MATCH

MATCH Commun. Math. Comput. Chem. 84 (2020) 429-448

Communications in Mathematical and in Computer Chemistry

ISSN 0340 - 6253

Bipartite Enumeration of Chiral and Achiral Skeletons of Substituted Cubane Derivatives and Heteroanalogues. I.

Robert Martin Nemba*, T. Makon, Ndobo N. J. Eric

Faculty of Science, Laboratory of Physical and Theoretical Chemistry, Yaoundé I University, P. O. Box 812, Yaoundé, Cameroon

nembarobertmartin@yahoo.com

(Received February 17, 2020)

Abstract

The study presents the determination of: (1)-permutations of 8 substitution sites of cubane submitted to the O_h group action, (2)-the formulation of permutations representations controlling the chirality and the achirality fittingness of cubane skeleton, (3)-the construction of the enumerators of homogeneous and heterogeneous arrangements of substituents among 8 substitution sites of this molecule,(4)-the transformation of permutations representations into generic formulas for bipartite enumeration of A_c chiral and A_{ac} achiral skeletons of homo- and hetero-polysubstituted cubane derivatives ($C_8H_{8-q}X_q$, $C_8H_{q_0}X_{q_1}...X_{q_l}...Z_{q_k}$), cubane homohetero-analogues (CH)_{$8-q}X_q$) and cubane hetero hetero-analogues (CH)_{q_0} $X_{q_1}....Y_{q_l}...Z_{q_k}$ where X,...,Y and Z are achiral substituents.</sub>

1 Introduction

The discovery in 1964 by Eaton and Cole ^[1-4] of cubane a pentacyclo-[4.2.0.0^{2,5}.0^{3,8}.0^{4,7}]-octane also called 4-prismane has opened a great deal of interest for the design and synthesis of its derivatives.^[5-6] We recall for instance the hepta and octa-nitrocubanes known to be highly explosive^[7], the series of cubane dicarboxylic acids^[8] and the collection of novel pharmaceutically cubane derivatives reported in the literature.^[9] The expansion of such molecular series leads to stereochemical investigations including enumeration problems. Fujita has presented a paper on combinatorial enumeration of cubane derivatives as three-dimensional

^{*} Corresponding Author

entities ^[10-11]. This study shows how to construct permutations representations controlling the chirality and the achirality fittingness of cubane submitted to the O_h group action and obtain a bipartite enumeration of enantiomers pairs and achiral skeletons of substituted cubane derivatives and heteroanalogues. The molecule of cubane symbolized by the empirical formulae C_8H_8 or $(CH)_8$ affords the following modes of substitutions:

(1)-Replacement of qH by qX substituents of the same kind yielding homosubstituted cubane derivatives $C_8H_{8-q}X_q$. (2)-Substitution in accord with the obligatory minimum valency (OMV)restrictions ^[12] of qCH groups by qX trivalent heteroatoms of the same kind giving rise to homogeneous cubane heteroanalogues^[13]or cubane homo hetero-analogues(CH) $8-qX_q$;

(3)-Substitution keeping q_0H hydrogen atoms and replacing the remaining others by $q_1X \dots, q_iY, \dots, q_kZ$ substituents of different kinds generating polyhetero-substituted cubane derivatives $C_8H_{q_0}X_{q_1}\dots X_{q_k}$;

(4)-Substitution keeping $q_0(CH)$ groups and replacing the remaining *CH* groups by $q_1X, ..., q_iY, ..., q_kZ$ trivalent heteroatoms of different kinds yielding composite cubane heteroanalogues or cubane hetero hetero-analogues $(CH)_{q_1}X_{q_2}...X_{q_k}$.

Throughout this paper we use the following naming approach: (a)- cubane homogeneous heteroanalogue or cubane homo-hetero-analogue for $(CH)_{8-q} X_q$ a molecule of cubane where methine groups (CH) are replaced by trivalent heteroatoms of the same kind and (b)-cubane composite heteroanalogue or cubane hetero hetero-analogue for $(CH)_{q_0} X_{q_1} ... Y_{q_i} ... Z_{q_k}$ a molecule of cubane where methine groups (CH) are replaced by trivalent heteroatoms of different kinds in accord with the OMV restrictions.

2 Permutations representations controlling the chirality and the achirality fittingness of cubane.

2.1 Permutations of hydrogen and carbon atoms

The architecture of cubane can be described as a succession of 4 edge-fused cyclobutane rings forming 4 vertical faces of a regular 4-gonal prism comprising 4 vertical C-C bonds joined together at right angle and 4 pairs of C-H bonds in eclipsing position. The appropriate representation of such a molecular system is a tridimensional cubic stereograph given in fig.1 where 8 white labeled vertices and 8 alphabetically labeled black vertices representing hydrogen and carbon atoms respectively form a unicage shaped hydrocarbon of octahedral symmetry O_h with 48 symmetry operations detailed in eq.1:

$$O_{\hbar} = E, \ 8C_3 = 4\left(C_3^I, C_3^2\right), \ 6C_2^\prime, \ 6C_4 = 3\left(C_4^I, C_4^3\right), \ 3C_4^2 = 3C_2, \ i, \ 6S_4 = 3\left(S_4^I, S_4^3\right), \ 8S_6 = \left(S_6^I, S_6^5\right), \ 3\sigma_h, \ 6\sigma_d$$
(1)

Let us consider the stereograph of cubane of O_h symmetry shown in fig.1 and note that 8 hydrogen atoms symbolized by 8 labelled white vertices are located in an outer cubic orbit denoted $H_8 = (1,2,3,4,1',2',3',4')$ and 8 interconnected and alphabetically labeled black vertices joined to white vertices are located in an inner cubic orbit $C_8 = (abc,da',b',c',d')$. The O_h group actions on these two concentric cubic orbits are denoted:

Figure 1. Stereograph of cubane with its O_h symmetry elements.

$${}^{O_h}H_8 = P^{(E)}H_8, P^{(C_2)}H_8, P^{(C_2)}H_8, P^{(i)}H_8, P^{(\sigma_h)}H_8, P^{(C_3)}H_8, P^{(C_4)}H_8, P^{(S_4)}H_8, P^{(S_6)}H_8, P^{(\sigma_d)}H_8$$
(2)

$$P^{(O_{h})}C_{8} = P^{(E)}C_{8}, 8P^{(C_{3})}C_{8}, 6P^{(C_{2})}C_{8}, 6P^{(C_{4})}C_{8}, 3P^{(C_{2})}C_{8}, P^{(i)}C_{8}, 6P^{(S_{4})}C_{8}, 8P^{(S_{6})}C_{8}, 3P^{(\sigma_{h})}C_{8}, 6P^{(\sigma_{d})}C_{8}$$
(3)

The terms of types $P^{(g_i)}H_8$ and $P^{(g_i)}C_8$ in eqs.2-3 are permutations of the elements of H_8 and C_8 induced by each symmetry operation g_i of O_h . They satisfy the relations $P^{(g_i)}H_8 \cong P^{(g_i)}C_8$ hence $P^{O_h}H_8 \cong P^{O_h}C_8$. The cycle structure notations ^[14] of these permutations are as follows:

$$P^{(E)}H_{8} = 1^{8}, P^{(C_{2})}H_{8} = P^{(C_{2})}H_{8} = P^{(i)}H_{8} = P^{(\sigma_{h})}H_{8} = 2^{4}, P^{(C_{3})}H_{8} = 1^{2}3^{2}$$

$$P^{(C_{4})}H_{8} = P^{(S_{4})}H_{8} = 4^{2}, P^{(S_{6})}H_{8} = 2^{1}6^{1}, P^{(\sigma_{d})}H_{8} = 1^{4}2^{2}$$

$$(4)$$

Hence,

$$P^{O_{b}}H_{g} \cong P^{O_{b}}C_{g} = \begin{bmatrix} 1^{8} \end{bmatrix}, 8\begin{bmatrix} 1^{2}3^{2} \end{bmatrix}, 6\begin{bmatrix} 2^{4} \end{bmatrix}, 6\begin{bmatrix} 4^{2} \end{bmatrix}, 3\begin{bmatrix} 2^{4} \end{bmatrix}, \begin{bmatrix} 2^{4} \end{bmatrix}, 6\begin{bmatrix} 4^{2} \end{bmatrix}, 8\begin{bmatrix} 2^{1}6^{1} \end{bmatrix}, 3\begin{bmatrix} 2^{4} \end{bmatrix}, 6\begin{bmatrix} 1^{4}2^{2} \end{bmatrix}$$
(5)

