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Abstract

Ten entries vectors of permutational isomers numbers Ng calculated with respect to distinct

symmetry operations g; of Oy group and the degrees of homo or heteropolysubstitution are derived
for substituted cubanes and transformed into Sylvester’s denumerants of type
N = za w . Such associated partition equations decomposing these numbers as sum
8i GG 8
G

J
of symmetry adapted isomers numbers aGI I ,an I ,aGk scaled by the weights WGj, & of the

subgroups Gjof O, are used for systematic enumeration of substituted cubane derivatives and
cubane heteroanalogues of given symmetries.

1 Introduction

During the last 3 decades Fujita has introduced the USCI-method 7! for symmetry adapted
enumeration of chemical compounds in addition to Polya’s classical isomers inventories

based on cycle indices.®'?! Despite these enumeration methods stereoisomers distribution
among a sequence of subgroups (SSG ) GpGg,---G,----,Gj of a parent group G remains a

pending partition problem of stereochemistry which requires mathematical solutions. We
recall that a partition of an integer number N called denumerant of N has been introduced in
combinatorics by Sylvester ). In chemistry stereoisomers result from homogeneous and

heterogeneous placements (arrangements) in distinct ways of substituents among different
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positions permuted by a set of symmetry operations of a point group acting on a parent
molecular skeleton. Homogeneous arrangements of ligands are placements in distinct ways of
substituents of the same kind among a given set of positions. Heterogeneous arrangements of
ligands are placements in distinct ways of substituents of different kinds among a given set of
positions. Regarding these characteristics of arrangements of substituents, one can classify

cubane derivatives (MX) among 4 groups:

1-Homogeneous arrangements of ¢X substituents of the same kind among 8 substitution sites

of cubane permuted by distinct symmetry operationg; e O,  yield permutomers of

homosubstituted cubanes derivatives CgHg_ qX py

2-Homogeneous arrangements operated in accord with the obligatory minimum valency
(OMV) restriction (OMV=3) are processes of putting in distinct ways ¢X trivalent

heteroatoms of the same kind among 8 tertiary carbon atoms positions permuted by distinct

symmetry operations g; O, give rise to cubane homo hetero-analogues (cH) 59 Xq-

3-Heterogeneous arrangements of qu and ¢,X...,q,Y,...,q,Z substituents of different
kinds among 8 tertiary carbon atoms positions permuted by distinct symmetry operations

g; € 0, yield heterosubstituted cubane derivatives Cqu oX qz"'Y%"'qu .

4-Heterogeneous arrangements operated in accord with the obligatory minimum valency
restriction (OMV=3) are processes of putting in distinct ways q,H and ¢,X...,q,Y,....q,Z

trivalent heteroatoms of different kinds among 8 tertiary carbon atoms positions permuted by

distinct symmetry operations g, €O, give rise to cubane hetero hetero-analogues

(CH)% Xyl oy,

In this study integer sequences of permutational isomers numbers V, " of substituted
;s
cubane derivatives are derived from the Oy, group action. Then, Sylvester’s denumerants of

type N, g4 :zanWG/'gi are constructed to partition these numbers as sum of symmetry

J

adapted isomers numbers an_q aG],m,aGi,---,an scaled by WGj'gi the weights of the

subgroups Gj of On calculated with respect to g; the symmetry operations of GJ This model
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is applied for a systematic enumeration of homo and hetero-polysubstituted cubane
derivatives, cubane homo hetero-analogues and cubane hetero hetero-analogues of given

symmetries.

2 Permutations of carbon and hydrogen atoms of cubane

Let us represent the structure of cubane by a tridimensional graph given in fig.1 part I where
black and white vertices symbolizing carbon and hydrogen atoms indicated by numerical and
alphabetical ~labels form two embedded orbits Hg=(1,2341,2'3'4') and
Cy =(abcda'bcid’) respectively. The connections of black and white vertices are C-H

bonds and the edges interconnecting black vertices form a cubic cluster of 12 C-C bonds

giving rise to a cage shaped hydrocarbon of 0, symmetry defined in eq.1:

0,=E,8C;,6C},6C,, 3C2=C, i, 65,,855,30,,60, e}

The 0, group action on cubane consisting to apply distinct symmetry operations g; € 0, to

the orbits Hgand Cy gives rise to the following permutations representations:

0, A\ oE c [ C; c i s s, - o
PNy =\PEA, P A Gy PTPA L PN PTIA Y P Ay P A Y PPN PTA L PO, ()

Oy T

_ E c 4 C; C i s Sy o,
P A =P AP ACP T ACPTAC P AP AC, P AP A, PT A, PO AL 3)

PQ’H8 and PO"C8 having their right-hand side termsP(g")HS ;P(g")c8 are 2 sets of

congruent permutations given in cycle structure notation as follows:

Py =0 =[ 11803 | e[ 2 | o[ 4] 3[ 2] [ 2 | o[ 4 ] 8[2'6 | 3[2* | e[12°] @)
3 Determination of permutational isomers numbers for poly
substituted cubane derivatives and cubane heteroanalogues

Let N g denote the number of permutomers i.e. the number of arrangements of

achiral substituents of the same kind or of different kinds among 8 substitution sites of

cubane permuted by a distinct symmetry operationg; € 0,. For 10 conjugacy classes of
symmetry operations of O group one obtains a set of integer numbers

Ng =Ng,Ne,, Ney» Ny Ne, Ny N N, o Ny, N, which are derived as follows:
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For homopolysubstituted cubane derivatives Cg¢Hy X, and cubane homo hetero-analogues

(CH) 5.4 X, having a degree of substitution ¢:

For heteropolysubstituted cubane derivatives (Cqu

U
hetero analogues (cH) @ X a '"qu ...qu :
8
" >N :( )
dpr-r oGy
4 _ N o= —
2" >N, =Ne, =N; =N, =g,
2
2
2 — —
4 >N, =N, = [
4 4
272 2
1%3 —>NC3=Z( )(
p Py Do P N\ 4yo-

k K .
with the restrictions z p=2& qu{ =2andg; = %

=0 i=0
zz ( ) (
P pk q()

