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Abstract

In this paper, we give graphs whose topological index are exactly equal to the
number un, satisfying the three term recurrence relation

un = aun−1 + bun−2 (n ≥ 2) u0 = 0 and u1 = u ,

where a, b and u are positive integers. We show an interpretation from the continued
fraction expansion in a more general case, so that the topological index can be
computed easily. On the contrary, for any given positive integer N , we can find the
graphs (trees) whose topological indices are exactly equal to N . We also show how
to calculate Hosoya index of the given tree graph or the graph including circle type
graphs, by using the branched continued fractions.

1 Introduction

The concept of the topological index was first introduced by Haruo Hosoya in 1971 [8].

As more different types of topological indices have been discovered in chemical graph

theory (e.g., see [5]), the first topological index is also called Hosoya index or the Z index

nowadays. Topological indices are used for example in the development of quantitative

structure-activity relationships (QSARs) in which the biological activity or other prop-

erties of molecules are correlated with their chemical structure. The integer Z := Z(G)
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is the sum of a set of the numbers p(G, k), which is the number of ways for choosing k

disjoin edges from G. By using the set of p(G, k), the topological index Z is defined by

Z =
m∑
k=0

p(G, k) .

The topological index is closely related to Fibonacci Fn [9] and related numbers [10]. For

the path graph Sn, we have Z(Sn) = Fn+1, where Fn = Fn−1 + Fn−2 (n ≥ 2) with F0 = 0

and F1 = 1. For the monocyclic graph Cn, we have Z(Cn) = Ln, where Ln is the Lucas

number, defined by Ln = Ln−1 + Ln−2 (n ≥ 2) with L0 = 2 and L1 = 1.

In [11], manipulation of continued fraction, either finite and infinite, was shown to be

greatly simplified and systematized by introducing the topological index Z and caterpillar

graph Cn(x1, x2, . . . , xn). The continuant which was introduced by Euler in 18 century for

solving continued fraction problems was shown to be identical to the Z-index of the cater-

pillar graph derived from the continued fraction concerned. Then the fastest algorithm

for solving the Pell equations was obtained. Further, graph-theoretical interpretation

for Fibonacci and Lucas numbers and generalized Fibonacci numbers was obtained. A

caterpillar graph is a tree containing a path graph such that every edge has one or more

endpoints in that path. In [11], it is shown that for n ≥ 1

Z
(
Cn(a0, a1, . . . , an−1)

)
= pn−1 , (1)

where

pn−1
qn−1

= a0 +
1

a1 + ...+
1

an−1

with gcd(pn−1, qn−1) = 1, ai ≥ 1 (0 ≤ i ≤ n− 1) .

In [12], the three series of numbers, Fibonacci Fn, Lucas Ln and generalized Fibonacci

Gn are defined to have the same recursive relation, un = un−1 + un−2. By imposing the

following set of initial conditions, f0 = f1 = 1, L1 = 1 and L2 = 3, and G1 = a > 0 and

G2 = b > 0 with b > 2a, a number of novel identities were found which systematically

relate fn, Ln, and Gn with each other. Further, graph-theoretical interpretation for these

relations was obtained by the aid of the continuant, caterpillar graph, and topological

index Z which was proposed and developed by Hosoya. In [13], the conventional algo-

rithm for solving the linear Diophantine equation in two variables is greatly improved

graph-theoretically by using the Z-caterpillars, namely, by substituting all the relevant

series of integers with the caterpillar graphs whose topological indices represent those
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integers. By this graph-theoretical analysis, the mathematical structure of the linear Dio-

phantine equation and its relation with Euclid’s algorithm, continued fraction, and Euler’s

continuant is clarified.

The numbers un, satisfying the three term recurrence relation un = aun−1 + un−2,

are entailed from the topological index of caterpillar graphs. In particular, Pell numbers

Pn, where a = 2, are yielded from the comb graph [10], which is the special case of the

caterpillar graphs. In addition, the numbers un appear in the convergents pn/qn of the

simple continued fraction expansion. However, it does not seem that the numbers un,

satisfying the three-term recurrence relation un = un−1 + bun−2, have not been recognized

as any special graph yet.

