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Abstract

Random graphs play an important role in the study of graph theory. The two

most common models are G(n, p) and G(n,m) random graphs. In this paper, we

first introduce a graphic polynomial analogous to the degree sequence polynomial

and use it to compute the expected values of generalized first Zagreb indices for

G(n, p) random graphs. Then we turn to G(n,m) random graphs and employ a

different method to compute the expected values of the first Zagreb index and

of the forgotten index. Using the same approach we also compute the expected
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values of the second Zagreb index for both considered classes of random graphs.

We validate our results by comparing them with results of numerical simulations

conducted over wide range of parameters.

1 Introduction

Let G be a graph with the vertex set V (G) and the edge set E(G). In this paper we

consider the simple graphs (graphs with no loops and no multiple edges). For a vertex

v ∈ V (G), the degree of v is denoted by d(v). Adjacency matrix of a graph G of order n,

A = [aij], is an n× n matrix, where aij = 1 if vivj ∈ E(G), and aij = 0, otherwise.

The study of random graphs is one of the most important areas of graph theory.

Random graphs have found many applications in natural and social sciences. For example,

they are used as a standard null model in simulating many physical processes on graphs

and networks, see [21, 22]. For some early applications we refer the reader to [2, 7, 16]

and for more recent development see, for example, [1, 5, 15, 17, 18]. We find particularly

striking Kauffman’s speculations about the origins of life via the emergence of a giant

component in auto-catalytic chemical networks.

A random graph is obtained by starting with a set of isolated vertices and adding

successive edges between them at random. There are different random graph models

produced by different probability distributions on graphs. Most commonly studied is

the one denoted by G(n, p), consisting of all labeled graphs on n vertices in which every

possible edge occurs independently with probability 0 < p < 1, see [3,4]. Another natural

model of random graphs has the probability space G(n,m) consisting of all labeled graphs

on n vertices and m edges. The random graphs G(n,m) were studied by Erdős and Rényi

in their pioneering work on the evolution of random graphs [8,9]. Note that every random

graph in G(n, p) gives a random symmetric (0, 1)-matrix such that each entry above the

main diagonal with probability p is equal 1, and vice versa. Also, every random graph in

G(n,m) gives a random symmetric (0, 1)-matrix which contains exactly m entries 1 above

the main diagonal, and vice versa. Hence, the study of these random graphs is equivalent

to the study of related random symmetric (0, 1)-matrices.

A graph invariant is a numerical quantity which is uniquely determined for a graph and

is invariant under graph isomorphism. Graph invariants are extensively used in chemistry

as molecular descriptors. In chemical graph theory, several degree-based graph invariants
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have been considered and applied in the studies. Among them, the first Zagreb index M1

and the second Zagreb index M2 are among the oldest and most thoroughly investigated,

see [12, 20]. For a graph G they are defined as follows:

M1(G) =
∑

uv∈E(G)

d(u) + d(v) =
∑

v∈V (G)

d2(v) and M2(G) =
∑

uv∈E(G)

d(u)d(v) .

The sum of cubes of vertex degrees of a graph G in [10] is called the forgotten topological

index and denoted by F (G), i.e.,

F (G) =
∑

uv∈E(G)

d2(u) + d2(v) =
∑

v∈V (G)

d3(v) .

Also the physico-chemical applications of F (G) have been investigated in [10]. The for-

gotten index is just one of a series of similarly defined indices. The `-th generalized first

Zagreb index M `
1(G) is defined [19] as the sum of `-th powers of degrees of vertices of G,

M `
1(G) =

∑
u∈V (G)

d`u .

Hence, M1
1 (G) = 2|E(G)| and M2

1 (G) = M1(G), while for ` = 3 one obtains the forgotten

index F (G).

Let G be a graph with the degree sequence δ = d1 ≤ . . . ≤ dm = ∆. Its degree sequence

polynomial SG(x) is defined as the generating polynomial of its degree sequence in [25],

i.e., as

SG(x) =
∑

u∈V (G)

xdu =
∆∑
j=δ

ajx
j ,

where aj denotes the number of vertices of degree j. The evaluations of the polynomial

and its first derivative at 1 give, respectively, the number of vertices and twice the number

of edges of G. Hence, SG(1) = |V (G)| and S ′G(1) = 2|E(G)|.

For G ∈ G(n, p), let Du be a random variable corresponding to the degree of vertex

u ∈ V (G). Its vertex degree distribution is given by

P(Du = k) =

(
n− 1

k

)
pk(1− p)n−1−k.