12 > v,
d Dyres Do

®)
4
q Q]
2
O]
®
®
10)
42, and cubane hetero
11
4
% 9 (12)
PR
qk} 13)
4
’ j (14
Y -
(15)
st
N F (16)
il
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k k ,
with the restrictions > pt = 4 < > ¢7= 2 and ¢} = @ an
i=0 =0
1 1
2'6' > N, = Z( _ j( j (18)
T\ Ly P PR NGy 4
k k ,
with the restrictions »" pr= 1< > /"= 1 and ¢~ ‘”'TZI” 19)
=0 =0

This integer sequence generates a permutomers count vector (PCV) for MX=CgHy X ,

l...l;i ...qu denoted:

PCV(MX)=(Ny, N, Ny Ne, Ne, N, Ny, Ny, N, N,

(CH)y, X,» CyH, X, .Y, .7, or (CH), X,

)MX (20)

4 The Sylvester’s denumerants of the octahedral symmetry

The combinations of different symmetry operationsg; € O, given in the right-hand side of

eq.1 generate a sequence of subgroups for 0, (SSGO,,) listed in table 1 and summarized in

eq.21.
Table 1. Sequence of subgroups of the octahedral point group.
C,=E Cy=E G, 20, Dyy=E, C, =C3,2C5, 28,4, 20,
-
G=EGC, Civ*E’ Gz, 204 Db, =E, Cy=C3,2C5, 284, 20,
/ C5,=E G5, 0, 0,
Ch =EC) CZV 2 0y G4 Dyy=E, 3¢, =C3, i, 30,
=E G, 0, 1 '
C,=Eo, 2 Oy DY,=E, C, =C3, 2C5, o,.i, 204
C2h=E, Clz, Oy, i 1 2
Ci =Eoy, Dy=E, 3C5, 25 T=E, 3C,, 4C3, 4C3
C=Ei C D3,=E, 3C5, 2C3, 30y, i, 2S5
=E, 2C3, 30'd
G 2G; v Dy =EC,2C5, 2Cs, 2Cy, i, 284,04, 26,204

C3=E, 2C3, i, 2S5
D,=E, C,=C3, 2C5, 2C}, 2C,
C4=E, C,=C3?,2C,,20,,20,

O=E3C,,6C5, 8C3, 6C;

C,=E, C3=C,, 2¢,
T,=EA4C;,4C3, 3C;, i, 455,453 30,

S,=E, C]=C,, 25,
D,=E, C=3C,
Dh=E, C]=C;, 2C}

; T,=E8C3,3C3=C,, 65,,60,
Can=E C2=C4,2C4, 1, 25404 | 0,=£.8C,,6C}.6C,, 3CI=C,.i, 654,85, 30, .60,

$SG. = (C,,CZ,C;,CS,CS’,C,.,Cj,C/,,S4,D_,,D;,CZ‘,,C;V,C;’V,CM,C;,,,Dj,J @21
O C;,.C5:,D,.C,,,Cyy, D3y, D}y, Dy, DYy, T. D5y Dy, . OT,. T, 0

Let us consider ﬂg,-eG,- and 'ug,-EOh as the respective multiplicities of a symmetry operation

&; eGj and g; €0, given in table 1. We define the weight WGj’gi of a subgroup
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G €85Gy, calculated with respect to a symmetry operation g; € G ; as the quotient of the

J
y22es .
ratios <G, and He.c0, iven in eq.14 where |0,| and |G, are the orders of these
0 g q h J
G 0]
groups.
@X@ forg;:eG;,g; €0
W g =1 Heeo, G| 22)
0 forg ec,

For 10 distinct conjugacy classes of symmetry operations g; € O, and 33 subgroups G j of
0, given in table I one obtains 330 distinct WGj,g,- values which are the elements of the

matrix of the weights of subgroups for O, denoted :
Wy, = [WGj,gi} where G € $5Gq, .g; €G  and g; €0 (23)

and the entries WG,-,gi are equivalent to the marks of coset representations (Oh/G/‘) of
Fujita.l'!

If N g; permutomers of a cubane derivative (MX) are distributed among the subgroups
G ' eSSGOh, this partition has 33 indeterminate symmetry adapted isomers numbers an
which form an itemized-isomers count vector //CV for MX denoted:

a“] ’aCz ’ aC'z 'aC\ ’acl ’ aC, ’ aCx ’ aCA ’a54 ’ a”z ’ a”} ’ aCZV ’ aC}r 4

eV (MX) {

€327 Cy? T Cy? (24)
aD} ’ aciv ’ aCx: ’aD4 ’aczv 'aczn 'anzu ’aDEa ’ aD}h ’aDﬁn Ao aDm ’aDM Ao aTh ’ aTd 'aoh MX

The relation linking ZCV/ [A/D(] and PCV[MX ] is the dot product: 1516
ey [mx) < Wy, = Pcv | mx] 25)

explicitely denoted :
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ICV[MX]

aCl ’ aCZ ’ aC:’ ’ acc ’ aC; ’ aCl ’ acj ’ aC4 ’ aS4 ’ aDZ ’ aD’Z ’ aC_’V ’ acév ’ acgv ’ aC_’/’ ’ aCZ/’ ’

aD} ’ acjr ’ acﬁ ’ aD4 ’ aC4v ’ aC4h ’ aDzz/ ’ aDim ’ aDz/z ’ aDEh 2 and ’ aD4h Ao aTh ’ aTd ’ aOh
X
Won