In this paper, we give graphs whose topological index are exactly equal to the number

un, satisfying the three-term recurrence relation

un = aun−1 + bun−2 (n ≥ 2) u0 = 0 and u1 = u ,

where a, b and u are positive integers. We show an interpretation from the continued

fraction expansion in a more general case, so that the topological index can be computed

easily. On the contrary, for any given positive integer N , we can find the graphs (trees)

whose topological indices are exactly equal to N . We also show how to calculate Hosoya

index of the given tree graph or the graph including circle type graphs, by using the

branched continued fractions.

2 Double bonds

We explain double bonds in order to understand the structure of the sequence {un}n≥0,

satisfying the three term recurrence relation un = un−1 + 2un−2. In Chemistry, double

bonds are chemical bonds between two chemical elements involving four bonding electrons

instead of the usual two, and found in ethylene (carbon-carbon double bond C=C), ace-

tone (carbon-oxygen double bond C=O), dimethyl sulfoxide (sulfur-oxygen double bond

S=O), diazene (nitrogen-nitrogen double bond N=N) and so on (see, e.g., [19]).
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Though there does not seem to exist any concrete example, we shall consider the

connected graph of double bonds as Bn.

• • • • • • • • • •

B0 B1 B2 B3

Then the topological index of Bn coincides with the Jacobsthal number, whose se-
quence is given by

0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, . . .

( [20, A001045]).

Theorem 1. For n ≥ 0

Z(Bn) = Jn+2,

where Jn are the Jacobsthal numbers defined by

Jn = Jn−1 + 2Jn−2 (n ≥ 2) with J0 = 0 and J1 = 1 .

Theorem 1 is a special case of the main result in the later section. Theorem 1 holds

for small n by the following table.

k = 0 k = 1 k = 2 Z(Bn)
p(B0, k) 1 1
p(B1, k) 1 2 3
p(B2, k) 1 4 5
p(B3, k) 1 6 4 11

There exist stronger bonds in chemistry. Triple bonds are of order 3. Some chemical

compounds with a triple bond are acetylene and cyanogen.

H C C H N C C N

acetylene cyanogen
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Quadruple bond (e.g., chromium(II) acetate), Quintuple bond and Sextuple bond have

been also known as of order 4, 5 and 6, respectively.

In Mathematics, define a bond graph denoted by Bn(y1, y2, . . . , yn−1), a connected

graph with bonds order y1, y2, . . . , yn−1, where y1, y2, . . . , yn−1 are positive integers.

•
y1

•
y2

• •
yn−1

•

If y1 = y2 = · · · = yn−1 = 1, Sn = Bn(1, 1, . . . , 1) is the path graph. If y1 = y2 = · · · =

yn−1 = 2, Bn = Bn(2, 2, . . . , 2) yields Jacobsthal numbers in its topological indices above.

Similarly, if y1 = y2 = · · · = yn−1 = b, Bn(b, b, . . . , b) is related with the number un,

satisfying the three term recurrence relation un = un−1 + bun−2 (n ≥ 3) with u1 = b and

u2 = b+ 1. In fact, we shall discuss more general cases in the later section.

3 Continued fraction

Any real number α is expressed as the regular (or simple) continued fraction expansion

α := [a0; a1, a2, . . . ] = a0 +
1

a1 +
1

a2 + ...

,

where

α = a0 + θ0, a0 = bαc ,

1/θn−1 = an + θn, an = b1/θn−1c (n ≥ 1) .

The n-th convergent of the continued fraction expansion of α is given by

pn
qn

:= [a0; a1, a2, . . . , an] = a0 +
1

a1 +
1

a2 + ...
+

1

an

.

It is well-known that pn and qn satisfy the recurrence relation:

pn = anpn−1 + pn−2 (n ≥ 0), p−1 = 1, p−2 = 0, (2)

qn = anqn−1 + qn−2 (n ≥ 0), q−1 = 0, q−2 = 1 . (3)

In Graph theory, a caterpillar graph (or tree), denoted by Cn(x1, x2, . . . , xn), is a tree

in which all the vertices are within distance 1 of a central path.
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x1−1︷ ︸︸ ︷ x2−1︷ ︸︸ ︷ xn−1︷ ︸︸ ︷
• • • • • • • • •

• • • • •

If x1 = · · · = xn = 1, Sn = Cn(1, . . . , 1) is a path graph.