Now, we define a polynomial function

f(n,p)(x) =
n−1∑
k=0

(
n− 1

k

)
(1− p)n−1−kpkxk = (1− p+ px)n−1 .

-501-



It can be easily verified by direct computation that the j-th derivative of f(n,p)(x) evaluated

at x = 1 has the following form:

f
(j)
(n,p)(1) = (n− 1) · . . . · (n− j)pj,

for all 1 ≤ j ≤ n− 1.

It was shown in [6] that the degree sequence polynomial encodes all information nec-

essary for computing generalized first Zagreb indices of arbitrary order. The same is valid

for our polynomial f(n,p)(x). This information is extracted using a family of combinatorial

numbers known as Stirling numbers of the second kind.

The Stirling numbers of the second kind, denoted by
{
n
k

}
, count, among other things,

the number of partitions of a set of n elements into k non-empty subsets. They satisfy a

linear recurrence, {
n

k

}
= k

{
n− 1

k

}
+

{
n− 1

k − 1

}
for n > 0, with the initial conditions

{
0
0

}
= 1 and

{
0
j

}
=
{
i
0

}
= 0, for all i, j 6= 0. We

refer the reader to [11] for a detailed exposition of these numbers and their properties.

The most important for our purpose is the fact that the Stirling numbers of the second

kind are used to convert between powers and falling factorials,

xn =
∑
k

{
n

k

}
xk,

where xk is the falling factorial defined as xk = x(x − 1) . . . (x − k + 1). The opposite

relationship,

xn =
∑
k

[
n

k

]
(−1)n−kxk,

involves the Stirling numbers of the first kind
[
n
k

]
that count the ways to arrange n objects

into cycles. Here we quote the main result in [6]:

Theorem A. [6] Let G be a simple connected graph and SG(x) its degree sequence poly-

nomial. Then the `-th general Zagreb index of G can be computed as

M `
1(G) =

∑̀
j=1

{
`

j

}
S

(j)
G (1)

for any ` ∈ N.

Another way of looking at Zagreb indices is via matrix products. Let j be the vector

of all ones. For a random graph G with adjacency matrix A (equivalently, for a random
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symmetric (0, 1)-matrix A), the following holds.

M1(G) = D ·D

where D = Aj is a vector whose entries are the degrees of vertices of G and ”·” denotes

the standard inner product of vectors. Also, let Z = (z1, . . . , zn)T be a real column vector

and let B = [bij] be a real matrix of order n. One can find that

ZTBZ =
∑

1≤p,q≤n

bpqzpzq.

Hence, for a random graph G with adjacency matrix A (equivalently, for a random sym-

metric (0, 1)-matrix A),

M2(G) =
1

2
DTAD.

For a random graph G with the vertex set V (G) = {v1, . . . , vn}, we consider the

indicator random variables Xij, 1 ≤ i, j ≤ n, defined by:

Xij =

 1 if vi is adjacent to vj

0 otherwise

So Xij = Xji and since we only consider simple random graphs, Xii = 0. Notice that

if G ∈ G(n, p), then the indicator random variables Xij and Xrs are independent, where

1 ≤ i, j, r, s ≤ n and {i, j} 6= {r, s}. On the other hand, if G ∈ G(n,m), then the

indicator random variables Xij, where 1 ≤ i, j ≤ n, are not independent. The average

value (or mean) of a random variable X is called its expectation, and is denoted by E(X).

It is known that when X and Y are independent random variables, E(XY ) = E(X)E(Y ),

see [24]. Also if X is an indicator random variable, then E(Xk) = E(X), for each k > 0.

In [13, 14], the variance and the covariance of some degree-based graph invariants of

random graphsG(n, p) were studied in the special cases p = α(n−1)

(n
2)

and p = α
n
, respectively,

for a fixed parameter α > 0. In this paper, we study the expectation of the first and the

second Zagreb indices and the forgotten index of G(n, p) and G(n,m) random graphs.

2 Generalized first Zagreb indices of G(n, p) random

graphs

In this section, the polynomial f(n,p)(x) is used to obtain compact formulas for the expected

values of all generalized Zagreb indices of G(n, p) random graphs.
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Theorem 1. Let G ∈ G(n, p) and n ≥ `+ 1. Then

E(M `
1(G)) = n

∑̀
j=1

{
`

j

}
n!

(n− j − 1)!
pj.

