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Abstract

In chemical graph theory, many graph parameters, or topological indices, were pro-
posed as estimates of molecular structural properties. Often several variants of an
index are considered. The aim is to extend the original concept to larger families of
graphs than initially considered, or to make it more precise and discriminant, or yet
to make its range of values similar to that of another index, thus facilitating their
comparison. In this paper, we introduce a new variant of the geometric-arithmetic
index to get a better estimate of the boiling point. We compare the correlation be-
tween the boiling points and both versions of the geometric-arithmetic index using
different regression models.

1 Introduction

Mathematical descriptors of molecular structure and properties, such as various topolog-

ical indices [20], have been widely used in chemical studies. They play a very important

role in mathematical chemistry especially in QSAR (quantitative structure-activity re-

lationship) and/or QSPR (quantitative structure-property relationship) related studies.

Among those descriptors, a special interest is devoted to so-called topological indices.

Many topological indices related to the graph representation of molecular structures were

proposed. They are used to understand physicochemical properties of chemical com-

pounds in a simple way, since they sum up some of the properties of a molecule in a

single number. During the last decades, a legion of topological indices were introduced

and found some applications in chemistry, see e.g., [12, 13,25].
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The study of topological indices goes back to the seminal work by Wiener [27] in which

he used the sum of all shortest-path distances, nowadays known as the Wiener index, of

a (molecular) graph for modeling physical properties of alkanes.

Another very important molecular descriptor, was introduced by Randić [19]. It is called

the Randić (connectivity) index and defined as

Ra = Ra(G) =
∑
uv∈E

1√
dudv

where du denotes the degree (number of neighbors) of u in G. The Randić index is

probably the most studied molecular descriptor in mathematical chemistry. Actually,

there are more than two thousand papers and five books devoted to this index (see,

e.g., [11, 15–18] and the references therein).

Among other important topological indices, we can cite the Hosoya topological index [14]

introduced in 1971, the Szeged index [10] inroduced in 1994, and the revised Wiener index

(also called the revised Szeged index) by Randić [21] in 2002.

Motivated by the definition of Randić connectivity index, Vukičević and Furtula [26]

proposed the geometric-arithmetic index. It is so-called since its definition involves both

the geometric and the arithmetic means of the endpoints degrees of the edges in a graph.

For a simple graph G with edge set E(G), the geometric-arithmetic index GA(G) of a

graph G is defined as in [26] by

GA(G) =
∑

uv∈E(G)

2
√
dudv

du + dv
.

where du denotes the degree of u in G.

It is noted in [26] that the predictive power of GA for physico-chemical properties is

somewhat better than the predictive power of the Randić connectivity index. In [26],

Vukičević and Furtula gave the lower and upper bounds for GA, identified the trees with

the minimum and the maximum GA indices, which are the star Sn and the path Pn,

respectively. In [28] Yuan, Zhou and Trinajsić gave the lower and upper bounds for GA

index of molecular graphs using the numbers of vertices and edges. They also determined

the n-vertex molecular trees with the minimum, the second, and the third minimum,

as well as the second and the third maximum GA indices. Lower and upper bound on
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the geometric-arithmetic index in terms of order n, size m, minimum degree δ and/or

maximum degree were proved in [22]. Also in [22], GA was compared to other well

known topological indices such as the Randić index, the first and second Zagreb indices,

the harmonic index and the sum connectivity index. Other lower and upper bounds,

on the geometric-arithmetic index, involving the order n the size m, the minimum and

the maximum degrees and the second Zagreb index were proved in [6]. In [1], several

bounds and comparisons, involving the geometric-arithmetic index and several other graph

parameters, were proved. The problem of lower bounding GA over the class of connected

graphs with fixed number and minimum degree was discussed in [2, 8, 23]. A comparison

between GA and the spectral radius (the largest adjacency eigenvalue) of a connected

graph was done in [4]. The chemical applicability of the geometric-arithmetic index was

highlighted in [7, 9, 26].

