. Let G be a connected graph of order n and size m. Then

rSzk(G) ≥ m

[(
n− 2

k − 1

)
+ 1

]
with equality holding if and only if n0(e; k) = nu(e; k) = 0, nv(e; k) =

(
n−2
k−1

)
or n0(e; k) =

nv(e; k) = 0, nu(e; k) =
(
n−2
k−1

)
for every edge e = uv in G.

Proof. By the proof of Theorem 1, we obtain

rSzk(G) =
1

4

∑
e=uv

[((
n− 2

k − 1

)
+ 2

)2

− (nu(e; k)− nv(e; k))2
]

≥ 1

4

∑
e=uv

[((
n− 2

k − 1

)
+ 2

)2

−
(
n− 2

k − 1

)2
]

= m

[(
n− 2

k − 1

)
+ 1

]
.

The equality holds if and only if n0(e; k) = nu(e; k) = 0, nv(e; k) =
(
n−2
k−1

)
or n0(e; k) =

nv(e; k) = 0, nu(e; k) =
(
n−2
k−1

)
for every edge e = uv in G.

Corollary 5. Let G be a connected graph of order n. Then

rSzk(G) ≥ (n− 1)

[(
n− 2

k − 1

)
+ 1

]
, (1)

with equality if and only if G ∼= Sn.
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Proof. Since G is connected, we have m ≥ n − 1. Using this with Theorem 2, we get

the result in (1). Moreover, the equality holds in (1) if and only if m = n − 1 and

n0(e; k) = nu(e; k) = 0, nv(e; k) =
(
n−2
k−1

)
, or n0(e; k) = nv(e; k) = 0, nu(e; k) =

(
n−2
k−1

)
for

every edge e = uv in G, that is, if and only if G ∼= Sn, by Lemma 4 and Theorem 2.

Theorem 3. Let G be a connected graph of order n with m edges and p pendant vertices.

Then

Szk(G) ≥ m + p

(
n− 2

k − 1

)
.

Proof. Let e = uv be an edge of graph G. If e is a pendant edge, then nv(e; k) =
(
n−2
k−1

)
,

nu(e; k) = 0 or nu(e; k) =
(
n−2
k−1

)
, nv(e; k) = 0. So, we obtain

Szk(G) =
∑
e=uv

(
nu(e; k) + 1

)(
nv(e; k) + 1

)
=

∑
e = uv

dG(u) = 1

or dG(v) = 1

[(
n− 2

k − 1

)
+ 1

]
+

∑
e = uv

dG(u) 6= 1 6= dG(v)

(
nu(e; k) + 1

)(
nv(e; k) + 1

)

≥ p

[(
n− 2

k − 1

)
+ 1

]
+ m− p = m + p

(
n− 2

k − 1

)
.

We now consider the difference between rSzk(G) and Szk(G).

Theorem 4. Let G be a connected graph of order n and size m. Then

rSzk(G)− Szk(G) ≤ m

4

[(
n− 2

k − 1

)
+ 4

](
n− 2

k − 1

)
with equality holding if and only if nu(e; k) = nv(e; k) = 0 for every edge e = uv in G.

Proof. By the definitions of rSzk(G) and Szk(G), we obtain

rSzk(G)

=
∑
e=uv

(
nu(e; k) +

n0(e; k)

2
+ 1

)(
nv(e; k) +

n0(e; k)

2
+ 1

)

=
∑
e=uv

(
nu(e; k) + 1

)(
nv(e; k) + 1

)
+
∑
e=uv

n0(e; k)

2

(
nu(e; k) + nv(e; k) + 2

)

+
∑
e=uv

n0(e; k)2

4
= Szk(G) +

1

2

∑
e=uv

n0(e; k)

((
n− 2

k − 1

)
+ 2− n0(e; k)

)

+
1

4

∑
e=uv

n0(e; k)2 = Szk(G) +
1

2

∑
e=uv

[
n0(e; k)

((
n− 2

k − 1

)
+ 2

)
− n0(e; k)2

2

]
.
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Since 0 ≤ n0(e; k) ≤
(
n−2
k−1

)
and f(x) = x

((
n−2
k−1

)
+ 2 − x

2

)
is an increasing function on

0 ≤ x ≤
(
n−2
k−1

)
, we obtain

rSzk(G)− Szk(G) ≤
∑
e=uv

[
1

2

(
n− 2

k − 1

)((
n− 2

k − 1

)
+ 2

)
− 1

4

(
n− 2

k − 1

)2
]

=
m

4

[(
n− 2

k − 1

)2

+ 4

(
n− 2

k − 1

)]
.