Proof. Let Du be the random variable corresponding to the degree of vertex u ∈ V (G).

E(M `
1(G)) = E

 ∑
u∈V (G)

D`
u

 =
∑

u∈V (G)

E
(
D`
u

)
=

∑
u∈V (G)

n−1∑
k=0

k`
(
n− 1

k

)
pk(1− p)n−1−k

=
∑

u∈V (G)

n−1∑
k=0

∑̀
j=1

{
`

j

}
kj
(
n− 1

k

)
pk(1− p)n−1−k

=
∑

u∈V (G)

∑̀
j=1

{
`

j

} n−1∑
k=0

kj
(
n− 1

k

)
pk(1− p)n−1−k.

The innermost sum evaluates to (n− 1) · . . . · (n− j)pj, and our claim follows.

In Theorem 1, by setting p = 1 one readily recovers the known result for complete

graphs, E(M `
1(Kn)) = n(n − 1)`. Also, Theorem 1 can be expressed in a more compact

form in terms of our polynomial f(n,p)(x).

Corollary 2. Let G ∈ G(n, p) and n ≥ `+ 1. Then

E(M `
1(G)) = n

∑̀
j=1

{
`

j

}
f

(j)
(n,p)(1).

For the ordinary first Zagreb index and for the forgotten index, we specialize ` = 2

and ` = 3, respectively, and obtain the following expressions.

Corollary 3. Let G ∈ G(n, p) and n ≥ 3. Then

E (M1(G)) = n(n− 1)p [(n− 2)p+ 1] .

Corollary 4. Let G ∈ G(n, p) and n ≥ 4. Then

E (F (G)) = n(n− 1)p+ 3n(n− 1)(n− 2)p2 + n(n− 1)(n− 2)(n− 3)p3.
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3 The first Zagreb index and the forgotten index of

G(n,m) random graphs

As we have already mentioned, the indicator random values Xij are not independent for

G(n,m) random graphs. Hence, we cannot employ the same proof technique as in the

G(n, p) case. Instead, in this and in the next section, for two positive integers n and m,

we define the parameters pi, i = 1, 2, 3, as follows:

pi =

((n
2)−i
m−i

)((n
2)
m

) =
m(m− 1) · · · (m− i+ 1)(
n
2

)
(
(
n
2

)
− 1) · · · (

(
n
2

)
− i+ 1)

.

Here we do not look at the general `, but only at the cases ` = 2 and ` = 3.

Theorem 5. Let G ∈ G(n,m) and n ≥ 3. Then

E (M1(G)) = n(n− 1) (p1 + (n− 2)p2) .

Proof. Let V (G) = {v1, . . . , vn}. Also let the random variable Di =
∑n

k=1
k 6=i

Xik be corre-

sponding to the degree of the vertex vi, i = 1, . . . , n. Thus

E (M1(G)) = E

 ∑
vi∈V (G)

D2
i

 =
n∑
i=1

E
(
D2
i

)
=

n∑
i=1

E

(
n∑

k=1
k 6=i

Xik)
2


=

n∑
i=1

E

 n∑
k=1
k 6=i

X2
ik

+
n∑
i=1

E

 n∑
k=1
k 6=i

n∑
r=1
r 6=i,k

XikXir


=

n∑
i=1

n∑
k=1
k 6=i

E
(
X2
ik

)
+

n∑
i=1

n∑
k=1
k 6=i

n∑
r=1
r 6=i,k

E (XikXir)

= n(n− 1)p1 + n(n− 1)(n− 2)p2,

and the proof is completed.

Theorem 6. Assume that G ∈ G(n,m) and n ≥ 4. Then the following holds.

E (F (G)) = n(n− 1) (p1 + 3(n− 2)p2 + (n− 2)(n− 3)p3) .

Proof. As before, for a graph G with vertex set V (G) = {v1, . . . , vn}, let Di be the random
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variable corresponding to the degree of vi, i = 1, . . . , n. Then,

E (F (G)) = E

 ∑
vi∈V (G)

D3
i

 =
n∑
i=1

E
(
D3
i

)
=

n∑
i=1

E

(
n∑

k=1
k 6=i

Xik)
3


=

n∑
i=1

E

 n∑
k=1
k 6=i

X3
ik

+ 3
n∑
i=1

n∑
k=1
k 6=i

E

X2
ik

 n∑
r=1
r 6=i,k

Xir




+
n∑
i=1

E

 n∑
k=1
k 6=i

n∑
r=1
r 6=i,k

n∑
s=1

s 6=i,k,r

XikXirXis


=

n∑
i=1

n∑
k=1
k 6=i

E
(
X3
ik

)
+ 3

n∑
i=1

n∑
k=1
k 6=i

 n∑
r=1
r 6=i,k

E
(
X2
ikXir

)
+

n∑
i=1

n∑
k=1
k 6=i

n∑
r=1
r 6=i,k

n∑
s=1

s6=i,k,r

E (XikXirXis)

= n(n− 1)p1 + 3n(n− 1)(n− 2)p2 + n(n− 1)(n− 2)(n− 3)p3

and we are done.