In [11], it is shown that for n ≥ 1

Z
(
Cn(a0, a1, . . . , an−1

)
= pn−1 , (4)

where

pn−1
qn−1

= a0 +
1

a1 + ...+
1

an−1

with gcd(pn−1, qn−1) = 1, ai ≥ 1 (0 ≤ i ≤ n− 1) .

4 Caterpillar-bond graphs and continued fractions

Any real number can be expressed as a generalized continued fraction expansion of the

form

α = a0 +
b1

a1 +
b2

a2 + ...

.

In this paper, we assume that all numbers a0, a1, a2, . . . and b1, b2, . . . are positive integers.

The n-th convergent pn/qn is given by

pn
qn

= a0 +
b1

a1 +
b2

a2 + ...
+

bn
an

.

Here, pn and qn satisfy the recurrence relation:

pn = anpn−1 + bnpn−2 (n ≥ 2), p0 = a0, p1 = a0a1 + b1, (5)

qn = anqn−1 + bnqn−2 (n ≥ 2), q0 = 1, q1 = a1 . (6)

Notice that the expression of the generalized continued fraction expansion is not

unique, and pn and qn are not necessarily coprime.

Now, we introduce a combined graph of the caterpillar graph and the bond graph as

their generalization.
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Caterpillar-bond graph Dn(x1, x2, . . . , xn; y1, y2, . . . , yn−1)

x1−1︷ ︸︸ ︷ x2−1︷ ︸︸ ︷ xn−1︷ ︸︸ ︷
• • • • • • • • •

•
y1

•
y2

• • •
yn−1

Example I. For example, the caterpillar-bond graph D4(3, 1, 2, 4; 3, 4, 1) is given by

the following.

• • • • • •

• • • •
Notice that

Dn(2, x2, . . . , xn; y1, . . . , yn−1) = Dn+1(1, 1, x2, . . . , xn; 1, y1, . . . , yn−1) , (7)

Dn(x1, . . . , xn−1, 2; y1, . . . , yn−1) = Dn+1(x1, . . . , xn−1, 1, 1; y1, . . . , yn−1, 1) . (8)

Our first main result can be stated as follows.

Theorem 2. For n ≥ 1,

Z
(
Dn(a0, a1, . . . , an−1; b1, . . . , bn−1)

)
= pn−1 ,

where pn−1 is the numerator of the convergent of the continued fraction expansion

pn−1
qn−1

= a0 +
b1

a1 +
b2

a2 + ...
+
bn−1
an−1

(9)

and pj’s and qj’s satisfy the recurrence relations in (5) and (6), respectively.

Remark. Since
. . .

+
b

1 +
1

1

=

. . .
+
b

2

with two continued fraction expansions of p/q and p/(p− q) (p > q), we can recognize the

relations (7) and (8), and their topological indices are the same.

Example II. Since

3 +
3

1 +
4

2 +
1

4

=
102

25
,

-405-



the topological index is given by Z
(
D4(3, 1, 2, 4; 3, 4, 1)

)
= 102.

In order to prove our main result, we need the known relations, which were first

suggested by Hosoya [8,9] and were elaborated by Gutman and Polansky [7]. Though we

need only the first one in this paper, we also list related relations for convenience.

Lemma 1. 1. If e = uv is an edge of a graph G, then Z(G) = Z(G−e)+Z(G−{u, v}).

2. If v is a vertex of a graph G, then Z(G) = Z(G − v) +
∑

uv Z(G − uv), where the

summation extends over all vertices adjacent to v.

3. If G1, G2, . . . , Gk are connected components of G, then Z(G) =
∏k

i=1 Z(Gi).

Proof of Theorem 2. We can show that for n ≥ 3

Z
(
Dn(x1, x2, . . . , xn; y1, . . . , yn−1)

)
= xnZ

(
Dn−1(x1, x2, . . . , xn−1; y1, . . . , yn−2)

)
+ yn−1Z

(
Dn−2(x1, x2, . . . , xn−2; y1, . . . , yn−3)

)
.