Moreover, the equality holding if and only if n0(e; k) =
(
n−2
k−1

)
for every edge e = uv in G,

that is, if and only if nu(e; k) = nv(e; k) = 0 for every edge e = uv in G.

3 Nordhaus-Gaddum-type results on

rSzk(G) + rSzk(G)

In this section we give Nordhaus-Gaddum-type results on the kth Steiner Szeged index

Szk(G) and the kth Steiner revised Szeged index rSzk(G) of graph G.

Theorem 5. Let G be a connected graph of order n with connected complement G. Then

(i)

n(n− 1)

2

[(
n− 2

k − 1

)
+ 1

]
≤ rSzk(G) + rSzk(G) ≤ n(n− 1)

8

[(
n− 2

k − 1

)
+ 2

]2
,

(ii)

(n− 1)2(n− 2)

2

[(
n− 2

k − 1

)
+ 1

]2
< rSzk(G) rSzk(G) ≤ n2(n− 1)2

256

[(
n− 2

k − 1

)
+ 2

]4
.

(2)

Proof. Let m and m be the number of edges of G and G, respectively. Then m + m =

n(n−1)
2

. Since both G and G are connected, we have m ≥ n− 1 and m ≥ n− 1. One can

easily obtain that

(n− 1)2(n− 2)

2
≤ mm = m

[
n(n− 1)

2
−m

]
≤ n2(n− 1)2

16
(3)

with left (or right) equality holds if and only if m = n−1 or m = (n−1)(n−2)
2

(or m = n(n−1)
4

).

By Theorems 1 and 2, we obtain

rSzk(G) + rSzk(G) ≤ 1

4
m

[(
n− 2

k − 1

)
+ 2

]2
+

1

4
m

[(
n− 2

k − 1

)
+ 2

]2

=
m + m

4

[(
n− 2

k − 1

)
+ 2

]2
=

n(n− 1)

8

[(
n− 2

k − 1

)
+ 2

]2
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and

rSzk(G) + rSzk(G) ≥ m

[(
n− 2

k − 1

)
+ 1

]
+ m

[(
n− 2

k − 1

)
+ 1

]

=
n(n− 1)

2

[(
n− 2

k − 1

)
+ 1

]
.

Thus we get the result in (i). Similarly, by Theorems 1 and 2 with (3), we get the required

result in (ii).

By Lemma 4 and Theorem 2 with equality in (3), one can easily see that the left equality

holds in (2) if and only if G ∼= Sn or G ∼= Sn. Since both G and G are connected, the left

inequality in (2) is strict. This completes the proof of the theorem.

Theorem 6. Let G be a connected graph of order n with p pendant vertices. Then

n(n− 1)

2
+ p

(
n− 2

k − 1

)
≤ Szk(G) + Szk(G) ≤ n(n− 1)

8

[(
n− 2

k − 1

)
+ 2

]2
.

Proof. From Szk(G) ≤ rSzk(G) with Theorem 5, the upper bound is obvious. Let p be

the number of pendant vertices in G. Since m+m = n(n−1)
2

(m is the number of edges in

G), by Theorem 3, we obtain

Szk(G) + Szk(G) ≥ m + p

(
n− 2

k − 1

)
+ m + p

(
n− 2

k − 1

)

=
n(n− 1)

2
+ (p + p)

(
n− 2

k − 1

)
≥ n(n− 1)

2
+ p

(
n− 2

k − 1

)
.

Corollary 6. Let G be a connected graph of order n. Then

Szk(G) + Szk(G) ≥ n(n− 1)

2
.

4 Results for trees

In [7], the authors give a formula of Szk(T ) for trees.

Lemma 7. [7] For a tree T ,

Szk(T ) =
∑

e=uv∈E(T )

((
nu(e)− 1

k − 1

)
+ 1

) ((
nv(e)− 1

k − 1

)
+ 1

)

where 2 ≤ k ≤ |V (T )| − 1.
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Similarly, we give a formula of rSzk(T ) for trees.

Theorem 7. Let T be a tree of order n. Then

rSzk(T ) =
n− 1

4

[(
n− 2

k − 1

)
+ 2

]2
− 1

4

∑
e=uv∈E(T )

[(
nu(e)− 1

k − 1

)
−
(
nv(e)− 1

k − 1

)]2
.