We observe that the results of Theorems 5 and 6 have the same structure as the

results of Corollaries 3 and 4, respectively. Each of them could be converted to the other

by switching between pi and pi, for i = 1, 2, 3. Hence, we are inclined to believe that

the expected values of all generalized first Zagreb indices of G(n,m) graphs could be

expressed in a way analogous to the one established in Theorem 1. We have not worked

out the details due to difficulties with expressing in a compact form the sums of products

of binomial coefficients that arise along the way.

4 Second Zagreb indices of G(n, p) and G(n,m) ran-

dom graphs

In this section, we compute the expectation of the second Zagreb index for random graphs

in G(n, p) and in G(n,m).

Theorem 7. Consider a graph G ∈ G(n, p) such that n ≥ 3. Then

E (M2(G)) =

(
n

2

)(
p+ 2(n− 2)p2 + (n− 2)2p3

)
.
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Proof. Let V (G) = {v1, . . . , vn} and Di be the random variable corresponding to the

degree of vi, i = 1, . . . , n. Hence, the expectation of the second Zagreb index of G can be

obtained as follows.

E (M2(G)) = E

 ∑
vivj∈E(G)

DiDj

 =
1

2
E

 n∑
i=1

n∑
j=1
j 6=i

DiDjXij

 =
1

2

n∑
i=1

n∑
j=1
j 6=i

E (DiDjXij) . (1)

In the last summation of the equations in (1), consider the term E (DiDjXij) for the

fixed distinct positive integers i and j.

E (DiDjXij) =
n∑

k=1
k 6=i

n∑
r=1
r 6=j

E (XikXjrXij) (2)

= E (XijXjiXij) +
n∑

k=1
k 6=i,j

E (Xik)E (XjiXij)

+
n∑

r=1
r 6=j,i

E (Xjr)E (XijXij) +
n∑

k=1
k 6=i,j

n∑
r=1
r 6=j,i

E(Xik)E(Xjr)E(Xij)

= p+ 2(n− 2)p2 + (n− 2)2p3.

Now, combining the equations in (1) and (2) yields the following relations.

E (M2(G)) =
1

2

n∑
i=1

n∑
j=1
j 6=i

E (DiDjXij)

=
1

2

n∑
i=1

n∑
j=1
j 6=i

(
p+ 2(n− 2)p2 + (n2 − 2n)p3

)
=

1

2
(n2 − n)

(
p+ 2(n− 2)p2 + (n− 2)2p3

)
which gives the result.

Theorem 8. If G ∈ G(n,m) and n ≥ 3, then

E (M2(G)) =

(
n

2

)(
p1 + 2(n− 2)p2 + (n− 2)2p3

)
.

Proof. Consider the graph G with the vertex set V (G) = {v1, . . . , vn}. As before, suppose

that Di is a random variable corresponding to the degree of vi, i = 1, . . . , n. Hence, the

expectation of the second Zagreb index of G can be obtained as:

E (M2(G)) = E

 ∑
vivj∈E(G)

DiDj

 =
1

2
E

 n∑
i=1

n∑
j=1
j 6=i

DiDjXij

 =
1

2

n∑
i=1

n∑
j=1
j 6=i

E (DiDjXij) . (3)
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On the other hand, for the fixed distinct positive integers i, j, the term E (DiDjXij) in

the last equation can be computed as follows.

E (DiDjXij) =
n∑

k=1
k 6=i

n∑
r=1
r 6=j

E (XikXjrXij) (4)

= E (XijXjiXij) +
n∑

k=1
k 6=i,j

E (XikXjiXij)

+
n∑

r=1
r 6=j,i

E (XjrXijXij) +
n∑

k=1
k 6=i,j

n∑
r=1
r 6=j,i

E(XikXjrXij)

= p1 + 2(n− 2)p2 + (n− 2)2p3.