In this paper, we are interested in the study of the correlation between the boiling point,

as a molecular property, and an adjusted version of the geometric-arithmetic index, as

a topological descriptor. To carry out this study, we considered set of data consisting

of experimental boiling points of selected saturated hydrocarbons, taken from [24] (see

also [3]). We used AutoGraphiX III [5] (available at https://www.gerad.ca/∼gillesc/ ) to

compute the values of the topological descriptors of the corresponding molecular graphs.

In the next section, we present a comparison of the geometric-arithmetic index with

minimum, maximum and average degrees of a connected graph. Those results, particularly

the bounds on the ratio of the geometric-arithmetic index to the average degree, showed

similarities with variations in the Randić index. The observed similarities inspired an

adjustment in the geometric-arithmetic index. The adjusted topological index is the

subject of a statistical study presented in Section 3.

2 Theoretical aspects

We begin this section by recalling some definitions. In this paper, we consider only simple,

undirected and finite graphs, i.e, undirected graphs on a finite number of vertices without

multiple edges or loops. A graph is (usually) denoted by G = G(V,E), where V is its

vertex set and E its edge set. The order of G is the number n = |V | of its vertices, and

its size is the number m = |E| of its edges. For two vertices u and v (u, v ∈ V ), if uv ∈ E,
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we say u and v are adjacent in G. The degree of a vertex u, denoted du, is the number of

vertices adjacent to it in G. A graph G is said to be regular of degree d, or d-regular if

du = d for every vertex u in G. The minimum, average and maximum degrees in a graph

G are denoted by δ, d and ∆, respectively.

As usual, we denote by Sn the star and by Kn the complete graph, each on n vertices.

In the next theorem, we prove a lower and an upper bound on the ratio GA/d. We also

characterize the corresponding extremal graphs, in both cases.

Theorem 2.1. For any connected graph on n ≥ 3 with average degree d and geometric-

arithmetic index GA,
√
n− 1 ≤ GA

d
≤ n

2

with equality if and only if G is the star Sn (resp. regular) for the lower (resp. upper)

bound.

Proof :

For the lower bound and assuming, without loss of generality, that di ≤ dj, we have

GA

d
=

∑
ij∈E

2
√
didj

di+dj
2
n

∑
ij∈E 1

=

∑
ij∈E

2
√
di/dj

di/dj+1

2
n

∑
ij∈E 1

≥
∑

ij∈E
2
√

1/(n−1)

1/(n−1)+1

2
n

∑
ij∈E 1

=
√
n− 1 .

Equality being reached if and only if di = 1 and dj = n − 1 for all edges ij ∈ E, i.e., if

and only if G is the star Sn.

For the upper bound, we have

GA

d
=

∑
ij∈E

2
√
didj

di+dj
2
n

∑
ij∈E 1

≤
∑

ij∈E 1
2
n

∑
ij∈E 1

=
n

2
.

Equality being reached if and only if di = dj for all edges ij ∈ E, i.e., if and only if G is

regular.

In the next theorem, we prove a lower and an upper bounds on the ratio GA/∆. We also

characterize the corresponding extremal graphs, in both cases.

Theorem 2.2. For any connected graph on n ≥ 3 with maximum degree ∆ and geometric-

arithmetic index GA,
2
√
n− 1

n
≤ GA

∆
≤ n

2

with equality if and only if G is the star Sn (resp. regular) for the lower (resp. upper)

bound.
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Proof :

For the lower bound, it is well-known that the minimum value of GA over all connected

graphs on n vertices is reached only for the star Sn, which also maximizes ∆.

The upper bound, as well as the characterization of the extremal graphs, follows imme-

diately from the corresponding case in Theorem 2.1.

Among the the results proved in [1], we recall the following theorem.

Theorem 2.3 ( [1]). For any connected graph G with minimum degree δ ≥ 2

GA

Ra
≤ n− 1

with equality if and only if G is the complete graph Kn.

Experiments with the help of AutoGraphiX led to a conjecture, improving the above

theorem, proved in the next proposition.