Proof. Let e = uv be an edge of T . It is easy to check that nu(e; k) =
(
nu(e)−1
k−1

)
and

nv(e; k) =
(
nv(e)−1
k−1

)
. By the proof of Theorem 1, we obtain

rSzk(T ) =
m

4

[(
n− 2

k − 1

)
+ 2

]2
− 1

4

∑
e=uv

(
nu(e; k)− nv(e; k)

)2

=
n− 1

4

[(
n− 2

k − 1

)
+ 2

]2
− 1

4

∑
e=uv

[(
nu(e)− 1

k − 1

)
−
(
nv(e)− 1

k − 1

)]2
.

A double star DS(p, q) is a tree obtained from two disjoint stars Sp+1 and Sq+1 by join

their center with an edge. If n is the number of vertices of DS(p, q), then n = p + q + 2.

Corollary 8. Let DS(p, q) be a double star. Then

rSzk(DS(p, q)) = (p + q + 1)

[(
p + q

k − 1

)
+ 1

]
+

1

4

(
p + q

k − 1

)2

− 1

4

[(
p

k − 1

)
−
(

q

k − 1

)]2
.

Proof. By Theorem 7 and the proof of Theorem 1, we obtain

rSzk(DS(p, q))

=
(n− 1)

4

[(
n− 2

k − 1

)
+ 2

]2
− 1

4

∑
e=uv

(
nu(e; k)− nv(e; k)

)2

=
(n− 1)

4

[(
n− 2

k − 1

)
+ 2

]2
− (n− 2)

4

(
n− 2

k − 1

)2

− 1

4

[(
p

k − 1

)
−
(

q

k − 1

)]2

= (p + q + 1)

[(
p + q

k − 1

)
+ 1

]
+

1

4

(
p + q

k − 1

)2

− 1

4

[(
p

k − 1

)
−
(

q

k − 1

)]2
.

We now give a lower bound on Sz3(T ) of any tree of order n and characterize extremal

trees. For this we need the following results.

Lemma 9. For positive integers n and p, 3 ≤ p ≤ bn
2
c,((

n− p

2

)
+ 1

) ((
p− 2

2

)
+ 1

)
≤
((

n− p− 1

2

)
+ 1

) ((
p− 1

2

)
+ 1

)
,

with equality if and only if n = 6, p = 3.
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Proof. Now,((
n− p− 1

2

)
+ 1

) ((
p− 1

2

)
+ 1

)
−
((

n− p

2

)
+ 1

) ((
p− 2

2

)
+ 1

)

=

(
(n− p− 1)(n− p− 2)

2
+ 1

) (
(p− 1)(p− 2)

2
+ 1

)
−
(

(n− p)(n− p− 1)

2
+ 1

)

×
(

(p− 2)(p− 3)

2
+ 1

)

=
(n− p− 1)(n− p− 2)(p− 1)(p− 2)− (n− p)(n− p− 1)(p− 2)(p− 3)

4

−(p− 2)(p− 3) + (n− p)(n− p− 1)− (p− 1)(p− 2)− (n− p− 1)(n− p− 2)

2

=
(n− p− 1)(p− 2)(n− 2p + 1)

2
− (n− 2p + 1)

=
(n− 2p + 1)

2

[
(n− p− 1)(p− 2)− 2

]
≥ 0

as 3 ≤ p ≤ bn
2
c. This proves the result.

Corollary 10. For any positive integer n ≥ 7,(
n− 3

2

)
+ 1 < 2

((
n− 4

2

)
+ 1

)
< 4

((
n− 5

2

)
+ 1

)
< · · ·

<

((
dn
2
e

2

)
+ 1

) ((
bn
2
c − 2

2

)
+ 1

)
<

((
dn
2
e − 1

2

)
+ 1

) ((
bn
2
c − 1

2

)
+ 1

)
.

Proof. Putting p = 3, 4, . . . , bn
2
c in Lemma 9, we get the required result.

Lemma 11. For positive integer n ≥ 9,(
n− 3

2

)
+ 1 <

(
n− 2

2

)
+ 1 ≤ 2

((
n− 4

2

)
+ 1

)
with right equality holding if and only if n = 9.

Let S ′n be a tree of order n with center vertex v such that T\{v} = bn
2
cK2 (n is odd) or

T\{v} = bn−1
2
cK2 ∪K1 (n is even). For n ≤ 7, one can easily check that

Sz3(T ) ≥
n−1∑
i=1

((
i− 1

2

)
+ 1

)((
n− i− 1

2

)
+ 1

)
with equality if and only if T ∼= Pn. For n = 8, we have Sz3(T ) ≥ 97 with equality if and

only if T ∼= S(2, 2, 2, 1). We are now ready to give a lower bound on Sz3(T ) in terms of

n when n ≥ 9.
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Theorem 8. Let T be a tree of order n ≥ 9. Then

Sz3(T ) ≥
⌈n− 1

2

⌉((n− 2

2

)
+ 1

)
+
⌊n− 1

2

⌋((n− 3

2

)
+ 1

)
with equality holding if and only if T ∼= S ′n.