ss6g, E 3C; 6C5 8Cy 6C4 i 6S4 884 3o, 6oy
< 48 ¢ 0 0 0O O O 0O 0 O
C, 24 8 0 0 0 0 O 0 0 O
'y 24 06 4 0 0 0 0 0 0 O
C, 24 6 0 0 0 0 O 0 8 O
(SN 24 06 0 0 0 0 0 0 0 4
C; 24 06 0 0 024 0 0 0 O
Cy 6 ¢ 0 4 0 ¢ 0 0 0 O
Cy 24 0 0 4 ¢ 0 0 0 0©
54 24 0 0 0 ¢ 4 0 0 0©
D, 212 0 ¢ ¢ ¢ 0 0 0 O
D, 24 4 0 0 ¢ 0 0 0 0©
Coy 24 0 0 0 ¢ 0 0 8 ¢
Cay 24 0 0 0 0 0 0 0 4
Cy 2¢ 2 ¢ 0 ¢ 0 0 4 2
& [124 0 0 012 0 0 4 ¢ (25)
Cin 2¢ 2 ¢ 012 0 0 0 2
D; 8 06 4 2 0 0 0 0 0 O
Cyy 8§ 0 0 2 0 0 0 0 0 4
Cy; 8 ¢ 0 2 0 8 0 2 0 O
D, 6 6 2 0 2 ¢ 0 0 0 0
Cyy 62 0 0 2 0 0 0 4 2
Can 62 0 0 2 6 2 0 2 ¢
Dy 6 6 0 0 0 ¢ 2 0 0 2
Dig 62 2 0 0 ¢ 2 0 4 ¢
Dy 6 6 0 0 0 6 0 0 6 ¢
D3, 62 2 0 0 6 0 0 2 2
T 4 4 0 4 0 ¢ 0 0 0 0©
Dyy 4 0 2 1 0 4 0 1 0 2
Dy, 3 3 1 0 1 3 1 0 3 1
0 22 2 2 2 ¢ 0 0 0 0
Ty, 22 0 2 0 2 0 2 2 ¢
Ta 22 0 2 0 ¢ 2 0 0 2
Oy 1 1 1 1 1 1 1 1 1 1

PCV[MX]

Nc Ni,q’NS

9’

(NExq ’ NCqu ’ NC} .q° NC3 4’ 44’ NSﬁxq ’ N”h .q° N‘Td 4 )
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The expansion of eq.25’ gives rise to 10 associated partition equations 26-45 called

Sylvester’s denumerants'®! of permutomers numbers N, ypy for the derivative MX. For

homosubstituted  cubane  derivatives CgHg X and cubane homo hetero-analogues

CH)g X :
( )8-4 q
48a, +24a. + Ma, + 24a, + 24a, + 2M4a, + 16a. +12a, +12ag + 12a, +12a,, 26)
8
Ng =|+l2a., +12a., +12ac, +12a. +12a., +8a, +8a. +8ac +6a, +6a. -+ —(q)
w6a, 64y +6a, +6a, +4a, +4a, +3a, +2a,+2ag + 245, +dg,
4
Vo Sac, +4ac, +4ag +12a, +4a, +4a., +4a., +4a. +o6a, +2d. B 7)
= =4
5] =z
+20c, +6ap, +20p 600y +20p, +4a,+3A, o+ 24, + 20y + 20y +dg, B
4
(28)
Ney =4ac, +4ap, +2dc, + 20, +4a, +2a, +24p, +20, +24, +a, +20,+0, =|q
2
4
_ (29)
Nn,, = b’ag + Sa% + 4“(;, + 4“% + 4‘1(“ + Zth + 4“0}, + 6aDM + 2“03,, + 3a[’4/. + 2a “ag, =4
2
4
- =34 (30
Na,, = 4aq + 4“c5‘_ + Zac}» + 2”@,, + 4acxw + Za(,m + 2aDM + Z“D;,,, + 2aDM wa, Za,d +ag, = Z(a) q-a
=0
2
4
N.=24a. +12a,. +12a, +8a. +6a,. +6a, +6a, +4a, +3a, +2a, +a, =| q (31)
i G Can on Csi Can Doy Dhy Dsq Dy T Op =
2
2 2
= -3y(? 32
NC3 = 4an +2aD1 + ZaCh + Zan +4a, + a, + 2a, + Z“T,, + 2aTd +ag, = Z(ﬁ) a-p ( )
p=0 3
2
_ _ (33)
N, =4ac +2a, +2a; +2a. +a, +2a5+dg =| ¢
4
2
_ NV (34
Ns4.q = 4as‘ +2aCM *2%7,‘, +2aDBa +ap, *2‘1@ +dg, = NM‘q =4
4
_ (] (35
Nsn - 2(1(3’ “ap, 2“'/. “do, = Z ) M
2=0 P

The integer values V, gi and an satisfy the conditions Ngi,q :Ngi,8-q and an,q :an’g_q
due to the complementarity of the degrees of homosubstitution ¢ and 8-¢.

For heterosubstituted cubane derivatives C, quXq[ qu_ --qu and cubane hetero hetero-

analogues(CH) P Yfli .qu;
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48“(, + 24:1(1 + 24”5;, + 24“@ + 24“5; + 24a[’ + 16aC] + 12aq + 12as’ + JZaDJ + JZaD}

8 (36)
Ng = +12ach + 12(1(.," + 12(1(."" + 120(.”1 + [Za(.;h + 8003 + Sach + r?a% + 600‘ + 60(.“ + 60% = J
: : : E k Gy oty
+6a,)3’/ + 6aD,M + 6aDM + 6a,)}/7 +da, + 4”0,,,, + 3a% + 24, + 2ar,, + ZaTd + g,
N Sac, +4a. +4ag +12a, +4a, +4a. +4a. +4a. +6a, +2d. [ 4 j 37
[C3n - 4 4k
+2ac, +6a, +20y +6a, +2a, +4a,+3a, 205+ 20y +2ar +dg, 2T
N, =4a,., +4a,, +2a. +2a. +4a, +2a, +2a, +2a, +2a, +a, +2d,+d, = ‘ (38)
(e} ¢y * Ty ey, + ey *Ap, Ll Llpy, T lpy, + 2y, T, T o, Tl 4 d
2720
N_=8a. +8a, +4a. +4a. +4a. +2a. +4a, +6a, +2a, +3a, +2a, +a, = ! (39)
h < Ca Chv Con Cpe o Daq Dy, Dy, Dyy /R O (R R /3
272
o 7 o : (40)
N, =4ac +4ac, +2a¢ +2ac, +4ac +2ac +2a, +2a, +2a, +a, +20, +d, —% s Dy @fnfoc]