Proposition 2.4. For any connected graph G with geometric-arithmetic index GA, Randić

index Ra and maximum degree ∆
GA

Ra
≤ ∆

with equality if and only if G is ∆-regular.

Proof: It is well-known that GA ≤ m with equality if and only G is regular. In addition,

Ra =
∑
ij∈E

1√
didj

≥
∑
ij∈E

1

∆
=
m

∆

with equality if and only if G is ∆-regular.

Combining the above inequalities, we get

GA

Ra
≤ m∆

m
= ∆

with equality if and only if G is ∆-regular.

Also, among the results proved in [1], we recall the following.

Theorem 2.5 ( [1]). For any connected graph with minimum degree δ ≥ 2

GA ≥ δRa

with equality if and only if G is δ-regular.
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To sum up the latter results we have a chain of inqualities which we state in the following

theorem.

Theorem 2.6. For any connected graph on n ≥ 2 vertices with m edges, we have

δ ·Ra ≤ GA ≤ m ≤ ∆ ·Ra ≤ (n− 1) ·Ra .

Furthermore all equalities hold simultaneously if and only if G is the complete graph Kn;

and all equalities, but the last one, hold simultaneously if and only if G is a non-complete

∆-regular graph.

Figure 1. Example of a graph
with GA < d ·Ra.

Figure 2. Example of a graph
with GA > d ·Ra.

Note that we can not insert d ·Ra into the chain since there exist graphs with GA < d ·Ra

(see Figure 1 for an example) and others with GA > d ·Ra (see Figure 2 for an example).

3 Computational study

Let us define the adjusted geometric-arithmetic index to be GA∗ = GA/d. With this

notation, Theorem 2.1 can be stated as:

√
n− 1 ≤ GA∗ ≤ n

2

with equality if and only if G is the star Sn (resp. regular) for the lower (resp. upper)

bound.

This result reminds of a well-known result about the Randić index:

√
n− 1 ≤ Ra ≤ n

2
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with equality if and only if G is the star Sn (resp. regular) for the lower (resp. upper)

bound.

The similarities between both results, for GA∗ and for Ra, and the fact that the Randić

index [19] was first used to estimate the boiling point motivated a computational com-

parison between GA, GA∗, Ra and the boiling point (BP). In this section, we report on

the results of the study.

We started our study using the two usual models of regression: linear and logarithmic.

In addition to considering all the data gathered in one set, each model was studied for

different sets of alkanes according the number of cycles in the graphs: trees (acyclic

graphs), unicyclic graphs, bicyclic graphs, and graphs with at least 3 cycles. The data for

molecular graphs on up to 7 vertices is given in Table 1, on 8 vertices in Table 2, on 9 or

10 virtices in Table 3.

The first observation is that the Randić index is the descriptor having the best correlation

with the boiling point in both linear and logarithmic models, except for the set of trees

where the GA∗ has a slightly better correlation: R2 = 0.982173 for GA∗ versus R2 =

0.981315 for Ra in the linear model; R2 = 0.975952 for GA∗ versus R2 = 0.97552 for Ra

in the logarithmic model.

In all combinations of sets (except unicyclic graphs for which GA∗ = GA/2) and models,

Ra and GA∗ have a significantly better correlation than GA has.

The best correlation for each descriptor with both models was reached for the same set of

data: the set of trees. Also, the least correlation was reach for the same set: graphs with

at least three cycles. The fluctuation in the values of R2 is the smallest for Ra followed

closely by that of GA∗, and was the largest for GA, in both linear and logarithmic models.

However, in the logarithmic regression, the fluctuation in R2 was almost the for Ra and

for GA∗.