2.2 Permutations representations controlling the chirality and the achirality fittingness of cubane.

Let $\overline{P_{no}}H_8$ denote in eq.6, the averaged sum of permutations induced by 24 rotations of O_h including $E_1 \otimes C_3$, δC_4 , $3C_2$ and δC_2 :

$$\overline{P_{ro}}H_{8} = \frac{1}{24} \left(P^{(E)} \Delta_{H} + 8P^{(C_{3})} \Delta_{H} + 6P^{(C_{2}')} \Delta_{H} + 3P^{(C_{2})} \Delta_{H} + 6P^{(C_{4})} \Delta_{H} \right)$$

$$= \frac{1}{24} \left(\left[1^{8} \right] + 8 \left[1^{2} 3^{2} \right] + 6 \left[2^{4} \right] + 3 \left[2^{4} \right] + 6 \left[4^{2} \right] \right)$$
(6)

and let $\overline{P_{rr}}H_{s}$ denote in eq.7, the average weight of permutations of the atoms of cubane induced by the other 24 symmetry operations of O_{h} including the inversion *i*, the rotoreflections $(\delta S_{4}, \delta S_{6})$ and the reflections $(3\sigma_{h}, \delta\sigma_{d})$:

$$\overline{P_{rr}}H_{8} = \frac{1}{24} \left(P^{(i)} \Delta_{H} + 6P^{(s_{i})} \Delta_{H} + 8P^{(s_{i})} \Delta_{H} + 3P^{(\sigma_{h})} \Delta_{H} + 6P^{(\sigma_{d})} \Delta_{H} \right)$$

$$= \frac{1}{24} \left(\left[2^{4} \right] + 6 \left[4^{2} \right] + 8 \left[2^{1} 6^{1} \right] + 3 \left[2^{4} \right] + 6 \left[1^{4} 2^{2} \right] \right)$$
(7)

Definition 1: The permutations representation controlling the chirality fittingness for cubaneof O_h symmetry denoted $\Delta_c H_s$ is the half value of the positive difference between $(\overline{P_{ro}}H_s)$ the averaged weight of permutations of equivalent atoms induced by 24 rotations and $(\overline{P_{rr}}H_s)$ the averaged weight of permutations of equivalent atoms induced by 24 rotations (eq.8).

$$\Delta_{c}H_{8} = \frac{1}{2} \left(\overline{P_{ro}}H_{8} - \overline{P_{rr}}H_{8} \right) = \frac{1}{48} \left(\left[1^{8} \right] + 5 \left[2^{4} \right] + 8 \left[1^{2} 3^{2} \right] - 8 \left[2^{1} 6^{1} \right] - 6 \left[1^{4} 2^{2} \right] \right)$$
(8)

Definition 2: The permutations representation controlling the achirality fittingness for cubane in O_h symmetry denoted $\Delta_{ac}H_s$ is equal to $(\overline{P_{rr}}H_s)$ the averaged weight of permutations of equivalent atoms induced by 24 rotoreflections including *i*, $6S_4$, $8S_6$, $3\sigma_h$ and $6\sigma_d$.

$$\Delta_{ac}H_{8} = \overline{P_{rr}}H_{8} = \frac{1}{24}([2^{4}] + 6[4^{2}] + 8[2^{1}6^{1}] + 3[2^{4}] + 6[1^{4}2^{2}])$$
(9)

3 Enumeration of distinct homogeneous arrangements of achiral substituents in cubane

Let us consider homosubstituted cubane derivatives $C_8H_{8-q}X_q$ as chemical compounds obtained by putting in distinct ways qX homomorphic achiral substituents among 8 substitution sites submitted to permutations of types $1^8, 2^4, 4^2, 1^42^2, 1^23^2, 2^{1}6^1$ induced by 48 symmetry operations of O_h . Such placements of substituents are in combinatorics homogeneous arrangements ^[15] of a given sets of q objects of the same kind among 8 positions submitted to permutations. The numbers of such arrangements are calculated as follows:

(a)-The numbers of distinct ways of putting q elements of the same kind X (homogeneous arrangements) among 8 substitution sites submitted to 1-cycle permutations of types $1^8, 2^4, 4^2$

denoted $\begin{pmatrix} \frac{8}{l^{\tilde{l}}} \\ are obtained from the binomial coefficients: \end{cases}$

$$T\left(\frac{\vartheta}{l}, \frac{q}{l}\right) = \begin{cases} \binom{\vartheta}{q} \text{ for } l=l \\ \binom{4}{\frac{q}{2}} \text{ for } l=2 \\ \binom{2}{\frac{q}{4}} \text{ for } l=4 \end{cases}$$
(10)

(b)-A composite permutation of type $1^4 2^2$ including 4 unit-cycles and 2 transpositions allows to put in distinct ways $\alpha = 0, 1, 3, 4$ homomorphic substituents X among 4 invariant positions and $(q - \alpha)$ substituents of the same kind X among 4 positions submitted to transpositions.

The number of distinct ways of putting q substituents of the same kind X among 8 positions submitted to a composite permutation of type 1^42^2 comprising 4 unit cycles and 2 transpositions is obtained from the sum over $\alpha = 0, 1, 2, 3, 4$ of the product of binomial coefficients $T(4, \alpha)$ and

$$T\left(2,\frac{q-\alpha}{2}\right)$$
 given in eq.11.

$$\sum_{\alpha=0}^{4} T(4,\alpha) T\left(2,\frac{q-\alpha}{2}\right) = \sum_{\alpha=0}^{4} \binom{4}{\alpha} \binom{2}{\frac{q-\alpha}{2}}$$
(11)

(c)-A composite permutation of type 1^23^2 splits 8 substitution sites into 2-3-cycles and 2 invariant positions. This disposition allows to put in distinct ways $\beta = 0, 1, 2$ substituents X among 2 invariant positions and $(q - \beta)$ substituents X among the 6 remaining positions divided into two 3-cycle permutations

The number of distinct placements of q substituents of the same kind X among 8 positions submitted to permutations of type 1^23^2 comprising 2 unit cycles and 2 3-cycles is obtained from

the sum over $\beta = 0, 1, 2$ of the product of binomial coefficients $T(2, \beta)$ and $T\left(2, \frac{q-\beta}{3}\right)$ given in eq.12:

 $\sum_{\beta=0}^{2} T(2,\beta) T\left(2, \frac{q-\beta}{3}\right) = \sum_{\beta=0}^{2} {\binom{2}{\beta}} {\binom{2}{\beta}} {\binom{2}{3}}$ (12)

(d)-The permutation $2^{1}6^{1}$ induced by S₆ includes one transposition and one 6-cycle which allow to put $\lambda = 0, 1$ pair of substituents of the same kind X among 2 positions submitted to a transposition and $(q-2\lambda)$ substituents of the same kind X among 6 remaining positions submitted to one 6-cycle permutation.

The number of distinct placements of q substituents of the same kind X among 8 positions submitted to a permutation of type $2^{1}6^{1}$ comprising one transposition and one 6-cycle is obtained from the sum over $\lambda = 0,1$ of the product of binomial coefficients $T(1,\lambda)$ and

$$T\left(1,\frac{q-2\lambda}{6}\right) \text{given in eq. 13:}$$

$$\sum_{\lambda=0}^{l} T\left(1,\lambda\right) T\left(1,\frac{q-2\lambda}{6}\right) = \sum_{\lambda=0}^{l} \binom{l}{\lambda} \binom{l}{\frac{q-2\lambda}{6}} \tag{13}$$

4 Bipartite combinatorial enumeration of chiral and achiral skeletons of homopolysubstituted cubane derivatives and cubane homo hetero-analogues

4.1 Generic formulas for bipartite enumeration of homopolysubstituted cubane derivatives and cubane homo hetero-analogues

By replacing the right-hand side terms of $\Delta_{c}H_{s}$ and $\Delta_{ac}H_{s}$ with equivalent algebraic expressions given in eqs.10-13 one obtains respectively a pair of associated generic functions $A_{c}(8, q)$ and $A_{ac}(8, q)$ given in eqs.14-15 for a bipartite enumeration of chiral and achiral homopolysubstituted cubane derivatives $C_{8}H_{8-q}X_{q}$ and cubane homo hetero-analogues $(CH)_{8-q}X_{q}$.