N;=24a. +12a. +12a. +8a. +6a
i 2h 2h

4 41
] Csi (T 6a1’:h * 6““5/’ * 4““3(1 * 3a04h M 2a7n +do, = [ ] ( )

_ 2 2 (42)
NC3 = 4“@ + 2anj + Zaij + Zach +da, + ap, + 2a, + 2‘17/, + ZaTJ +ag, = Z(p” pk)[q )

. . .
T\ Py Pjreenr g2 Gjreeer qy
2 (43)
Ne, =4ac, +2a, +2a. +2ac +a, +24,+0a, :[ﬂ @ Lk]
g ey
2 (44)
Ns4 = 4“s, + 2"0,, + 2””:,,1 + 2“”34 +dp, + 2ard +dg, = NS4 = (ﬂ q ‘Lk]
4y

_ 1 ! (45)
Ny, =2ac, +ay +2a, +ag —Z( " 1’1{')( s qm)

g Dyseees P [ i

The selection rules for forbidden and allowed Gj symmetries are applied to find numerical

values of the indeterminates aG,,A/D( 20.

1-If N, g.MX = 0, the numbers aG,-, M in such equation are nil aG/, wx =0. Such nil values

in the IICV(MX) indicate G ; symmetries (in subscript) forbidden to the molecular system
MX.

2-1If N, g1 MX >0 positive integers an, e > Oindicate the number of stereoisomers assigned

to the symmetries G ; (in subscript) occurring for a molecular system MX.
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For the sake of comparison, the aG,,’W values of this pattern inventory satisfy eq.46 where

C,, and C,, are the coefficients of Polya’s generating functions of types

f(xq,MX) = iC,qu

q=0

and f(xq/,._.,yq,,_uquk ;MX): 3 Gyt for homo and hetero-polysubstituted
qi

1 Qi ek

cubanes (MX) respectively:

Denumerant Bipartite enumeration
- /7 C,, ”
2.4 ox = Aevx + Aaepx = c (46)
G he

J
Note that for O group acting on a molecular skeleton MX the partition of the numbers

A,y of chiral and 4, of achiral cubane derivatives MX calculated from eqs.47-49 for
bipartite enumeration reported in part I of this study are respectively expressed in this part II

as sum total of a.. the numbers of MX stereoisomers having chiral Gj -symmetries eq.48
J

and sum total of a the numbers of MX stereoisomers having achiral G?c -symmetries
4 .

eq.50:

Ay = :?(NE +3N¢, +6N¢, + 8N +6N¢, )~ (N, +6Ng, + 8Ny, + 3N, +6N, )(47)

¢l

a(«'/ + acz + CZC} + a(;3 + ac‘! +a

D
Av=>a, = ’ (48)
aMX sz Gjmx a, +8a, +a, +a, +2d,
1
A = ;I:Ni +6Ng, +8Ng, 3N, +6N, ] (49)

a. +a. +d. +a a. ta. +a. +a, +a. +a. +d,.
A _za _[ ¢, T 8 s, e, ey, T, Ty, T %, T, ey ] (50)
ac,MX G =
j MX

+d, +da +d, +d +a +dr +dr +d
Gy Dy Dy D3q Dy, T T Oy

.o+ d. +a +d,
Ca Can Daq Daa h

5 Applications to itemized enumeration of substituted cubane
derivatives and cubane heteroanalogues

Example 1: Let us apply the Sylvester denumerants of O, symmetry to itemized enumeration

of homosubstituted cubane derivatives CgHg X and cubane homo hetero-analogues
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(CH) X where 0<g<8. By applying eqs.11-19 and 26-35 with the selection rules one

8q7q
derives:
For ¢q =0,

N —8:1N =N~ =N, =N —471
E,o_o yNC, TN, TN T oh_o_

T R NN ) RIS

Np=Ng, =Ng, =N; =N, =N, =N, =Ng =Ng =N, =a, =1

pcv(CoHy) = (LLLLLLLLLY)

IICV(CSHS) :(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1)

This trivial result predicts the occurrence of one cubane skeleton of O, symmetry. The other

subgroups of Oy, are forbidden.

Forq:1,7, NCZ :NC2 :NC4 zivl :No'h :NS4 =NS6 :O

= :8:- = :42:- = :22:- =
Ng=éac, (1) & N, =d4a. (1)(0) 4N, =2a., (1)(0) 2 a, =1

PCV (CyH,X)=(8,0,0,2,0,0,0,0,0,4)
1cv(CH,x) =(0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.0,0,0,0,0)
For4=2 , NC4,2 ZO'NS4,2 =0,

8 4 4
Ng=12a, *l12a. +12a, +4a, = (2) =28 N¢,,=4a, *4a. :(1) =4,N¢,, =2a,, +2a, 2(1) =4

N. =a

G D3q + 2aC3v 1

PCV(CgHgX,5)=(28,4,4,1,0,4,0,1,4,8)
a,, =qc, Tae = I the other symmetries are forbidden.

HCV(CgHgX, ) =(0,0,0,0,0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0)
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For 4 =3, NCz =NC2 =NC4 =NS4 =N; =NS6 :No,, =0

8 2\(2
Ng,=24a., +8a. = (2) =56, N, ,=2a, = (0)(]) =2

4\(2 4\(2 " o
N%3 =4ac3,, +4aq =(1)(1)+(3)(0)=12

PCv(CgH x3) =(56,0,0,2,0,0,0,0,0,12)
CV( CgHs X5 ) =(0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

For §=4 Ny =0 =ag =0
8
Np =24a., +24a., +8a, +o6a. +6a, +2ap 2(4) =70
Neo =2 +2 +2 —4—6 Ne o, =4a, +2 —4—6
c ~ ac.w aD}h aTd - 2 - Coa ™ aC} aD}h - -
2\(2 2
N¢, =2a, +2ar _(1)(1)_4’ Nc,,=2a., —(])—2
4 22 4
N;=6ap, —(2)—6, N, 4 =24, —(1)(0)—2, Ng 4=4ac, ta, —(2)—6