For the linear model (see Table 4): (i) the correlation between BP and Ra ranges from

R2 = 0.981315 for trees (acyclic graphs) to R2 = 0.814856 for cyclic graphs with at

least three cycles, for a spread of 0.166459; (ii) the correlation between BP and GA

ranges between R2 = 0.971045 for trees and R2 = 0.662821 for cyclic graphs with at least
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Name BP Ra GA GA* Name BP Ra GA GA*
n1 -161.5 0 0 0 23mn5 89.8 3.180739 5.52068 3.2204
n2 -88.6 1 1 1 22mn5 79.2 3.06066 5.28562 3.08328
n3 -42.1 1.414214 1.88562 1.41422 33mn5 86.1 3.12132 5.37124 3.13322
c3 -32.8 1.5 3 1 223mn4 80.9 2.943376 5.12179 2.98771
n4 -0.5 1.914214 2.88562 1.92375 1bc3 98 3.431852 6.8822 3.4411
2mn3 -11.7 1.732051 2.59808 1.73205 1sbc3 90.3 3.342535 6.74822 3.37411
1mc3 0.7 1.893847 3.82562 1.91281 1m2pc3 93 3.342535 6.74822 3.37411
c4 12.6 2 4 2 12ec3 90 3.38054 6.8048 3.4024
bc110b 8 1.966321 4.91918 1.96767 1m1pc3 84.9 3.267767 6.57124 3.28562
n5 36 2.414214 3.88562 2.42851 1m2ipc3 81.1 3.215214 6.55767 3.27884
2mn4 27.8 2.270056 3.65466 2.28416 1tbc3 80.5 3.105172 6.34934 3.17467
22mn3 9.5 2 3.2 2 11ec3 88.6 3.328427 6.65685 3.32843
1ec3 35.9 2.431852 4.8822 2.4411 1e23mc3 91 3.270056 6.65466 3.32733
12mc3 32.6 2.30453 4.69164 2.34582 1m1ipc3 81.5 3.150482 6.40741 3.20371
11mc3 20.6 2.207107 4.48562 2.24281 11m2ec3 79.1 3.165832 6.43495 3.21748
1mc4 36.3 2.393847 4.82562 2.41281 12m1ec3 85.2 3.188487 6.46399 3.23199
c5 49.3 2.5 5 2.5 1123mc3 78 3.065384 6.31154 3.15577
bc111p 36 2.44949 5.87878 2.44949 1122mc3 76 2.957107 6.08562 3.04281
bc210p 46 2.466326 5.91918 2.46633 1pc4 100.7 3.431852 6.8822 3.4411
s22p 39 2.414214 5.77124 2.40468 1ipc4 92.7 3.30453 6.69164 3.34582
mbc110b 33.5 2.312278 5.63495 2.3479 1e3mc4 89.5 3.325699 6.70781 3.35391
n6 68.7 2.914214 4.88562 2.93137 1e2mc4 94 3.342535 6.74822 3.37411
2mn5 60.3 2.770056 4.65466 2.79279 1ec5 103.5 3.431852 6.8822 3.4411
3mn5 63.3 2.80806 4.71124 2.82674 13mc5 91.3 3.287694 6.65123 3.32562
23mn4 58 2.642734 4.4641 2.67846 12mc5 95.6 3.30453 6.69164 3.34582
22mn4 49.7 2.56066 4.28562 2.57137 11mc5 87.9 3.207107 6.48562 3.24281
1pc3 69 2.931852 5.8822 2.9411 1mc6 101 3.393847 6.82562 3.412815
1ipc3 58.3 2.80453 5.69164 2.84582 c7 118.4 3.5 7 3.5
1e2mc3 63 2.842535 5.74822 2.87411 dcprm 102 3.44949 7.87878 3.44696
1e1mc3 57 2.767767 5.57124 2.78562 bc221h 105.5 3.44949 7.87878 3.44696
123mc3 63 2.732051 5.59808 2.79904 bc311h 110 3.44949 7.87878 3.44696
112mc3 52.6 2.627827 5.37837 2.68919 bc320h 110.5 3.466326 7.91918 3.46464
1ec4 70.7 2.931852 5.8822 2.9411 bc410h 116 3.466326 7.91918 3.46464
13mc4 59 2.787694 5.65123 2.82562 s33h 96.5 3.414214 7.77124 3.39992
12mc4 62 2.80453 5.69164 2.84582 s24h 98.5 3.414214 7.77124 3.39994
11mc4 53.6 2.707107 5.48562 2.74281 2mbc310hx 100 3.37701 7.78521 3.40603
1mc5 51.8 2.893847 5.82562 2.91281 6mbc310hx 103 3.393847 7.82562 3.42371
c6 80.7 3 6 3 mbc211hx 81.5 3.285405 7.56781 3.31092
bc211hx 71 2.94949 6.87878 2.94805 mbc310hx 92 3.312278 7.63495 3.34029
bcpr 76 2.966326 6.91918 2.96537 13mbc111p 71.5 3.12132 7.25685 3.17487
bc220hx 83 2.966326 6.91918 2.96537 14mbc210p 74 3.164214 7.37124 3.22492
bc310hx 81 2.966326 6.91918 2.96537 11ms22p 78 3.164214 7.37124 3.22494
s23hx 69.5 2.914214 6.77124 2.90196 122mbcb 84 3.089152 7.30209 3.19466
mbc210p 60.5 2.812278 6.63495 2.84355 tc410024h 105 3.44949 8.87878 3.45286
13mbcb 55 2.664214 6.37124 2.73053 tc310024h 107 3.44949 8.87878 3.45286
n7 98.5 3.414214 5.88562 3.43328 tc221026h 106 3.44949 8.87878 3.45286
2mn6 90 3.270056 5.65466 3.29855 tc410027h 110 3.483163 8.95959 3.48429
3mn6 92 3.30806 5.71124 3.33156 tc410013h 107.5 3.41745 8.78429 3.41611
3en5 93.5 3.346065 5.76781 3.36456 tec320h 108.5 3.483163 9.95959 3.48586
24mn5 80.5 3.125898 5.42369 3.16382 tec410h 104 3.483163 9.95959 3.48586