Proof. Let p be the number of pendant edges in T . Let q be the number of edges e = uv

such that nu(e) = 2, nv(e) = n− 2 or nu(e) = n− 2, nv(e) = 2. Since T is a tree, we have

q ≤ p, that is, q ≤ bn−1
2
c. First we assume that p + q = n− 1. In this case we must have

p ≥ dn−1
2
e and q ≤ bn−1

2
c. By Lemmas 7 and 11, we obtain

Sz3(T ) = p

((
n− 2

2

)
+ 1

)
+ q

((
n− 3

2

)
+ 1

)

≥
⌈n− 1

2

⌉((n− 2

2

)
+ 1

)
+
⌊n− 1

2

⌋((n− 3

2

)
+ 1

)
= Sz3(S

′
n)

with equality holding if and only if p −
⌈
n−1
2

⌉
=
⌊
n−1
2

⌋
− q = 0, that is, if and only if

T ∼= S ′n.

Next we assume that p + q < n− 1. By Lemmas 7 and 11 and Corollary 10, we obtain

Sz3(T ) ≥ p

((
n− 2

2

)
+ 1

)
+ q

((
n− 3

2

)
+ 1

)
+ 2(n− 1− p− q)

((
n− 4

2

)
+ 1

)

> p

((
n− 2

2

)
+ 1

)
+ q

((
n− 3

2

)
+ 1

)
+

(⌈n− 1

2

⌉
− p

) ((
n− 2

2

)
+ 1

)

+

(⌊n− 1

2

⌋
− q

) ((
n− 3

2

)
+ 1

)

=
⌈n− 1

2

⌉((n− 2

2

)
+ 1

)
+
⌊n− 1

2

⌋((n− 3

2

)
+ 1

)
= Sz3(S

′
n).

This completes the proof of the theorem.

Let v`+1 be a vertex in a tree T with at least two vertices and suppose that two new

paths P : v`+1v`v`−1 . . . v2v1 and Q : v`+1v`+2v`+3 . . . vk+`vk+`+1 of lengths `, k (k ≥ ` ≥

1), respectively, are attached to T at v`+1, to form a new tree Tk, `, where v1v2 . . . v` and

v`+2v`+3 . . . vk+`+1 are distinct new vertices. Let Tk+1, `−1 = Tk, ` − v1v2 + vk+`+1v1. Thus

we have

Transformation A: Tk, ` −→ Tk+1, `−1.

Let |V (T )| = n− k − `. Then we have |V (Tk+1, `−1)| = |V (Tk, `)| = n.
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Lemma 12. Let T be a tree with at least two vertices and n ≥ 10. Also let Tk, ` and

Tk+1, `−1 be the trees defined as above. If k ≥ 2, then

Sz3(Tk, `) < Sz3(Tk+1, `−1).

Proof. Now,

Sz3(Tk+1, `−1)− Sz3(Tk, `)

=
∑

e=uv∈E(Tk+1, `−1)

((
nu(e)− 1

2

)
+ 1

)((
nv(e)− 1

2

)
+ 1

)

−
∑

e=uv∈E(Tk, `)

((
nu(e)− 1

2

)
+ 1

)((
nv(e)− 1

2

)
+ 1

)

=

((
k

2

)
+ 1

)((
n− k − 2

2

)
+ 1

)
−
((

`− 1

2

)
+ 1

)((
n− `− 1

2

)
+ 1

)
. (4)

Since n ≥ 10, by Corollary 10 and Lemma 11, we obtain(
n− 3

2

)
+ 1 <

(
n− 2

2

)
+ 1 < 2

((
n− 4

2

)
+ 1

)
< 4

((
n− 5

2

)
+ 1

)
< · · ·

<

((
dn
2
e

2

)
+ 1

) ((
bn
2
c − 2

2

)
+ 1

)
<

((
dn
2
e − 1

2

)
+ 1

) ((
bn
2
c − 1

2

)
+ 1

)
.

Again since k ≥ 2, k ≥ ` ≥ 1 and k + ` ≤ n− 2, using the above result, we get((
k

2

)
+ 1

)((
n− k − 2

2

)
+ 1

)
>

((
`− 1

2

)
+ 1

)((
n− `− 1

2

)
+ 1

)
.