$$A_{c}(8,q) = \frac{1}{48} \left[\binom{8}{q} + 5\binom{4}{\frac{q}{2}} + 8\sum_{\beta=0}^{2} \binom{2}{\beta} \binom{2}{\frac{q-\beta}{3}} - 6\left[\sum_{\alpha=0}^{4} \binom{4}{\alpha} \binom{2}{\frac{q-\alpha}{2}} \right] - 8\left[\sum_{\lambda=0}^{l} \binom{l}{\lambda} \binom{l}{\frac{q-2\lambda}{6}} \right] \right]$$
(14)

and

$$A_{ac}(8,q) = \frac{1}{24} \left[6 \begin{pmatrix} 2\\ q\\ 4 \end{pmatrix} + 4 \begin{pmatrix} 4\\ q\\ 2 \end{pmatrix} + 6 \left[\sum_{\alpha=0}^{4} \begin{pmatrix} 4\\ \alpha \end{pmatrix} \begin{pmatrix} 2\\ q-\alpha\\ 2 \end{pmatrix} \right] + 8 \left[\sum_{\lambda=0}^{2} \begin{pmatrix} 1\\ \lambda \end{pmatrix} \begin{pmatrix} 1\\ q-2\lambda\\ 6 \end{pmatrix} \right] \right]$$
(15)

4.2 Applications

Example 1: A bipartite enumeration of chiral and achiral skeletons for the series of homosubstituted cubane derivatives $C_8H_{8-q}X_q$ and their corresponding cubane homo heteroanalogues $(CH)_{8-q}X_q$ where $0 \le q \le 8$ are calculated as follows:

$$\begin{aligned} A_{c}(8,0) &= \frac{1}{48} \left[\binom{8}{0} + 5\binom{4}{0} + 8\binom{2}{0}\binom{2}{0} - 8\binom{1}{0}\binom{1}{0} - 6\binom{4}{0}\binom{2}{0} \right] = 0\\ A_{ac}(8,0) &= \frac{1}{24} \left[6\binom{2}{0} + 4\binom{4}{0} + 8\binom{1}{0}\binom{1}{0} + 6\binom{4}{0}\binom{2}{0} \right] = 1\\ A_{c}(8,l) &= \frac{1}{48} \left[\binom{8}{1} + 8\binom{2}{1}\binom{2}{0} - 6\binom{4}{1}\binom{2}{0} \right] = 0 \end{aligned}$$

$$\begin{aligned} A_{ac}(8,l) &= \frac{1}{24} \left[6\binom{4}{l} \binom{2}{0} \right] = l \\ A_{c}(8,2) &= \frac{1}{48} \left[\binom{8}{2} + 8\binom{2}{2} \binom{2}{0} + 5\binom{4}{1} - 8\binom{1}{l} \binom{1}{0} - 6\binom{4}{0} \binom{2}{1} - 6\binom{4}{2} \binom{2}{0} \right] = 0 \\ A_{ac}(8,2) &= \frac{1}{24} \left[4\binom{4}{l} + 8\binom{l}{l} \binom{l}{0} + 6\binom{4}{0} \binom{2}{l} + 6\binom{4}{2} \binom{2}{0} \right] = 3 \\ A_{c}(8,3) &= \frac{1}{48} \left[\binom{8}{3} + 8\binom{2}{0} \binom{2}{l} - 6\binom{4}{l} \binom{2}{l} - 6\binom{4}{3} \binom{2}{0} \right] = 0 \\ A_{ac}(8,3) &= \frac{1}{24} \left[6\binom{4}{l} \binom{2}{l} + 6\binom{4}{3} \binom{2}{0} \right] = 3 \\ A_{c}(8,4) &= \frac{1}{48} \left[\binom{8}{4} + 8\binom{2}{l} \binom{2}{l} + 5\binom{4}{2} - 6\binom{4}{0} \binom{2}{2} - 6\binom{4}{4} \binom{2}{0} - 6\binom{4}{2} \binom{2}{l} \right] = l \\ A_{ac}(8,4) &= \frac{1}{24} \left[4\binom{4}{2} + 6\binom{2}{l} + 6\binom{4}{0} \binom{2}{2} + 6\binom{4}{4} \binom{2}{0} + 6\binom{4}{2} \binom{2}{l} \right] = 5 \end{aligned}$$

The integer sequences $A_c(8,q)$ and $A_{ac}(8,q)$ of chiral and achiral skeletons of homopolysubstituted cubane derivatives $C_8H_{8\cdot q}X_q$ and cubane homo hetero-analogues $(CH)_{8\cdot q}X_q$ calculated for $0 \le q \le 8$ are reported in table 1 where columns 6 and 7 indicate the corresponding numbers of diastereoisomers $C_{ho}(8,q) = A_c(8,q) + A_{ac}(8,q)$ and the occurring symmetries respectively. The results summarized in table 1 predict for q=8, one octasubstituted cubane derivative of O_h -symmetry. For q=1, 7 mono and hepta substituted cubane derivatives C_8H_7X , C_8HX_7 and their corresponding mono and hepta homo hetero-analogues $(CH)_7X$ and $(CH)X_7$ exhibit a $C_{3\nu}$ -symmetry. For q=2,6 di or hexa substituted cubanes $C_8H_6X_2$, $C_8H_2X_6$ and their di and hexa-homo hetero-analogues $(CH)_6X_2$, $(CH)_2X_6$ exhibit 3 achiral diastereoisomers skeletons partitioned into $D_{3d}+2C_{2\nu}$ symmetries. For q=3,5 tri or penta-homosubstituted cubane $C_8H_5X_3$, $C_8H_3X_5$ and their tri- and penta-homo heteroanalogues $(CH)_5 X_3$ and $(CH)_3 X_5$ are reduced to 3 achiral diastereoisomers partitioned into $2C_s+C_{3\nu}$ -symmetries. For q=4 one obtains in the series of tetra homosubstituted cubane derivatives $C_8H_4X_4$ and cubane tetra-homo hetero-analogues $(CH)_4 X_4$,6 diastereoisomers partitioned into one C_2 -chiral and $C_s+C_{3\nu}+C_{4\nu}+D_{2h}+T_d$ achiral skeletons. Thus, if the degrees of substitution vary in the range $1 \le q \le 8$ one obtains a total of 21 distinct stereoisomers predicted respectively for the series of homosubstituted cubanes $C_8H_{8-q}X_q$ and cubane homo hetero-analogues $(CH)_{8-q} X_q$ illustrated in fig.1 of part II of this study.

Table 1. Numbers A_c of chiral, A_{ac} of achiral and $C_{he} = A_c + A_{ac}$ of diastereoisomers predicted for homosubstituted cubanes $C_{8H_{8-q}X_q}$ and cubane homo-hetero-analogues $(CH)_{8-q}X_q$ where $0 \le q \le 8$.

q	$C_8H_{8-q}X_q$	$(CH)_{8-q}X_q$	Ą	A _{ac}	Cho	Occurring Symmetries
0	C_8H_8	(CH)8	0	1	1	O_h
1	C_8H_7X	(CH)7X	0	1	1	C_{3V}
2	$C_8H_6X_2$	$(CH)_6X_2$	0	3	3	$D_{3d}+2C_{2v}$
3	$C_8H_5X_3$	$(CH)_5X_3$	0	3	3	$2C_s+C_{3v}$
4	$C_8H_4X_4$	$(CH)_4X_4$	1	5	6	$C_2 + C_s + C_{3v} + C_{4v} + D_{2h} + T_d$
5	$C_8H_3X_5$	$(CH)_3X_5$	0	3	3	$2C_s+C_{3v}$
6	$C_8H_2X_6$	$(CH)_2X_6$	0	3	3	$D_{3d}+2C_{2v}$
7	C_8HX_7	$(CH)X_7$	0	1	1	C_{3V}
8	C_8X_8	X_8	0	1	1	O_h

5 Bipartite combinatorial enumeration of chiral and achiral heteropolysubstituted cubane derivatives and cubane hetero-heteroanalogues.