Now, combining the equations in (3) and (4) yields the following relations.

E (M2(G)) =
1

2

n∑
i=1

n∑
j=1
j 6=i

E (DiDjXij) =
1

2

n∑
i=1

n∑
j=1
j 6=i

(
p1 + 2(n− 2)p2 + (n− 2)2p3

)
=

1

2
(n2 − n)

(
p1 + 2(n− 2)p2 + (n− 2)2p3

)
as desired.

Again, we observe that the results of Theorems 7 and 8 have the same structure –

one can be obtained from the other by switching between pi and pi for i = 1, 2, 3. Also,

note if G ∈ G(n, p) or G ∈ G(n,m) such that p = 1 and m =
(
n
2

)
(consequently pi = 1,

i = 1, 2, 3), then G is the complete graph Kn and the results in Sections 3, 4 give the first

and the second Zagreb index and the forgotten index of the such graph.

5 Computational results

In this section we report some computations for variety of random graphs, with the aim of

comparing the results obtained in this paper with the experimental results obtained using

Sage Mathematics Software System [26]. At first, for some positive integers n,m and

rational number 0 ≤ p ≤ 1, we generated 10000 random graphs in G(n, p) and G(n,m),

for each special case of n,m and p. Next, we computed the mean of exact values of the first

and the second Zagreb indices and the forgotten index of generated random graphs (which

are denoted by ”mean( )” in the tables) and then, we compared them with the expectation

of the related graph invariants which are obtained in Theorems and Corollaries 1−8 (and

are denoted by ”E( )” in the tables). In Table 1, this comparison has been done for random
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graphs in G(30, p), where p ∈ {0.3, 0.5, 0.7, 0.9}. Also, in Table 2, this comparison has

been done for random graphs in G(30,m), such that m ∈ {50, 100, 200, 300, 400}.

G = G(n, p) G(30, 0.3) G(30, 0.5) G(30, 0.7) G(30, 0.9)

mean(M1(G)) 2455.4974 6523.4010 12537.5340 20523.4836

E (M1(G)) 2453.4000 6525.0000 12545.4000 20514.6000

mean(M2(G)) 11547.0998 48918.6361 129097.4064 268916.0004

E (M2(G)) 11530.9800 48937.5000 129217.6200 268741.2600

mean(F (G)) 24634.2406 100879.0722 261778.4260 539810.1270

E (F(G)) 24596.6400 100920.0000 262016.1600 539455.6800

Table 1: Comparison of experimental results and the expectation of some degree-based

graph invariants for random graphs in G(n, p).

G = G(n,m) G(30, 50) G(30, 100) G(30, 200) G(30, 300) G(30, 400)

mean(M1(G)) 415.7564 1477.6814 5534.8100 12174.2032 21393.6556

E (M1(G)) 416.1290 1477.4193 5535.4838 12174.1935 21393.5483

mean(M2(G)) 855.4970 5426.9531 38202.3663 123393.5258 286001.4608

E (M2(G)) 856.7496 5425.0391 38212.0688 123392.7512 285998.7484

mean(F (G)) 1989.9814 11844.4328 79181.6314 250393.5204 573670.6496

E (F(G)) 1994.5839 11838.3818 79211.2940 250394.0847 573662.1023

Table 2: Comparison of experimental results and the expectation of some degree-based

graph invariants for random graphs in G(n,m).

We have also computed the expected values of generalized first Zagreb indices for

random graphs in G(n, n− 1) and for random trees trying to determine their asymptotics

for large `. In all cases the expected values are linear in the number of edges n − 1.

For G(n, n− 1) random graphs, we find that the quantity E(M `(G))/(n− 1) behaves as

the sequence 1, 2, 6, 22, 94, 454, . . . for small values of ` ≥ 0. The sequence seem to be the

sequence A001861 from the On-Line Encyclopedia of Integer Sequences [23]. The sequence

has the exponential generating function given by e2(ex−1), and among its combinatorial

representations are the values of Bell polynomials and moments of the Poisson distribution

with mean equal to 2. For random trees T on n vertices, E(M `(T ))/(n − 1) seems to

behave like the sequence of Bell numbers, A00110 of [23], that starts as 1, 2, 5, 15, 52, . . ..

It would be interesting to provide combinatorial explanation for the observed behavior of

the leading coefficients of the sequences of expected values.
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Computational and analytical studies of the Randić index in Erdős-Rényi models,
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