Table 1. Data for alkanes on up to 7 vertices
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Name BP Ra GA GA* Name BP Ra GA GA*
n8 125.7 3.914214 6.88562 3.93464 124mc5 115 3.698377 7.51726 3.758628
2mn7 117.6 3.770056 6.65466 3.80266 1e1mc5 121.5 3.767767 7.57124 3.78562
3mn7 118.9 3.80806 6.71124 3.834992 123mc5 117 3.715214 7.55767 3.778836
4mn7 117.7 3.80806 6.71124 3.834992 113mc5 104.5 3.600954 7.31124 3.655616
25mn6 109.1 3.625898 6.42369 3.67068 112mc5 114 3.627827 7.37837 3.689188
3en6 118.5 3.846065 6.76781 3.867324 1ec6 131.8 3.931852 7.8822 3.9411
24mn6 109.4 3.663902 6.48027 3.703012 14mc6 121.8 3.787694 7.65123 3.825616
23mn6 115.6 3.680739 6.52068 3.726104 13mc6 122.3 3.787694 7.65123 3.825616
34mn6 117.7 3.718744 6.57726 3.758436 12mc6 126.6 3.80453 7.69164 3.84582
22mn6 106.8 3.56066 6.28562 3.59178 11mc6 119.5 3.707107 7.48562 3.742808
3e2mn5 115.6 3.718744 6.57726 3.758436 1mc7 134 3.893847 7.82562 3.912808
234mn5 113.5 3.553418 6.33013 3.617216 c8 149 4 8 4
33mn6 112 3.62132 6.37124 3.640708 bcprm 129 3.94949 8.87878 3.946124
224mn5 99.2 3.416502 6.05466 3.459804 bcp330o 137 3.966326 8.91918 3.96408
3e3mn5 118.2 3.681981 6.45685 3.689632 bcb 136 3.966326 8.91918 3.96408
223mn5 109.8 3.48138 6.17837 3.5305 bc420o 133 3.966326 8.91918 3.96408
233mn5 114.8 3.504036 6.20741 3.547092 bc510o 141 3.966326 8.91918 3.96408
2233mn4 106.5 3.25 5.8 3.314284 2mbc221h 125 3.860173 8.7488 3.88658
1pec3 128 3.931852 7.8822 3.9411 s34o 128 3.914214 8.77124 3.898328
1spec3 117.7 3.842535 7.74822 3.874112 7mbc221h 128 3.87701 8.78521 3.904536
b2mc3 124 3.842535 7.74822 3.874112 2mbc320h 130.5 3.87701 8.78521 3.904536
1nepec3 106 3.578298 7.2822 3.6411 s25o 125 3.914214 8.77124 3.898328
5msbc3 115.5 3.715214 7.55767 3.778836 1mbc221h 117 3.785405 8.56781 3.807916
1e2pc3 108 3.88054 7.8048 3.9024 7mbc410h 138 3.893847 8.82562 3.922496
ib2mc3 110 3.698377 7.51726 3.758628 1mbc410h 125 3.812278 8.63495 3.837756
11m2pc3 105.9 3.665832 7.43495 3.717476 33mbc310hx 115 3.673433 8.4048 3.735468
1m12ec3 108.9 3.726492 7.52057 3.760284 14mbc211hx 91 3.62132 8.53908 3.795144
11m2ipc3 94.4 3.538511 7.2444 3.6222 66mbc310hx 126.1 3.72718 8.25685 3.669712
112m2ec3 104.5 3.517767 7.17124 3.58562 2244mbcb 104 3.488034 8.15897 3.626212
11223mc3 100.5 3.404701 7.04551 3.522748 1223mbcb 105 3.457107 8.08562 3.593608
libc4 120.1 3.787694 7.65123 3.825616 tc510035o 142 3.932653 9.83837 3.935348
p3mc4 117.4 3.825699 7.70781 3.853908 tc510024o 149 3.94949 9.87878 3.951512
1sbc4 123 3.842535 7.74822 3.874112 tc3210o 136 3.94949 9.87878 3.951512
12ec4 119 3.88054 7.8048 3.9024 tc3300o 125 3.966326 9.1918 3.967672
1234mc4 114.5 3.642734 7.4641 3.732052 3mtc2210h 120.5 3.87701 8.65123 3.844992
1133mc4 86 3.414214 6.97124 3.48562 ds2121o 103 3.828427 9.54247 3.816988
1pc5 131 3.931852 7.8822 3.9411 1mtc2210h 111 3.805478 8.46057 3.760252
1ipc5 126.4 3.80453 7.69164 3.84582 ds2022o 115 3.87132 9.65685 3.86274
1e3mc5 121 3.825699 7.70781 3.853908 tec330o 137.5 3.966326 10.9192 3.970612
1e2mc5 124.7 3.842535 7.74822 3.874112