Two chemical transformations applicable to cubane skeleton are : (a) the outer heteropolysubstitution of rank *k* yielding heterosubstituted cubane derivatives $C_8H_{q_0}X_{q_1}...Y_{q_l}...Z_{q_k}$ is an operation of putting in distinct ways q_0H and *k* distinct sets of $q_1X, ..., q_iY, ..., q_kZ$ achiral substituents among 8 positions occupied by hydrogen atoms submitted to permutations induced by 48 symmetry operations of the O_h point group and (b) the inner heteropolysubstitution of rang *k* yielding cubane hetero hetero-analogues $(CH)_{q_0}X_{q_1}...Y_{q_k}...Y_{q_k}$ consists to put in distinct ways in accord with the obligatory minimum valency (OMV) restrictions $q_0(CH)$ and $q_1X, ..., q_iY, ..., q_kZ$ trivalent atoms among 8 positions occupied by methine groups submitted to permutations induced by 48 symmetry operations of the obligatory minimum valency (OMV) restrictions $q_0(CH)$ and $q_1X, ..., q_iY, ..., q_kZ$ trivalent atoms among 8 positions occupied by methine groups submitted to permutations induced by 48 symmetry operations of the obligatory operations of the obligatory minimum valency (OMV) restrictions $q_0(CH)$ and $q_1X, ..., q_iY, ..., q_kZ$ trivalent atoms among 8 positions occupied by methine groups submitted to permutations induced by 48 symmetry operations of

 O_h . In these 2 series of cubane derivatives the integer sequences $q_0, q_1, ..., q_i, ..., q_k$ satisfy the restriction:

$$\sum_{i=0}^{k} q_i = 8.$$
 (16)

5.1 Enumeration of heterogeneous arrangements of substituents in cubane

The numbers of heterogeneous arrangements^[15] of achiral substituents in a cubane skeleton are numbers of stereoisomers $C_8H_{q_0}X_{q_1}...Y_{q_t}...Z_{q_k}$ or $(CH)_{q_0}X_{q_1}...Y_{q_t}...Z_{q_k}$ obtained by putting in distinct ways q_{0H} , q_1X , $...,q_iY$,..., q_kZ among 8 substitution sites submitted to permutations of types $1^8, 2^4, 4^2, 1^42^2, 1^23^2, 2^{1}6^1$ induced by 48 symmetry operations of O_h . Such placements of substituents are called in combinatorics heterogeneous arrangements of given sets of $q_0, q_1, ..., q_k$ objects of different kinds among 8 positions submitted to permutations previously indicated. The numbers of such arrangements are calculated as follows:

(a)-The number of heterogeneous arrangements of achiral substituents in a cubane skeleton submitted to permutations of types 1^8 , 2^4 and 4^2 .

The number of heterosubstituted permutomers of types $C_8H_{q_0}X_{q_1}...Y_{q_i}...Z_{q_k}$ or $(CH)_{q_0}X_{q_1}...Y_{q_i}...Z_{q_k}$ issued from heterogeneous arrangements of q_0H , q_1X , $...,q_iY$,..., q_kZ achiral substituents among 8 substitution sites of cubane submitted to 8 unit-cycles (1⁸), 4 transpositions (2⁴) and 2-4-cycles permutations (4²) are obtained from multinomial coefficients summarized by the general formula:

$$T\left(\vartheta;\frac{q_0}{l},\dots,\frac{q_i}{l},\dots,\frac{q_k}{l}\right) = \begin{pmatrix} \vartheta\\ \frac{q_0}{l},\dots,\frac{q_i}{l},\dots,\frac{q_k}{l} \end{pmatrix} \text{ where } l=1,2,4.$$
(17)

(b)-The number of heterogeneous arrangements of substituents in a cubane skeleton submitted to permutations of type $1^4 \cdot 2^2$ induced by the reflection $\sigma_{d.}$

The composite permutation $1^{4} \cdot 2^{2}$ comprising 4 invariant positions and 2 transpositions allows to put $\alpha_{0}H$ and $\alpha_{1}X,...,\alpha_{k}I$,..., $\alpha_{k}Z$ achiral substituents among 4 invariant positions and simultaneously to display q'_0H and $q''_1Y,...,q''_kZ$ pairs of remaining others among 2 boxes for transpositions. Such arrangements of substituents require solving the partition eqs.18-19

$$\alpha_0 + \ldots + \alpha_i + \ldots + \alpha_k = 4 \tag{18}$$

$$q_0'' + \dots + q_i'' + \dots + q_k'' = 2$$
⁽¹⁹⁾

to derive the integer sequences $(\alpha_0, ..., \alpha_i, ..., \alpha_k)$ and $(q''_0, ..., q''_i, ..., q''_k)$ indicating the numbers

of H atoms and achiral substituents of kinds X, Y, ..., Z to be put among 4 invariant positions and the numbers of pairs of H atoms and achiral substituents of kinds X, Y ... Z to display among 2 boxes for transpositions. The λ_1 solutions to retain are associated pairs of integer sequences $(\alpha_0, ..., \alpha_i, ..., \alpha_k)$ and $(q''_0, ..., q''_i, ..., q''_k)$ where α_i and q''_i satisfy the condition:

$$q_i'' = \frac{q_i \cdot \alpha_i}{2} \tag{20}$$

Let $T(4; \alpha_0, ..., \alpha_i, ..., \alpha_k)$ be the number of distinct ways of putting $(\alpha_0, ..., \alpha_i, ..., \alpha_k)$ atoms H, and achiral substituents of kinds X,..., Y,..., Z among 4 invariant positions and let $T(2; q_0'', ..., q_i'', ..., q_k'')$ denote the number of placements of $q_0'', ..., q_i'', ..., q_k''$ pairs of H, X, Y, ...,Z among 2 boxes for transpositions.

The number of permutomers for heterosubstituted cubane derivatives $C_8H_{q_0}X_{q_1}...Y_{q_i}...Z_{q_k}$ and the number of cubane hetero hetero-analogues $(CH)_{q_0}X_{q_1}...Y_{q_i}...Z_{q_k}$ resulting from heterogeneous arrangements of $q_0H, q_1X, ..., q_kZ$ among 8 substitution sites of cubane submitted to a composite permutation of type 1^42^2 are calculated from the sum total of λ_1 products of multinomial coefficients given hereafter:

$$\sum_{\lambda_{l}} T(4; a_{0}, \dots, a_{l}, \dots, a_{k}) T(2; q_{0}'', \dots, q_{l}'', \dots, q_{k}'') = \sum_{\lambda_{l}} \begin{pmatrix} 4 \\ a_{0}, \dots, a_{l}, \dots, a_{k} \end{pmatrix} \begin{pmatrix} 2 \\ q_{0}'', \dots, q_{l}'', \dots, q_{k}'' \end{pmatrix}$$
(21)

(c)-The number of heterogeneous arrangements of achiral substituents in a cubane skeleton submitted to permutations of type $1^{2}3^{2}$ induced by 3-fold rotations C₃.

-440-

The composite permutation $1^2 3^2$ allows to put β_0 H atoms and $\beta_1 X, ..., \beta_i Y, ..., \beta_k Z$ achiral substituents among 2 invariant positions and simultaneously to distribute $q'_0, q'_1, ..., q'_i, 3$ tuples of remaining substituents H, X, ..., Y, ...Z among 2 boxes for 3-cycle permutations. These 2 choices require solving the partition eqs.22-23 and obtaining the integer sequences $(\beta_0, \beta_1, ..., \beta_i, ..., \beta_k)$ of substituents to put among 2 invariant positions and $(q'_0, q'_1, ..., q'_i, ..., q'_k)$ 3-tuples of substituents to display among 2 boxes for 3-cycle permutations. The λ_2 pairs of integer sequences $(\beta_0, \beta_1, ..., \beta_i, ..., \beta_k) \leftrightarrow (q'_0, q'_1, ..., q'_i, ..., q'_k)$ to retain satisfy the conditions:

$$\beta_0 + \ldots + \beta_i + \ldots + \beta_k = 2 \tag{22}$$

$$q'_{0} + \dots + q'_{i} + \dots + q'_{k} = 2$$
⁽²³⁾

$$q_i' = \frac{q_i \cdot \beta_i}{3} \tag{24}$$

Let $T(2; q'_0, ..., q'_i, ..., q'_k)$ be the number of distinct ways of putting $(q'_0, ..., q'_i, ..., q'_k)$ 3tuples of objects of kinds H, X,Y,..., Z among 2 boxes having each 3 positions and let $T(2; \beta_0, ..., \beta_i, ..., \beta_k)$ denote the number of placements of $(\beta_0, ..., \beta_i, ..., \beta_k)$ remaining objects of the same kinds among 2 invariant positions.