N, =4a, +4a, +2a, +2a, +2a, :(4)(2)+(4)(2)+(4)(2):14,
%d s v “4v 2 d 0/\2 2/\1 4/\0

¢, =ae =a. =a, =a, =a, =Itheother symmetries are forbidden

v

Pcv(Cgt ,x ;) =(70,6,6,4,2,6,2,0,6,14)
v (Gt X,) =(0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0)

Integer numbers NV, gig and an ,¢ permuting their degrees of substitution g and 8-g satisty the

conditions:
Ng,;q :Ngi’g_q and an,q = an’g_q for the series CgHg X and CgH X, | (51)

These equalities are used to compute the components of 1cv(C,H 5g %) and PCV(C4H, 54Xy)

in the range 0<g<8§. The collection of PCVs and IICVs calculated in this range generates the

permutomers count matrix PCM(CyH, X,) and the itemized isomers count matrix

NICM (C4H,y X)) which satisfy the generalized dot product:
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M [MX]Z: x W, = PCM [MX]Zij (52)

explicitely written in eq.52 which

summarizes the results of the symmetry adapted

enumeration of homosubstituted cubanes CgHg. qX q and cubane homo hetero-analogues

(CH)g 4 Xg-

HCM(Cylly X}

I

0.8 000 02
1.7 000 00
26 000 00
35 000 20
44 010 10

(Ti (‘3 (‘4 S4 D2 D'z (72\’ (‘?..v (‘;v(‘lh(‘;h DJ (73v(73i D4 (74v(74|| DZd DZ’d DZh D;h T Dld Ddh o Th Td Oh
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Ng N¢, N¢, Ne Ne, N; Ng, N

qn-q NO’h NUd
08 [t 111 1 11 1 1 1
L7 |8 0 0 2 0 00 0O 0 4
26 |28 4 4 1 0 4 0 1 4 8
35 /56 0 0 2 0 0 0 0 0 12
44 )70 6 6 4 2 62 0 6 14

N, giand (lG/_ values reported in the PCM and the ICM predict: one Csv- stereoisomer for

mono- and hepta-substituted cubane derivatives CyH, X ,C HX ;5 Dy, +C,, +C; -stereoisomers
for di- and hexa-substituted cubane derivatives; CgH X,, CgH,Xs; C; +2C!—
stereoisomers for CgHsX3,CoH X then C, +q +C,, +C,, +D!2h +T, —isomers for tetra-

homosubstituted cubane derivatives CgH 4Xyq- Similar enumerations are found in the series
of cubane homo hetero-analogues (CH) 8q X e These results summarized in table 2 and

illustrated in fig.1 are in agreement with the data C,, = A4, + A4,. (eq.46) obtained in part I.

ssiByantsualom
vitaksnagase
eSEhsIpes S iaRastpis

fodaapes
PRSENOHIBHRR O

O=C-X for Cyllg X, ®=atrivalent atom .Y for (CH)g ,¥,

Figure 1. Graphs of 21 possible homosubstituted cubane derivatives CsHs.,X, and cubane homo
hetero-analogues (CH)s.¢X;.
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Table 2. Numbers of stereoisomers and symmetries predicted for homosubstituted cubane derivatives
(CsHs.4X;) and cubane homo hetero-analogues (CsHs.¢Xy).

q (CH)s.4Xq 4, A, Gy Occurring Symmetries

0 CsHy (CH)s 0 1 1 Oy

1 CsH X (CH);X 0 1 1 Csy

2 CsHsX> (CH)sX> 0 3 3 Ds3it2Cy

3 CsHsX;3 (CH);5X;3 0 3 3 2C+Csy

4 CsH Xy (CH)4X4 1 5 6 Co+Cs+C3+Cyy +Dopt+Ty
5 CsH3Xs5 (CH);:X;5 0 3 3 2C+Csy

6 CsH X5 (CH) X5 0 3 3 Ds3it2C

7 CsHX7 (CH)X; 0 1 1 Csy

8 CsXs Xs 0 1 1 O

Example 2: Denumerants of O, group for symmetry adapted enumeration of di, tri,
tetra,penta,hexa and hepta hetero-polysubstituted cubane derivatives and their corresponding

hetero hetero-analogues given in table 3.

Table 3. Molecular formula of di, tri, tetra, penta, hexa and hepta hetero-polysubstituted cubane

derivatives C;H, X ....Y, ..Z, and cubane hetero hetero-analogues (CH), X, ...Y, ..Z,

| CH, X, .Y, .Z /(CH), X, .Y .Z |k|CH X .Y .Z /(CH),X, .Y .Z
2 | CsHsXY /(CH)sXY 4 | CsHXoWoYZI(CH)2 X2 WaYZ
CsHsX>Y! CH)sXoY CsHXWYZ |(CH)JXWYZ
CsHX>Ys/ (CH)4X2Y> CsH3;XoWYZ | (CH)3s XoWYZ
3 | CsH3XoY2Z) (CH)sX2Y2Z 5 | CsHXoUWYZ [(CH) X UWYZ
CsHsXYZ/ CH)sXYZ 6 | CsH: XPUWYZ/ (CH):2XPUWYZ
7 | CsHXSPUWYZ | (CH)XSPUWYZ

*k=number of achiral substituents of different kinds.

To solve this problem for each compound aforementioned we use the appropriate values
qg»-4;»--»q; and compatible pairs of integer sequences(p,.....5,....5, ) <>

"

(Gl ) (groonttysoonity ) > (Gl and
(gt ) > (s

given in table 3 of part I.
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For CgH XY | (q,),qj,qz) =(6,1,1), k=2, we derive from eqs.15-24 the Ngi distinct

arrangements of achiral substituents X and Y as follows:

8
Ngp=48ac, +24ac +8ac, = [6 ; Ij =56

2 2
No =2a, = =2 =a. =0,an =2, a. =1,
3 3v 0’1,1 2’ 0’0 ‘1 s “3v

4 2
N, =4a, +4a, = =12
% G o (z, 1,1)(2,0,0)

Ng, =Ng, =Ng, =N; =Ng, =Ng =N, =0 and their A, values are nil.