Table 2. Data for alkanes on 8 vertices

Name BP Ra GA GA* Name BP Ra GA GA*
tc331037n 164.6 4.41582 10.798 4.417349 3cpbc410h 175.5 4.93265 11.8384 4.932655
tc421037n 162.5 4.43265 10.8384 4.433877 tc422025d 219 4.94949 11.8788 4.94949
tc421024n 166 4.43265 10.8384 4.433877 tc521026d 188 4.94949 11.8788 4.94949
tc430037n 161.4 4.44949 10.8788 4.45041 6mtc3220n 189.5 4.86017 11.7448 4.893665
ds2122n 142.5 4.32843 10.5425 4.312832 12cpr1mc3 158.3 4.80548 11.6213 4.8422
11cprc3 147.8 4.41745 10.7843 4.411755 bc310hxsc5 192.7 4.93429 11.8247 4.926955
acprnorb 140.7 4.46633 9.91918 4.463631 ds2024d 160 4.87132 11.6569 4.857025
3mtc3210o 161 4.37701 10.7852 4.412133 38mtc321024o 152.5 4.80453 11.6916 4.87152
ds2023n 147 4.37132 10.6569 4.359623 334mtc2210h 151 4.47296 10.101 4.591355
etc2210h 137.5 4.26679 9.54619 4.295786 133mtc2210h 143.5 4.46698 10.0805 4.58203
33mtc2210n 137.5 4.12103 9.3647 4.214115 177mtc2210h 153 4.483 10.1277 4.603505
17mtc2210h 131 4.14368 9.39373 4.227179 scptc3210o 174 4.89058 12.7171 4.89121
12mtc2210h 128 4.03541 9.16781 4.125515 tec52100d 155 4.82813 11.6503 4.854295
tec33100n 168.3 4.44949 11.8788 4.454541 pec530000d 171 4.96633 13.9192 4.971135
tec4300n 153 4.46633 11.9192 4.469693