The number of permutomers for polyheterosubstituted cubane $C_8H_{q_0}X_{q_1}...Y_{q_i}...Z_{q_k}$ and the number of cubane hetero hetero-analogues $(CH)_{q_0}X_{q_1}...Y_{q_i}...Z_{q_k}$ resulting from heterogeneous arrangements of q_0H and $q_1X,...,q_iY,...,q_kZ$ achiral substituents among 8 substitution sites of cubane submitted to composite permutations of type 1^23^2 is the sum total of λ_2 products of multinomial coefficients $T(2;\beta_0,...,\beta_i,...,\beta_k)$ and $T(2;q'_0,...,q'_i,...,q'_k)$ given in eq. 25 :

$$\sum_{\lambda_2} T(2;\beta_0,\dots,\beta_i,\dots,\beta_k) T(2;q'_0,\dots,q'_i,\dots,q'_k) = \sum_{\lambda_2} \binom{2}{\beta_0,\dots,\beta_i,\dots,\beta_k} \binom{2}{q'_0,\dots,q'_i,\dots,q'_k}$$
(25)

(d)-The number of heterogeneous arrangements of achiral substituents in a cubane skeleton submitted to permutations of type $2^{1}.6^{1}$ induced by 6-fold rotoreflections S₆.

-441-

The composite permutation $2^{1}.6^{1}$ including one 6-cycle permutation and 1 transposition allows to put $\lambda_0, ..., \lambda_i, ..., \lambda_k$ pairs of H, X, ..., Y, Z in the box of transposition and $q_0^{m}, ..., q_i^{m}, ..., q_k^{m}$ 6-tuples of H, X, Y ...Z in one box of 6-cycle permutations. These 2 arrangements require solving the partition eqs.26-27:

$$\lambda_0 + \dots + \lambda_i + \dots + \lambda_k = I \tag{26}$$

$$q_{0}^{'''+} \dots + q_{k}^{'''+} \dots + q_{k}^{'''=1}$$
(27)

and obtain λ_3 pairs of integer sequences $(\lambda_0, ..., \lambda_i, ..., \lambda_k) \leftrightarrow (q_0^m, ..., q_k^m)$ which satisfy the condition:

$$q_i''' = \frac{q_i - 2\lambda_i}{6} \tag{28}$$

Let $T(2; \lambda_0, ..., \lambda_i, ..., \lambda_k)$ be the number of distinct ways of putting $(\lambda_0, ..., \lambda_i, ..., \lambda_k)$ pairs of substituents of types H,X,...,Y,...,Z inside one box of 2 equivalent positions and let $T(1; q_0^m, ..., q_k^m)$ denote the number of placements of $(q_0^m, ..., q_k^m)$ 6-tuples of substituents of types H, X,...,Y,...,Z in one box of 6 equivalent positions.

The number of permutomers $C_8H_{q_0}X_{q_1}...X_{q_k}$ or $(CH)_{q_0}X_{q_1}...Y_{q_l}...Z_{q_k}$ resulting from heterogeneous arrangements of q_0H , q_1X , ..., q_iY ,..., q_kZ among 8 substitution sites of cubane submitted to a composite permutations of type $2^{1}.6^{1}$ is the sum total of γ_3 products of multinomial coefficients given in eq.29:

$$\sum_{\gamma_{3}} T(2;\lambda_{0},...,\lambda_{i},...,\lambda_{k}) T(1;q_{0}^{m},...,q_{i}^{m},...,q_{k}^{m}) = \sum_{\gamma_{3}}^{l} \binom{l}{\lambda_{0},...,\lambda_{i},...,\lambda_{k}} \binom{l}{q_{0}^{m},...,q_{i}^{m},...,q_{k}^{m}} (29)$$

5.2 Generic formulas for bipartite enumeration of chiral and achiral heteropolysubstituted cubane derivatives and cubane hetero hetero-analogues.

By replacing the right hand side terms of $\Delta_c H_8$ and $\Delta_{ac} H_s$ (eqs.6-7) with equivalent terms given in eqs.17, 21, 25, 29 one obtains eqs.30-31 which are generic formulae giving a bipartite inventory of $A_c(8;q_0,...,q_i,...,q_k)$ chiral and $A_{ac}(8;q_0,...,q_i,...,q_k)$ achiral skeletons of both

hetero-polysubstituted cubanes $C_8H_{q_0}X_{q_1}...Y_{q_k}$ and cubane hetero-analogues

$$A_{c}(8;q_{0}...q_{i},...,q_{k}) = \frac{1}{48} \begin{bmatrix} 8\\ q_{0},...,q_{i},...,q_{k} \end{bmatrix} + 5 \begin{pmatrix} 4\\ q_{0}\\ 2\\ ...,\frac{q_{i}}{2}\\ ...,\frac{q_{k}}{2} \end{pmatrix} + 8 \sum_{\gamma_{i}} \begin{pmatrix} 2\\ \beta_{0},...,\beta_{i}\\ ...,\beta_{k} \end{pmatrix} \begin{pmatrix} 2\\ q'_{0},...,q'_{i}\\ ...,q'_{k} \end{pmatrix} \\ -6 \sum_{\gamma_{2}} \begin{pmatrix} 4\\ \alpha_{0},...,\alpha_{i}\\ ...,\alpha_{k} \end{pmatrix} \begin{pmatrix} 2\\ q''_{0},...,q''_{k} \end{pmatrix} - 8 \begin{pmatrix} 1\\ \lambda_{0},...,\lambda_{i}\\ ...,\lambda_{k} \end{pmatrix} \begin{pmatrix} 1\\ q''_{0},...,q''_{k} \end{pmatrix} \end{bmatrix}$$
(30)

and

$$A_{ac}(s;q_{0}...q_{i}...,q_{k}) = \frac{1}{24} \begin{bmatrix} 4 \\ \frac{q_{0}}{2} ..., \frac{q_{i}}{2} ..., \frac{q_{k}}{2} \end{bmatrix} + 6 \begin{pmatrix} 2 \\ \frac{q_{0}}{4} ..., \frac{q_{i}}{4} ..., \frac{q_{k}}{4} \end{pmatrix} + 6 \sum_{\gamma_{2}} \begin{pmatrix} 4 \\ \alpha_{0}, ..., \alpha_{i}, ..., \alpha_{k} \end{pmatrix} \begin{pmatrix} 2 \\ q_{0}^{*}, ..., q_{i}^{*}, ..., q_{k}^{*} \end{pmatrix} \\ + 8 \begin{pmatrix} \sum_{\gamma_{j}} \begin{pmatrix} 1 \\ \lambda_{0}, ..., \lambda_{k} \end{pmatrix} \begin{pmatrix} 1 \\ q_{0}^{*}, ..., q_{k}^{*} \end{pmatrix} \end{pmatrix}$$
(31)

5.3 Applications

 $(CH)_{q_k} X_{q_1} \dots Y_{q_k} \dots Z_{q_k}$

Example 2: Bipartite enumeration of di, tri, tetra, penta, hexa and hepta-heteropolysubstituted cubane derivatives and their corresponding hetero hetero-analogues given in table 2 where the subscript k represents the number of distinct types of achiral substituents.

Table 2. Molecular formula of di, tri, tetra, penta, hexa and hepta hetero-polysubstituted cubane derivatives $C_{8H_{q_{e}}}X_{q_{i}}....Y_{q_{i}}...Z_{q_{k}}$ and cubane hetero hetero-analogues $(CH)_{q_{e}}X_{q_{i}}....Y_{q_{k}}...Z_{q_{k}}$

*k	$C_{8}H_{q_{0}}X_{q_{1}}Y_{q_{i}}Z_{q_{k}}/(CH)_{q_{0}}X_{q_{1}}Y_{q_{i}}Z_{q_{k}}$	k	$C_8H_{q_0}X_{q_1}Y_{q_i}Z_{q_k}/(CH)_{q_0}X_{q_1}Y_{q_i}Z_{q_k}$
2	$C_8H_6XY/(CH)_6XY$	4	$C_8H_2X_2W_2YZ / (CH)_2X_2W_2YZ$
	$C_8H_5X_2Y/CH)_5X_2Y$		$C_8H_4XWYZ / (CH)_4XWYZ$
	$C_8H_4X_2Y_2/(CH)_4X_2Y_2$		$C_8H_3X_2WYZ / (CH)_3X_2WYZ$
3	$C_8H_3X_2Y_2Z/(CH)_3X_2Y_2Z$	5	$C_8H_2X_2UWYZ / (CH)_2X_2UWYZ$
	C ₈ H ₅ XYZ / CH) ₅ XYZ	6	$C_8H_2XPUWYZ / (CH)_2XPUWYZ$
		7	C ₈ HXSPUWYZ / (CH)XSPUWYZ

*k=number of achiral substituents of different kinds.