In accordance with the selection rules the symmetries forbidden to CyH ;XY are:

G. =

{CI’CZ’C}’C.&’Ci’CJ’C4’s4’DJ’D}’C.’V’CZ’V’C;\"C.’h’C:’h’D!’]
J

c,,b,,Cy,,Cy,,D,,,D,,,D,,,D,,T,D,,,D,,0T,,T, 0,

while G - (C;,C}v) are allowed symmetries

PCV(CyHXY) =(56,0,0,2,0,0,0,0,0,12)

1cv(CH xY) =(0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
For CgHszY,(qo,ql,qz) =(5,2,1), k=2,

8
Np=48ac, +24ac =(5 5 J =168

N, =Ngy=Ne,=N¢,=N,=Ng,=Ng =N, =0

2 2 Th

s O B P
g s \n21 0\ 200) (01 )\ 110

Pcv(CyH X, Y) =(168,0,0,0,0,0,0,0,0,20)

e, = L e = 5 Hence C, ", and C| are allowed the other symmetries are forbidden.
]ICV(C8H5X2Y) = (1, 0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0)
For CyH XY (qﬂ,ql,qz) =(4,2,2),k=2,

2722

8
N, = 48ac, + 24ac} + 24aq + 24aq + 12aC}V + 12aC3‘7 + 12(1% = (illj =420
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4
N¢, =4ac, = (2,1,1) =12

4
Ney, =4ac, +2ac; +24ac, —( j =12

2,11
_ 4
N;=12ac, :(2 ; 1) =12

4
N,, =8ac +4ac, = (2 ; 1) =12

(oo )lons) (o2 )lins)

4,0,0 )\ 0,1,1 2,2,0 )\ 1,0,1

Ngd = 4ac‘, +4ac;‘, +2ac5‘, +2aC}h =/, 5 . 5
(2,0,2)(1,1,0) ' (0, 2,2)(2_ 0, 0)

N¢,=N¢,=Ng,=Ng =0
PCV(CyH XY, ) =(420,12,12,0,0,12,0,0,12,32)

ac, =4, ac, =2 ac, =] ac =4, ac, =3, dc, =1, ac, =], the other symmetries are
forbidden.

IICV(C8H4X2Y2) = (4, 0,2,1,4,0,0,0,0,0,0,0,3,1,0,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0)
For CyH s XYZ ,(4p, 91> 4,.95) =51 11, k=3, the pairs of 4-tuples (2 Py Py Py 4y 4 q'z,q;)
and (P(”), P;, p;, p;,<—>q3, 6]}", 6];,6];) are incompatible with the restrictions (7) and (11) and

we compute from eq.9:

Py 2y P 0y =(LL11), 45, 4l 45,45 =(2,0,0,0) then,

N =48a,. +24a, = § =336
- NN

N¢,=Ngy=Ne,=N¢,=N,=Ng,=Ng =N, =0

2 2 Th

4 2
N, =4a. = =24
% G (1, L1, 1)(2,0, o,oj

PCV(CyH;X¥Z) =(336,0,0,0,0,0,0,0,0,24)

ac, =4, ac =6. Hence C . and C,-symmetries are allowed for CyH;X¥Z the others are
forbidden.

ey (G xvz) =(4,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
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For CH, XWYZ / (CH),XWYZ k=4, 9991, 9, 9394 =41,1L1, compatible pairs of integer

sequences (ap,a;,0,,a5,0,) <> (q,.97.95.95.95) = (0,1,1,1,1) <> (2,0,0,0,0) then we

compute:

8
NE:48aC1 +24aq_ :(41 ] 11]:1680

4 2
N, =4a. = =24
od s 0,1,1,1,1)\ 2,0,0,0,0

Ne, =N, =Ne, =Ne, =N, =N, =Ng =Ng =0
e, = 32, ac = 6 for allowed symmetries the others are forbidden.

Pcv(CyH, xvwz) =(1680,0,0,0,0,0,0,0,0,24)

HCV(CH,XYWZ) =(32,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

For CsH3X2WYZ and (CH)sX:WYZ, k=4, 4p, 4, 4,.93.94 =321, 1,1, compatible pairs of integer

sequences (@, ,&,,05,a,) < (q5.9].95.95.95) = (1,0,1,1,1) <>(1,1,0,0,0) ; then we

compute:

8
N =48a,, +24a, :(32] ; 1]—3360

4 2
N, =4a. = =48
% T \nonni)\1,1,000

N¢,=Ngy,=Ng, =N, =N;=N, =Ng =Ng =0

g, =64, ac =12 for allowed symmetries the others are forbidden.

pev (cyH X, wz) = (3360,0,0,0,0,0,0,0,0,48)

1y (CyH X, YWZ) =(64,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

For CsH X:W>YZ and (CH)2XoW>YZ, k=4, 4y,4;,9,.95.94 =22211, compatible pairs of

integer sequences are (@,,a;,a,,0;,0,) <>

(q90.97.95.495.95) = (2,0,0,1,1) < (0,1,1,0,0),

0,0,2,1,1) <>(1,1,0,0,0), (0,2,0,1,1) «<>(1,0,1,0,0) then we compute:
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8
Np =48a, +24a, = = 5040
BT 7 e [2,2,2,1,1}
4 4 2
=406 (somaa)osiao)* ( Joaian) o)
a : 200,10 )\0,1,,00) \0.2,0,1,1)\1,0.1,00) \0,021,1 )\ 1,1,0,0,0
N¢,=Ng,=Ng,=Ng, =N,=N, =Ng, =Ng =0
Ac, =96, ac =18 for allowed symmetries the others are forbidden.
PCV(CyH,X WYZ) =(5040,0,0,0,0,0,0,0,0,72)
HCV (CH,X ,YZ) =(96,0,0,0,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
For CH,X,UWYZ /(CH),X,UWYZ, k=5,4,,4q;, 9939495 =2,2,1111 there is no compatible pairs of
integer  sequences(f,....4....5,) > (q(')wuq,{w"]/'c),(aO"”’ai’""ak) < (qéq,”qi)

and(lo,...,/ii,...,ﬂk ) > (ng;"qZ') then we compute

8
N =48a., = (2’2’ Ll J =10080

N¢,=Ng,=N¢, =N, =N,=N, =Ng, =Ns =N, =0

2 3 4 h 4

aq =2100nly C; is the allowed symmetry the others are forbidden.