Using this in (4), we obtain Sz3(Tk+1, `−1) > Sz3(Tk, `).

T1
T2

Figure 1. Two trees T1 and T2.

For n ≤ 8, one can easily check that Sz3(T ) ≤ (n2−5n+8)(n−1)
2

with equality if and only if

T ∼= Sn or T ∼= DS(3, 3) (n = 8). For n = 9, we have Sz3(T ) ≤ 188 with equality if and

only if T ∼= T1 or T ∼= T2 (see, Fig. 1). We are now ready to give an upper bound on

Sz3(T ) in terms of n when n ≥ 10.
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Theorem 9. Let S(n1, n2, . . . , nq) be a starlike tree of order n ≥ 10. Then

Sz3

(
S(n1, n2, . . . , nq)

)
≤

n−1∑
i=1

((
i− 1

2

)
+ 1

)((
n− i− 1

2

)
+ 1

)
with equality holding if and only if S(n1, n2, . . . , nq) ∼= Pn.

Proof. For S(n1, n2, . . . , nq) ∼= Pn,

Sz3

(
S(n1, n2, . . . , nq)

)
=

n−1∑
i=1

((
i− 1

2

)
+ 1

)((
n− i− 1

2

)
+ 1

)
and hence the equality holds. Otherwise, S(n1, n2, . . . , nq) � Pn. We consider the fol-

lowing two cases:

Case 1 : n1 = 1. We have S(n1, n2, . . . , nq) ∼= Sn. Since n ≥ 10, we obtain

Sz3(Pn)− Sz3(Sn)

=
n−1∑
i=1

((
i− 1

2

)
+ 1

)((
n− i− 1

2

)
+ 1

)
− (n− 1)

((
n− 2

2

)
+ 1

)

=
n−5∑
i=5

[((
i− 1

2

)
+ 1

)((
n− i− 1

2

)
+ 1

)
−
((

n− 2

2

)
+ 1

)]
− 2

[(
n− 2

2

)

−
(
n− 3

2

)]
+ 2

[
2

(
n− 4

2

)
+ 1−

(
n− 2

2

)]
+ 2

[
4

(
n− 5

2

)
+ 3−

(
n− 2

2

)]

=
n−5∑
i=5

[((
i− 1

2

)
+ 1

)((
n− i− 1

2

)
+ 1

)
−
((

n− 2

2

)
+ 1

)]

−2(n− 3) +
[
(n− 6)(n− 7)− 6

]
+ 3

[
(n− 6)(n− 7)− 2

]
=

n−5∑
i=5

[((
i− 1

2

)
+ 1

)((
n− i− 1

2

)
+ 1

)
−
((

n− 2

2

)
+ 1

)]

+ 4
[
(n− 6.5)(n− 7)− 5

]
> 0

as each term inside the bracket is greater than 0. Hence Sz3(Pn) > Sz3(Sn).

Case 2 : n1 > 1. Since n ≥ 10, by Lemma 12, we obtain Sz3

(
S(n1, n2, . . . , nq)

)
<

Sz3

(
S(n1 + 1, n2, . . . , nq − 1)

)
< · · · < Sz3

(
S(n1 + nq, n2, . . . , nq−1, 0)

)
< · · · <

Sz3

(
S(n − n2 − 2, n2, 1, 0, . . . , 0)

)
< Sz3

(
S(n − n2 − 1, n2, 0, 0, . . . , 0)

)
= Sz3(Pn).

This completes the proof of the theorem.
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5 Concluding remarks and future work

In this paper we presented some upper and lower bounds on Szk(G) and rSzk(G). The

result in Lemma 4 presented among the trees of order n. We believe that the following

conjecture is true:

Conjecture 13. Let G be a connected graph of order n. Then G is a star graph if and only

if n0(e; k) = nu(e; k) = 0, nv(e; k) =
(
n−2
k−1

)
or n0(e; k) = nv(e; k) = 0, nu(e; k) =

(
n−2
k−1

)
for

any edge e = uv ∈ E(G).

Also we obtain Nordhaus-Gaddum-type results on rSzk(G) + rSzk(G) and Szk(G) +

Szk(G). Moreover, we determined a formula on rSzk(G) for trees in general. Using this

result we proved that S ′n gives the minimum value of Sz3 among the trees T of order n.

Finally, we prove that the path Pn gives the maximum value of Sz3 among the star-like

trees of order n ≥ 10. So it is natural to ask the following problem:

Problem 14. Which graph gives the maximum value of Sz3(T ) among the trees T of

order n.
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