To solve this problem for each compound aforementioned we list the appropriate values $q_0, ..., q_i, ..., q_k$ reported in column 1 of table 3 then we compute from couples of partition eqs.(18-19), (22-23) and (26-27) satisfying the restrictions 20, 24 and 28, pairs of integer sequences $(\beta_0, ..., \beta_i, ..., \beta_k) \leftrightarrow (q'_0, ..., q'_i, ..., q'_k), (\alpha_0, ..., \alpha_i, ..., \alpha_k) \leftrightarrow (q''_0, ..., q''_k)$ and

 $(\lambda_0, ..., \lambda_i, ..., \lambda_k) \leftrightarrow (q_0^m, ..., q_k^m)$. The data collected from such calculations are reported in table 3 and used in eqs.30-31 to derive the numbers of enantiomers pairs and achiral skeletons required. We note for these series that non-occurring compatible pairs of integer sequences are indicated by empty cells with dashed lines.

Table 3. Compatible pairs of integer sequences $(\beta_0, ..., \beta_l, ..., \beta_k) \leftrightarrow (q'_0, ..., q'_l, ..., q'_k), (\alpha_0, ..., \alpha_l, ..., \alpha_k) \leftrightarrow (q''_0, ..., q''_l, ..., q''_k), (\lambda_0, ..., \lambda_l, ..., \lambda_k) \leftrightarrow (q''_0, ..., q''_l, ..., q''_k), (\lambda_0, ..., \lambda_l, ..., \lambda_k) \leftrightarrow (q''_0, ..., q''_k), (\lambda_0, ..., \lambda_l, ..., \lambda_k) \leftrightarrow (q''_0, ..., q''_k), (\lambda_0, ..., \lambda_l, ..., \lambda_k) \leftrightarrow (q''_0, ..., q''_k), (\lambda_0, ..., \lambda_l, ..., \lambda_k) \leftrightarrow (q''_0, ..., q''_k), (\lambda_0, ..., \lambda_l, ..., \lambda_k) \leftrightarrow (q''_0, ..., q''_k), (\lambda_0, ..., \lambda_l, ..., \lambda_k) \leftrightarrow (q''_0, ..., q''_k), (\lambda_0, ..., \lambda_l, ..., \lambda_k) \leftrightarrow (q''_0, ..., q''_k), (\lambda_0, ..., \lambda_l, ..., \lambda_k) \leftrightarrow (q''_0, ..., q''_k), (\lambda_0, ..., \lambda_l, ..., \lambda_k) \leftrightarrow (q''_0, ..., q''_k), (\lambda_0, ..., \lambda_l, ..., \lambda_k) \leftrightarrow (q''_0, ..., q''_k), (\lambda_0, ..., \lambda_l, ..., \lambda_k) \leftrightarrow (q''_0, ..., q''_k), (\lambda_0, ..., \lambda_l, ..., \lambda_k) \leftrightarrow (q''_0, ..., q''_k), (\lambda_0, ..., \lambda_l, ..., \lambda_k) \leftrightarrow (q''_0, ..., q''_k), (\lambda_0, ..., \lambda_l, ..., \lambda_k) \leftrightarrow (q''_0, ..., q''_k), (\lambda_0, ..., \lambda_l, ..., \lambda_k) \leftrightarrow (q''_0, ..., q''_k), (\lambda_0, ..., \lambda_l, ..., \lambda_k) \leftrightarrow (q''_0, ..., q''_k), (\lambda_0, ..., \lambda_l, ..., \lambda_k) \leftrightarrow (q''_0, ..., q''_k), (\lambda_0, ..., \lambda_l, ..., \lambda_k) \leftrightarrow (q''_0, ..., q''_k), (\lambda_0, ..., \lambda_l, ..., \lambda_k) \leftrightarrow (q''_0, ..., q''_k), (\lambda_0, ..., \lambda_l, ..., \lambda_k) \leftrightarrow (q''_0, ..., q''_k), (\lambda_0, ..., \lambda_l, ..., \lambda_k) \leftrightarrow (q''_0, ..., \lambda_l, ..., \lambda_k) \leftrightarrow (q''_0, ..., \lambda_l, ..., \lambda_k)$

$q_0, \dots, q_i, \dots, q_k$	$\beta_0, \dots, \beta_i, \dots, \beta_k$	$q_0^{\prime},,q_i^{\prime},,q_k^{\prime}$	$\alpha_0, \dots, \alpha_i, \dots, \alpha_k$	$q_0'',\ldots,q_i'',\ldots,q_k''$	$\lambda_0, \dots, \lambda_i, \dots, \lambda_k$	$q_0^{\prime\prime\prime},\ldots,q_i^{\prime\prime\prime},\ldots,q_k^{\prime\prime\prime\prime}$
6,1,1	0,1,1	2,0,0	2,1,1	2,0,0		
5,2,1			1,2,1	2,0,0		
			3,0,1	1,1,0		
4,2,2			4,0,0	0,1,1		
			2,2,0	1,0,1		
			2,0,2	1,1,0		
			0,2,2	2,0,0		
5,1,1,1			1,1,1,1	2,0,0,0		
3,2,2,1			3,0,0,1	0,1,1,0		
			1,2,0,1	1,0,1,0		
			1,0,2,1	1,1,0,0		
4,1,1,1,1			0,1,1,1,1	2,0,0,0,0		
3,2,1,1,1			1,0,1,1,1	1,1,0,0,0		
2,2,2,1,1			2,0,0,1,1	0,1,1,0,0		
			0,2,0,1,1	1,0,1,0,0		
			0,0,2,1,1	1,1,0,0,0		
2,2,1,1,1,1,						
2,1,1,1,1,1,1						
1.1.1.1.1.1.1.1						

The numbers $A_c(8;q_0,..,q_i,...,q_k)$ and $A_{ac}(8;q_0,..,q_i,...,q_k)$ of enantiomer pairs and achiral skeletons for these heteropolysubstituted cubane derivatives and cubane hetero hetero-analogues are derived as follows:

For C₈H₆XY and (CH)₆XY

$$A_{c}(8,6,1,1) = \frac{1}{48} \left[\binom{8}{6,1,1} + 8 \left[\binom{2}{0,1,1} \binom{2}{2,0,0} \right] - 6 \left[\binom{4}{2,1,1} \binom{2}{2,0,0} \right] \right] = 0$$
$$A_{ac}(8,6,1,1) = \frac{1}{24} \left[\binom{4}{2,1,1} \binom{2}{2,0,0} \right] = 3$$

For $C_8H_5X_2Y$ and $CH)_5X_2Y$

$$A_{c}(8,5,2,1) = \frac{1}{48} \left[\binom{8}{5,2,1} - 6 \left[\binom{4}{1,2,1} \binom{2}{2,0,0} + \binom{4}{3,0,1} \binom{2}{1,1,0} \right] \right] = 1$$

-444-

$$A_{c}(8,5,2,I) = \frac{1}{24} \left[6 \left[\begin{pmatrix} 4\\1,2,I \end{pmatrix} \begin{pmatrix} 2\\2,0,0 \end{pmatrix} + \begin{pmatrix} 4\\3,0,I \end{pmatrix} \begin{pmatrix} 2\\1,I,0 \end{pmatrix} \right] \right] = 5$$

For C₈H₅XYZ and CH)₅XYZ

$$A_{c}(8,5,1,1,1) = \frac{1}{48} \left[\binom{8}{5,1,1,1} - 6\binom{4}{1,1,1,1} \binom{2}{2,0,0,0} \right] = 4$$
$$A_{ac}(8,5,1,1,1) = \frac{1}{24} \left[6\binom{4}{1,1,1,1} \binom{2}{2,0,0,0} \right] = 6$$