PCV(CyH, X UWYZ) =(10080,0,0,0,0,0,0,0,0,0)

ey (CyH,X ,umyz) = (210,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

For CGH,XPUWYZ/(CH),XPUWYZ, k=6,qo,q1,q2,q3,q4,q5,q6=2,1,1,1,1,1,1 there is no

compatible pairs of integer sequences (ﬂ,, ,,,,, Biveos ﬁ”(—)(%}»n-:%»--u‘]/;),

(ao,...,al.,...,ak) “ (ngl"qg) and (/10,...,/1[,...,1,{) (q;)",...,q;”,...,q,:') then

we compute:

Np =48a;, = (2,1,1,1,1,1,1) 20160

N, =Ng, =N¢, =N¢, =N,=N, =Ng =Ng =N, =0

Td

ac, = 420 only C; is the allowed symmetry the others are forbidden.
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PCV(CyH ,XPUWYZ) = (20160,0,0,0,0,0,0,0,0,0)

1cv (CyH,XPUWYZ) = (420,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
For GHXSPUWYZ / (CH)XSPUWYZ k=7,9y> 91> 95939495 95:97 =L LLLLLLI there is no
compatible pairs of integer sequences (4,,....5,....5, ) <> (q(,;%"];( ) (@t )

(ng;%:) ) and (ﬂo,...,li,...,lk) x4 (q,}"q,’"q,:') then we compute :

8
N =48a, = = 40320
! 1,1,1,1,1,1,1,1
N¢,=N¢,=N¢, =Ng, =N,=N, =Ny =Ng =N, =0

aC, =840 only C; is the allowed symmetry the others are forbidden.

PCV(C,HXSPUWYZ) =(40320,0,0,0,0,0,0,0,0,0)

IICV(C8HXSPUWYZ) = (840, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0)
These calculations agree with the entries of the generalized dot product given in eq.52. The
sum of occurring symmetries obtained from the denumerants method and summarized in

column 7 of table 3 matches up with the isomers numbers C,, = 4, + 4, predicted in part I of

this study. Some molecular graphs are given in fig.2 for illustration.

Table 4. Numbers of stereoisomers and symmetries predicted for some heteropolysubstituted cubane

derivatives CH, X, .Y, .Z, and cubane hetero hetero-analogues (CH P, GRS
q0 1 i 'k o T i 5

PRPRRPRN U R T A RO RS KO )
6,1,1 CsHsXY (CH)sXY 0 3 3 C;, +2C,
52,1 CsHsX2Y (CH)sX>Y 1 5 6 C, +5C}
51,11 CsHsXYZ (CH)sXYZ 4 6 10 4C, +6C,
4,22 CsH4X>Y> (CH)4 X2Y> 6 10 16 4C; +2C, +4C, +
C, +3C, +C5, +Cy,
3,221 CsH3;XoY2> 7 (CH);X2Y2Z 28 14 42 28C, +14C,
4,1,1,1,1 CsHIXWYZ (CH)4XWYZ 32 6 38 32¢, +6C,
321,11 CsH:X>WYZ (CH); XoWYZ 64 12 76 64C, +12C,
22211 CsHXoW2YZ (CH): X> W2YZ 96 18 114 96C, +18C,
2,2,1,1,1,1 CsHoXoUWYZ (CH):X>UWYZ 210 0 210 210C;
2,1,1,1,1,1,1 CsH XPUWYZ (CH):XPUWYZ 420 0 420 420C;
1,1,1,1,1,1,1,1 CsHXSPUWYZ (CH)XSPUWYZ 840 0 840 840C
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TOMCy/epaXy s Yay )
ol Y9r Zix | €y €3 €1 €, €4 Ci €5 €y $4 Dy Dy Cay Chy €3 C2uCin D3 Ca, O Dy Cay Cay D Do Doy Dy T Dy D © Ty T Oy
| —

CalleXY ¢ 60 G20 0006000G 0 G GOG1 0C00CGC0 @ 00 600 G000
CyllsX,Y 1 00 050 000060000 G 00GG0G0OC0 @00 6060 0000
CyllyXY; 4 02 1 40 000060603 1 G 1066006000 ¢ 0 @ 000G 000
CellsXYZ 4 00 060 000060600 G G 006G O0OG0CO0G @0 G 000G 00 A0
Cell,XWYZ 3200 060 0006000G 0 0 000600000 @ 00 6060 0000
CALX,WYZ 6400 0120 00000 0CG 0 0 000GO0CO0O0CGO0 @ 00 600 6000
Cell;X, W, YZ 9% 0 0 G180 00 G000 G 0 G 00GOCOGO0CGOC @ 00 600 6000
CollXUWYZ 2100 0 0 6 0 0000000 0 G 000G O0000G ¢ 00 000G 0000
CglXPUWYZ 4200 6 0 6 0 0 0 0OG 0O G G 006G 0O0O0CO0CG @0 @ 000G 0G0
CgHXSPUWYZ | 8400 0 0 6 6 0 0 000 G G G 0 000G G 00 G0 ¢ @ 0 000 00 00|