Table 3. Data for alkanes on 9 and on 10 vertices
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Bp = a ·X + b Bp = a · ln(X) + b
X Ra GA GA∗ Ra GA GA∗

Linear and logarithmic regressions for all listed graphs
a 61.37184 18.94278 60.50903 185.2279 121.1098 177.2092
b -112.612 -40.7462 -111.124 -125.577 -136.741 -116.87
R2 0.959299 0.78842 0.955586 0.962236 0.856981 0.939629

Linear and logarithmic regressions for all listed trees
a 70.71719 36.41813 69.87619 178.2078 130.2453 176.7705
b -140.977 -116.585 -140.266 -117.538 -132.2453 -117.395
R2 0.981315 0.971045 0.982173 0.97552 0.973946 0.975952

Linear and logarithmic regressions for all listed unicyclic graphs
a 60.64729 30.10739 60.21479 182.2273 182.1453 182.1453
b -109.444 -110.229 -110.23 -124.46 -252.646 -126.392
R2 0.969396 0.965125 0.965125 0.960643 0.954635 0.954635

Linear and logarithmic regressions for all listed bicyclic graphs
a 61.63346 30.40864 60.80531 188.523 217.1552 186.4009
b -110.349 -138.296 -108.968 -129.379 -345.3 -128.118
R2 0.962126 0.947362 0.941305 0.953469 0.941851 0.932613

Linear and logarithmic regressions for atleast three cycles
a 50.25068 17.95326 48.95793 208.2723 192.4741 203.1522
b -69.2629 -42.7935 -64.5593 -155.646 -305.458 -149.001
R2 0.814856 0.662821 0.799135 0.80804 0.679743 0.792852

Linear and logarithmic regressions for all listed cycloalkanes graphs
a 57.05671 18.15172 56.95277 193.7489 147.9678 194.2417
b -97.0496 -37.7162 -98.2496 -136.535 -196.108 -138.703
R2 0.952701 0.820597 0.944569 0.949197 0.856507 0.939858

Table 4. Linear and logarithmic regressions

three cycles, with a spread of 0.308224; (iii) the correlation between BP and GA∗ ranges

between R2 = 0.982173 for trees and R2 = 0.799135 for cyclic graphs with at least three

cycles, with a spread of 0.183038.

For the logarithmic model (see Table 4): (i) the correlation between BP and Ra ranges

from R2 = 0.97552 for trees (acyclic graphs) to R2 = 0.80804 for cyclic graphs with at

least three cycles, for a spread of 0.183038; (ii) the correlation between BP and GA

ranges between R2 = 0.973946 for trees and R2 = 0.679743 for cyclic graphs with at least

three cycles, with a spread of 0.294203; (iii) the correlation between BP and GA∗ ranges

between R2 = 0.9975952 for trees and R2 = 0.792852 for cyclic graphs with at least three

cycles, with a spread of 0.1831.

The study confirms that the modified geometric index GA∗correlates better that the

geometric index GA and significantly close to Randić index in the case of a linear model

for all the graph classes under study.
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Figure 3. The linear and logarithmic regressions for Ra, GA and GA∗ for all listed
graphs.

When we consider all graphs together, the correlation was better for GA∗ than for GA

with both linear and logarithmic model: R2 = 0.955586 versus R2 = 0.78842 in the linear

and R2 = 0.939629 versus R2 = 0.856981 in the logarithmic.