For $C_8H_4X_2Y_2$ and $(CH)_4X_2Y_2$

$$A_{c}(8,4,2,2) = \frac{1}{48} \begin{bmatrix} 8\\4,2,2 \end{bmatrix} + 5 \begin{pmatrix} 4\\2,1,1 \end{pmatrix} - 6 \begin{bmatrix} 4\\4,0,0 \end{pmatrix} \begin{pmatrix} 2\\0,1,1 \end{pmatrix} + \begin{pmatrix} 4\\2,2,0 \end{pmatrix} \begin{pmatrix} 2\\1,0,1 \end{pmatrix} \\ + \begin{pmatrix} 4\\2,0,2 \end{pmatrix} \begin{pmatrix} 2\\1,1,0 \end{pmatrix} + \begin{pmatrix} 4\\0,2,2 \end{pmatrix} \begin{pmatrix} 2\\2,0,0 \end{pmatrix} \end{bmatrix} = 6$$
$$A_{ac}(8,4,2,2) = \frac{1}{24} \begin{bmatrix} 4\\4\\2,1,1 \end{pmatrix} + 6 \begin{bmatrix} 4\\4,0,0 \end{pmatrix} \begin{pmatrix} 2\\0,1,1 \end{pmatrix} + \begin{pmatrix} 4\\2,2,0 \end{pmatrix} \begin{pmatrix} 2\\1,0,1 \end{pmatrix} \\ + \begin{pmatrix} 4\\2,0,2 \end{pmatrix} \begin{pmatrix} 2\\1,0,1 \end{pmatrix} \\ + \begin{pmatrix} 4\\2,0,2 \end{pmatrix} \begin{pmatrix} 2\\1,0,1 \end{pmatrix} \\ + \begin{pmatrix} 4\\2,0,2 \end{pmatrix} \begin{pmatrix} 2\\1,0,1 \end{pmatrix} \end{bmatrix} = 10$$

For $C_8H_3X_2Y_2Z$ and $(CH)_3X_2Y_2Z$

$$A_{c}(8,3,2,2,1) = \frac{1}{48} \left[\binom{8}{3,2,2,1} - 6 \left[\binom{4}{3,0,0,1} \binom{2}{0,1,1,0} + \binom{4}{1,2,0,1} \binom{2}{1,0,1,0} + \binom{4}{1,0,2,1} \binom{2}{1,1,0,0} \right] \right] = 28$$
$$A_{ac}(8,3,2,2,1) = \frac{6}{24} \left[\binom{4}{3,0,0,1} \binom{2}{0,1,1,0} + \binom{4}{1,2,0,1} \binom{2}{1,0,1,0} + \binom{4}{1,0,2,1} \binom{2}{1,1,0,0} \right] = 14$$

For C₈H₄XWYZ and (CH)₄XWYZ

$$A_{c}(8,4,1,1,1,1) = \frac{1}{48} \left[\binom{8}{4,1,1,1,1} - 6\binom{4}{0,1,1,1,1} \binom{2}{2,0,0,0,0} \right] = 32$$
$$A_{ac}(8,4,1,1,1,1) = \frac{1}{24} \left[6\binom{4}{0,1,1,1,1} \binom{2}{2,0,0,0,0} \right] = 6$$

For $C_8H_3X_2WYZ$ and $(CH)_3X_2WYZ$

$$A_{c}(8,3,2,1,1,1) = \frac{1}{48} \left[\binom{8}{3,2,1,1,1} - 6\binom{4}{1,0,1,1,1} \binom{2}{1,1,0,0,0} \right] = 64$$
$$A_{ac}(8,3,2,1,1,1) = \frac{1}{24} \left[6\binom{4}{1,0,1,1,1} \binom{2}{1,1,0,0,0} \right] = 12$$

For $C_8H_2X_2W_2YZ$ and $(CH)_2X_2W_2YZ$

$$A_{c}\left(8,2,2,2,1,1\right) = \frac{1}{48} \left[\binom{8}{2,2,2,1,1} - 6 \left[\binom{4}{2,0,0,1,1} \binom{2}{0,1,1,0,0} + \binom{4}{0,2,0,1,1} \binom{2}{1,0,1,0,0} + \binom{4}{0,0,2,1,1} \binom{2}{1,1,0,0,0} \right] \right] = 96$$

$$A_{ac}\left(8,2,2,2,1,1\right) = \frac{1}{24} \left(6 \left[\begin{pmatrix} 4\\2,0,0,1,1 \end{pmatrix} \begin{pmatrix} 2\\0,1,1,0,0 \end{pmatrix} + \begin{pmatrix} 4\\0,2,0,1,1 \end{pmatrix} \begin{pmatrix} 2\\1,0,1,0,0 \end{pmatrix} + \begin{pmatrix} 4\\0,0,2,1,1 \end{pmatrix} \begin{pmatrix} 2\\1,1,0,0,0 \end{pmatrix} \right] \right) = 18$$

For C8H2X2UWYZ and (CH)2X2UWYZ

$$A_{c}\left(8,2,2,1,1,1,1\right) = \frac{1}{48} \left[\begin{pmatrix} 8\\2,2,1,1,1,1 \end{pmatrix} \right] = 210$$
$$A_{ac}\left(8,2,2,1,1,1,1\right) = 0$$

For C₈H₂XPUWYZ and (CH)₂XPUWYZ

$$A_{c}(8,2,1,1,1,1,1,1) = \frac{1}{48} \left[\binom{8}{2,1,1,1,1,1,1} \right] = 420$$
$$A_{c}(8,2,1,1,1,1,1,1) = 0$$

For C₈HXSPUWYZ and (CH)XSPUWYZ

$$A_{c}(8,1,1,1,1,1,1,1) = \frac{1}{48} \left[\binom{8}{1,1,1,1,1,1,1} \right] = 840$$
$$A_{ac}(8,1,1,1,1,1,1,1,1) = 0$$

These results predict the occurrence of $A_c(8,6,1,1)=0$ chiral and $A_{ac}(8,6,1,1)=3$ achiral isomers partitioned into $C_{3v}+2C_s$ isomers for di-hetero-substituted cubane derivatives C_8H_6XY and its cubane di-hetero hetero-analogues $(CH)_6XY$. The tri-heterosubstituted cubane $C_8H_5X_2Y$ and cubane tri-hetero hetero-analogues $(CH)_5X_2Y$ give rise to $A_c(8,5,2,1)=1C_1$ chiral and $A_{ac}(8,5,2,1)=5C_s$ achiral isomers. The series of tri-heterosubstituted cubane derivatives C_8H_5XYZ and cubane tri-hetero hetero-analogues $(CH)_5XYZ$ exhibit $A_c(8,5,1,1,1)=4C_1$ chiral and $A_{ac}(8,5,1,1,1)=6C_s$ achiral skeletons. In the series of tetra-hetero-substituted cubane derivatives $C_8H_4X_2Y_2$ and their corresponding cubane tetra-hetero heteroanalogues $(CH)_4X_2Y_2$ the pattern inventory predicts the occurrence of $A_c(8,4,2,2)=6$, $A_{ac}(8,4,2,2)=10$ chiral isomers partitioned into $4C_1+2C_2$ and $C_s+4C_s++3C_{2v}+C_{2v}+C_{2h}$ then for the series C_8H_4XWYZ and $(CH)_4XWYZ$, $A_c(8,4,1,1,1,1)=32C_1$ chiral and $A_{ac}(8,4,1,1,1,1)=6C_s$ achiral isomers skeletons respectively. The series of pentaheterosubstituted cubane derivatives $C_8H_3X_2Y_2Z$ and cubane penta-hetero heteroanalogues $(CH)_3X_2Y_2Z$ exhibit $A_c(8,3,2,2,1)=28C_1$ chiral and $14C'_s$ -achiral skeletons. For the hexaheterosubstituted cubane derivatives $C_8H_2X_2W_2YZ$ and their cubane hexa-hetero heteroanalogues $(CH)_2X_2W_2YZ$ the pattern inventory predicts the occurrence of $A_c(8,2,2,2,1,1) = 96$ C_1 -chiral and $A_{ac}(8,2,2,2,1,1) = 18 C_s$ -achiral isomers skeletons. The hexa-heterosubstituted cubane derivatives $C_8H_2X_2UWYZ$, $C_8H_2XPUWYZ$ and their related hexa-hetero heteroanalogues $(CH)_2X_2UWYZ$, $(CH)_2XPUWYZ$ exhibit $A_c(8,2,2,1,1,1,1) = 210C_1$, $A_c(8,2,1,1,1,1,1,1) = 420 C_1$ -chiral isomers and $A_{ac}(8,2,2,1,1,1,1) = 0$, $A_{ac}(8,2,1,1,1,1,1,1,1) = 0$ achiral isomers skeletons respectively. The hepta-hetero substituted cubane derivatives $C_8HXSPUWYZ$ and their hepta hetero hetero-analogues (CH)XSPUWYZ exhibit $A_c(8,1,1,1,1,1,1,1,1) = 840 C_1$ -chiral and $A_{ac}(8,1,1,1,1,1,1,1,1,1) = 0$ achiral isomers. These results are summarized in table 4 and some illustrations given in fig.2 part II of this study.