5860, |F 30y 603 8C; 6C4 ¢ 684 85 3oy 604
¢ |40 0 0 0 0 0 0 0 O
[} 248 0 0 0 0 0 0 0 0
(o 240 4 0 0 0 0 0 0 0
C 240 0 0 0 0 0 0 & 0
C. 240 0 0 0 0 0 0 0 4
G 240 0 0 024 0 0 0 0
G 60 0 4 0 0 0 0 0 0
Cs 124 0 0 4 0 0 0 0 0
8y 124 0 0 0 0 4 0 0 0
D, 1212 0 0 0 0 0 0O 0 0
D; 124 4 0 0 0 0 0 0 0
Coe 124 0 0 0 0 0 0 & 0
e 124 0 0 0 0 0 0 0 4
e 120 2 0 0 0 0 0 4 2
Cu 124 0 0 012 0 0 4 0
Ca 120 2 0 012 0 0 0 2 (52)
D 80 4 2 0 0 0 0 0 0
Cse g0 0 2 0 0 0 0 0 4
Cs g0 0 2 0 8 0 2 0 0
Dy 66 2 0 2 0 0 0 0 0
Cov 62 0 0 2 0 0 0 4 2
Can 62 0 0 2 6 2 0 2 0
Daa 66 0 0 0 0 2 0 0 2
Dy 62 2 0 0 0 2 0 4 0
D, 66 0 0 0 6 0 0 6 0
D3y 62 2 0 0 6 0 0 2 2
T 44 0 4 0 0 0 0 0 0
Dsa 40 2 1 0 4 0 1 0 2
Dy 33 1 0 1 3 1 0 3 1
[s] 22 2 2 2 0 0 0 0 0
o 22 0 2 0 2 0 2 2 0
i 22 0 2 0 0 2 0 0 2
0y ‘ 11 1 1 1 1 1 1 1 1 ‘

CyHqyXq;.. Y, . Zq, PCMCsHqpXqy. . Yq;.-Zq; )

r ' 1
[CyHoXY ] |6 00 2000 00 12
CyHsXpY 8 00 000 0 00 20
CsH 0T, 420 1212 0 0 120 0 12 32
CeHsXYZ 36 0 0 200 0 0 0 24
CsH XWYZ 1680 0 0 0 0 0 0 0 0 24
CsH;XoWYZ 330 0 0 0 0 0 0 0 0 48
CyHXoW,YZ 5040 00 0 00 0 0 0 72
CyHXOoUWYZ 10080 0 0 0 0 0 O 0O 0 0
CgH,XPUWYZ 20060 0 0 0 00 0 0 0 0
CgHXSPUWYZ 403200 0 0 00 0 0 0 0




-470-

Eq.52 summarizes N,and an values computed and collected to form the permutomers
count matrix PCM(CyH, X, ..Y,..Z ) and the itemized isomers count matrix
HIICM(CH, X, ....Y,..Z,) for heteropolysubstituted cubane derivativesCH, X, ....Y, ..Z,
and their heteroanalogues considered in this study. These results predict: 2C, +C;, -
stereoisomers for CyH XY ; C+5C, —stereoisomers for CiH X ,Y;4C; + 2C)-chiral and
C, +4C, +3Ch,

+C5, + Ch,-achiral stereoisomers for CgH,X,Y,then4C; + 6C;-isomers for Cy H XYZ,
32C; + 6C;-isomers for C H , XYWZ , 64C; + 12C,-isomers for C H ; X ,YWZ , 96C; + 18C,
-isomers for CyH ,X ,W,YZ, 210,420,840 C,-isomers for C H,X ,UWYZ Cy H,XPUWYZ

and C{HXSPUWYZ respectively. Similar results are found for their corresponding cubane

hetero-hetero-analogues series (CH)sXY, (CH)sX2Y, (CH)«X>Y>, (CH)sXYZ, (CH)XYWZ,
(CH):X>YWZ,
(CHYX:W2YZ, (CH).XoUWYZ, (CHXPUWYZ and (CH)XSPUWYZ.

6 Conclusion

A six-steps algorithm including: (1)-the determination of permutations induced by 10
conjugacy classes of symmetry operations of Oy group acting on cubane skeleton; (2)-the

transformation of these permutations into generic formulae for deriving ten permutational
isomers numbers Np,Nc,,Ne,, N, Ne,»N;, N, Ng, s Ny N characterizing  series of
substituted cubane derivatives; (3)-the determination of 33 non-redundant subgroups of O;

(4)-the determination of WO;, = [WG;,g,' ]a matrix of 33x10 elements WG/'&‘ called matrix of

the weights of the subgroups Gj of Oh calculated with respect to their symmetry operations

g; € G, ;(5)-the construction of ten Sylvester’s denumerants of type N, P ZCIG/,WG
i G.
J

j-8i
equating these integer numbers as sum of symmetry adapted isomers numbers aG/_ scaled by
the weights ijxgi of 33 subgroups of Oy, ; (6) -The resolution of this mathematical model of

10 associated partition equations generates row vectors with 33 entries an 20 enumerating

substituted cubane derivatives or cubane heteroanalogues of given symmetries. The results
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provide a systematic decomposition of 4. and A.c obtained in part I as sum of ag_ chiral and
J
ag; achiral symmetry adapted isomers numbers. Such pattern inventories can be used for
J

stereochemical analyses and molecular design.
CsHsXY and (CH)sXY

@ o

CsHsX>Y and (CH)sX>Y

Tl (19 11 A (7 [

CsHyX2Y2and (CH)4X>2Y>

peidlesdhustyecdyssthond
il @@@@

s restesifscBin

4C,, Copy

CsHsXYZ and (CH)sXYZ

7 £ 7] ¢
777} ¢ ¢ 7 T gl e

CsHXYWZand (CH)XYWZ

MR o rid T T

o=C-H @=C-X 0=C-Y O=C-W @=C-Z forsubstituted cubanes
0=X O=Y @=7 (=W o=C-H for cubanc hetcroanalogucs

Figure 2. Graphs of di, tri and tetra-heterosubstituted cubane derivatives of types CsHsXY, CsH;X>Y,
CsHsXYZ, CsHX,>Y>,CsHXYWZ and their corresponding cubane di, tri, and tetra-hetero hetero-
analogues (CH)sXY, (CH)sXzY, (CH)sXYZ, (CH)X>Y, (CH) XYWZ.
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