When we considered the different classes separately, except of case for the class of unicyclic

graphs for which GA∗ = GA/2 (in which case the correlation is the same), the correlation

of the boiling point was always better with GA∗ than with GA: R2 = 0.982173 against

R2 = 0.971045 for the linear regression and R2 = 0.975952 against R2 = 0.973946 for

the logarithmic, in case of of trees; R2 = 0.947362 against R2 = 0.941305 for the linear

regression and R2 = 0.941851 against R2 = 0.932613 for the logarithmic, in case of of

bicyclic graphs; R2 = 0.799135 versus R2 = 0.662821 in the linear model and R2 =

0.792852 versus R2 = 0.679743 in the logarithmic, in the case of graphs having more than
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two cycles.

If we compare the regression models: the linear model seems to fit better than the log-

arithmic one for modified geometric-arithmetic index GA∗; the logarithmic model works

better for the geometric-arithmetic index GA except for the class of unicyclic graphs and

that of bicyclic graphs.

Looking to the regression lines, both linear and logarithmic (see Figure 3), for the three

indices and for all the listed graphs, we observe: (i) for the linear regression and for GA

and GA∗ the given boiling points are under the line for small and large values, while they

are above the line for medium values; (ii) for the logarithmic regression and for GA and

GA∗ most of the given boiling points are above the line for small and large values, while

they are under the line for most of the medium values. This suggests that we get a better

estimate if use a regression model with a curve concave downward, but less concave than

the logarithmic curve; (iii) the distribution of the boiling points around the regressions

line balanced for Ra better than for GA and GA∗.

Following this observation, we suggest a model under the form Y = aXα + b, with

0 < α < 1. In our experiments, we considered α = 0.5 + 0.05k, for k = 0, . . . , 9.

For each pf those values of α, the corresponding curve is concave downward, but not as

concave as the logarithmic curve.

α 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50
Randić Index

a 67.19674 74.8656 83.54435 93.38707 104.5726 117.307 131.8241 148.3826 167.2555 188.7043
b −118.4945 −128.502 −139.378 −151.221 −164.14 −178.248 −193.657 −210.465 −228.732 −248.435
R2 0.933082 0.936452 0.93921 0.941522 0.942848 0.943007 0.941601 0.93809 0.931724 0.921472

Geometric-Arithmetic Index
a 22.44576 26.19183 30.62349 35.88273 42.14553 49.63105 58.61337 69.43627 82.53093 98.43521
b −50.5286 −58.5721 −67.4075 −77.1533 −87.9508 −99.9683 −113.406 −128.501 −145.528 −164.794
R2 0.82394 0.831963 0.8339924 0.847763 0.855391 0.862682 0.869454 0.875434 0.880215 0.883178

Adjusted Geometric-Arithmetic Index
a 98.43521 75.79759 84.5032 94.36253 105.5592 118.2972 132.8116 149.364 168.2372 189.706
b −164.794 −132.824 −143.573 −155.271 −168.029 −181.961 −197.184 −213.805 −231.898 −251.467
R2 0.98279 0.985274 0.987191 0.98838 0.988628 0.987644 0.985035 0.980262 0.972584 0.96097

Table 5. Results for the model BP = a.Xα + b, with α = 0.5 + 0.05k, for k =
0, . . . , 9.
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Figure 4. The best regression for
Ra, GA and GA∗,
BP =aY + b, Y = Xα.

Figure 5. The worst regression
for Ra, GA and GA∗,
BP =aY + b, Y = Xα.

After the computation experiments (see Table 5), the first observation was that the model

is worst than the linear model for the Randć index Ra for all values of α. For the

geometric-arithmetic index GA, the correlation in the new model was significantly better

than that in the linear model for all values of α, while compared to the logarithmic model,

it improves for the values of α less than 0.75. For the modified geometric-arithmetic

index GA∗, the model with α gives significantly better correlation than both linear and

logarithmic ones and for all values of α. In addition, the correlation of GA∗ with the

boiling point BP in the Y = aXα + b model is better then that of GA and Ra in any

other model.

The best correlation (see Figure 4) for Ra, GA and GA∗ in the Y = aXα + b model

was obtained for α = 0.7, 0.5 and 0.75, respectively; while the worst (see Figure 5) was

obtained for α = 0.5, 0.95 and 0.5, respectively.
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