Table 4. Numbers A_c of chiral, A_{ac} of achiral and $C_{he} = A_c + A_{ac}$ of diastereoisomers predicted for some series of di, tri, tetra, penta, hexa, hepta-heterosubstituted cubanes and cubane di,tri,tetra, penta, hexa,hepta,-hetero hetero-analogues.

$q_0, \dots, q_i, \dots, q_k$	Heterosubstituted cubanes	Cubane hetero- hetero-analogues	Ą	A_{ac}	C _{he}	Occurring Symmetries
6,1,1	C_8H_6XY	(CH) ₆ XY	0	3	3	$C_{3v} + 2C_s$
5,2,1	$C_8H_5X_2Y$	(CH)5X2Y	1	5	6	$C_1 + 5C_s$
5,1,1,1	C_8H_5XYZ	(CH)5XYZ	4	6	10	$4C_1 + 6C'_s$
4,2,2	$C_8H_4X_2Y_2$	(CH)4 X2Y2	6	10	16	$4C_1 + 2C_2 + 4C_s + C_s + 3C_{2v} + C_{2v}' + C_{2h}'$
3,2,2,1	$C_8H_4X_2Y_2Z$	$(CH)_3X_2Y_2Z_1$	28	14	42	$28C_1 + 14C'_s$
4,1,1,1,1	C ₈ H ₄ XWYZ	(CH)4XWYZ	32	6	38	$32C_1 + 6C'_s$
3,2,1,1,1	$C_8H_3X_2WYZ$	(CH) ₃ X ₂ WYZ	64	12	76	$64C_1 + 12C'_s$
2,2,2,1,1	$C_8H_2X_2W_2YZ$	(CH) ₂ X ₂ W ₂ YZ	96	18	114	$96C_1 + 18C'_s$
2,2,1,1,1,1	C8H2X2UWYZ	(CH)2X2UWYZ	210	0	210	210Ci
2,1,1,1,1,1,1	C8H2XPUWYZ	(CH)2XPUWYZ	420	0	420	420C1
1,1,1,1,1,1,1,1	C8HXSPUWYZ	(CH)XSPUWYZ	840	0	840	840C1

6 Concluding remarks

The procedure of bipartite combinatorial enumeration of substituted cubane derivatives and cubane homo hetero-analogues and cubane hetero hetero-analogues contains the following steps:

1-Determination of $\overline{P_{ro}}H_8$ and $\overline{P_{rr}}H_8$ the averaged weight of permutations generated respectively by 24 rotations and 24 rotoreflections of O_h acting on the substitutions sites.

2-Determination of permutations representations $\Delta_{c}H_{s}$ and $\Delta_{ac}H_{s}$ controlling the chirality and the achirality fittingness of the substitution sites of cubane.

3- Formulation of algebraic expressions (eqs.10-14 and eqs.17-29) for counting homogeneous and heterogeneous arrangements of substituents.

4- For cubane heteropolysubstituted cubane derivatives and cubane hetero-hetero-analogues the solution of partition eqs. (18-19), (22-23), (26-27) is required to obtain pairs of integer sequences compatible with the sequences of partial degrees of heteropolysubstitution q_0, q_1, \dots, q_k .

5- Replacement of the right-hand side terms of $\Delta_{e}H_{s}$ and $\Delta_{ae}H_{s}$ by equivalent algebraic expressions obtained in step 3 to derive pairs of generic counting formulae (eqs.14-15 or 30-31).

6- Introduction in eqs. (14) - (15) or in eqs. (30) - (31) of appropriate data and computation of chiral and achiral isomers numbers A_c and A_{ac} for the series.

The applications of this algorithm yield congruent isomers figures ^[15] inventories for both substituted cubane derivatives and their corresponding cubane homo-heteroanalogues or hetero hetero-analogues. For the sake of comparison, the sum $A_c + A_{ac}$ obtained in each series matches up with Polya's coefficients C_{ho} and C_{he} derived from cycle indices.^[16] From these results at hand it remains to solve the problem of partition of A_c and A_{ac} stereoisomers among the sequence of subgroups of O_h . Part II of this work provides the methodology of the partition of such bulk stereoisomers numbers as sum of symmetry adapted isomers numbers (column 7 table 4) and presents their detailed illustrations by the graphs of fig.1 and 2.

References

- P. E. Eaton, T. W. Cole, Cubane, J. Am. Chem. Soc. 86 (1964) 3157–3158; P. E. Eaton, T. W. Cole, The Cubane system, J. Am. Chem. Soc. 86 (1964) 962–964.
- [2] P. E. Eaton, Y. S. Or, S. J. Branka, Pentaprismane, J. Am. Chem. Soc. 103 (1981) 2134– 2136.
- [3] P. E. Eaton, B. K. Ravi Shankar, G. D. Price, J. J. Pluth, E. E. Gilbert, J. Alster, O. Sandus, Synthesis of 1,4-dinitrocubane, *J. Org. Chem.* 49 (1984) 185–186.

- [4] P. E. Eaton, S. J. Branka, B. K. Ravi Shankar, The synthesis of pentaprismane, *Tetrahedron* 42 (1986) 1621–1631.
- [5] P. E. Eaton, Y. Xiong, R. Gilardi, Systematic substitution of the cubane nucleus. Synthesis and properties of 1,3,5 trinitro cubane and 1,3,5,7-tetranitrocubane, J. Am. Chem. Soc. 115 (1993) 10195–10202.
- [6] P. E. Eaton, N. Kanomata, J. Hain, E. Punzalan, R. Gilardi, Synthesis and chemistry 1,3,5,7-tetranitrocubane including measurement of its acidity, formation of o-nitro anions, and the first preparation of pentanitrocubane and hexanitrocubane, *J. Am. Chem. Soc.* **199** (1997) 9591–9602.
- [7] M. X. Zhang, P. E. Eaton, R. Gilardi, Hepta and Octanitro-cubanes., Angew. Chem. Int. Edit. 39 (2000) 401–404.
- [8] L. T. Eremenko, L. B. Romanova, M. E. Ivanova, I. L. Eremenko, S. E. Nefedov, Y. T. Stucki, Cubane derivatives. Synthesis and molecular structure of the esters of 1, 4-cubane di-carboxylic acid, *Russ. Bull.* 43 (1994) 668–672.
- [9] J. Wlochal, R. D. M. Davies, J. Burton, Cubanes in medicinal chemistry: Synthesis of functionalized building blocks, Org. Lett. 16 (2014) 4094–4097.
- [10] S. Fujita, Combinatorial enumeration of cubane derivatives as three-dimensional entities. I. Gross enumeration by the proligand method, *MATCH Commun. Math. Comput. Chem.* 67 (2012) 5–24.
- [11] S. Fujita, Systematic enumeration and symmetries of cubane derivatives, *Chem. Rec.* 16 (2016) 1116–1163.
- [12] S. Fujita, Subduction of Coset representations. An application to enumeration of chemical structures, *Theor. Chim. Acta* 76 (1989) 247–268.
- [13] I. Alkorta, J. Elguero, I. Rozas, A. T. Balaban, Theoretical studies of aza-analogues of platonic hydrocarbons: Part 1. Cubane and its aza-derivatives, *J. Mol. Struct.* (*Theochem*) 206 (1990) 65–67.
- [14] J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958
- [15] C. Clapham, J. Nicholson, Oxford Concise Dictionary of Mathematics, Oxford Univ. Press, New York, 2009.
- [16] A. Tucker, Pólya's enumeration by example, Math. Magazine 47 (1974) 248–256; G. Pólya, R. C Read, Combinatorial Enumeration of Groups, Graphs and Chemical Compounds, Springer, Berlin, 1987.