(10)

Manually, we can compute

Z
(
D1(x1)

)
= x1 and Z

(
D2(x1, x2, y1)

)
= x1x2 + y1 .

x1−1︷ ︸︸ ︷ x1−1︷ ︸︸ ︷ x2−1︷ ︸︸ ︷
• • •
•

• • • • • •
• •

On the other hand, for this general continued fraction expansion, we know that

a0 =
a0
1

=
p0
q0

and a0 +
b1
a1

=
a0a1 + b1

a1
=
p1
q1

with the recurrence relation (2). By setting xk = ak−1 (k ≥ 1) and yk = bk (k ≥ 1),
the structures of Z

(
Dn(x1, x2, . . . , xn; y1, . . . , yn−1)

)
and pn−1 are completely the same.

Therefore, we obtain Z
(
Dn(x1, x2, . . . , xn; y1, . . . , yn−1)

)
= pn−1 (n ≥ 1).

xn−1−1︷ ︸︸ ︷ xn−1︷ ︸︸ ︷ xn−1−1︷ ︸︸ ︷ xn−2︷ ︸︸ ︷ xn−1−1︷ ︸︸ ︷
• • • • • •

• • •

= • • • • •

• • •

+ • • •

• •
Dn(x1, . . . , xn; y1, . . . , yn−1) Dn(x1, . . . , xn − 1; y1, . . . , yn−1) Dn−1(x1, . . . , xn−1; y1, . . . , yn−2)
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Finally, we prove (10). By using the first relation in Lemma 1 repeatedly,

Z
(
Dn(x1, x2, . . . , xn; y1, . . . , yn−1)

)
= Z

(
Dn−1(x1, x2, . . . , xn−1; y1, . . . , yn−2)

)
+ Z

(
Dn(x1, x2, . . . , xn − 1; y1, . . . , yn−1)

)
= · · ·
= (xn − 1)Z

(
Dn−1(x1, x2, . . . , xn−1; y1, . . . , yn−2)

)
+ Z

(
Dn(x1, x2, . . . , 1; y1, . . . , yn−1)

)
= (xn − 1)Z

(
Dn−1(x1, x2, . . . , xn−1; y1, . . . , yn−2)

)
+ Z

(
Dn−2(x1, x2, . . . , xn−2; y1, . . . , yn−3)

)
+ Z

(
Dn(x1, x2, . . . , xn−1, 1; y1, . . . , yn−2, yn−1 − 1)

)
· · ·
= (xn − 1)Z

(
Dn−1(x1, x2, . . . , xn−1; y1, . . . , yn−2)

)
+ (yn−1 − 1)Z

(
Dn−2(x1, x2, . . . , xn−2; y1, . . . , yn−3)

)
+ Z

(
Dn(x1, x2, . . . , xn−1, 1; y1, . . . , yn−2, 1)

)
= xnZ

(
Dn−1(x1, x2, . . . , xn−1; y1, . . . , yn−2)

)
+ yn−1Z

(
Dn−2(x1, x2, . . . , xn−2; y1, . . . , yn−3)

)
.

Additional proof. We can recognize the desired result by a tridiagonal determinantal ex-

pression.

Kn(x1, . . . , xn; y1, . . . , yn−1) :=

∣∣∣∣∣∣∣∣∣∣∣∣

x1 y1 0

−1 x2 y2
. . .

0 −1
. . . . . . 0

. . . . . . xn−1 yn−1
0 −1 xn

∣∣∣∣∣∣∣∣∣∣∣∣

= xn

∣∣∣∣∣∣∣∣∣∣∣∣

x1 y1 0

−1 x2 y2
. . .

0 −1
. . . . . . 0

. . . . . . xn−2 yn−2
0 −1 xn−1

∣∣∣∣∣∣∣∣∣∣∣∣
− yn−1

∣∣∣∣∣∣∣∣∣∣∣

x1 y1 0

−1 x2 y2
. . .

0
. . . . . . . . . 0

−1 xn−2 yn−2
0 · · · · · · 0 −1

∣∣∣∣∣∣∣∣∣∣∣
= xnKn(x1, . . . , xn; y1, . . . , yn−1) + yn−1Kn−2(x1, . . . , xn−2; y1, . . . , yn−3)

with

K1(x1) = |x1| = x1 and K2(x1, x2; y1) =

∣∣∣∣ x1 y1
−1 x2

∣∣∣∣ = x1x2 + y1 .

4.1 Special cases with recurrence relations

If x1 = · · · = xn = a and y1 = · · · = yn−1 = b in Theorem 2, we have the following.

-407-



Corollary 1. Let a and b be positive integers. Then for a positive integer n,

Z
(
Dn(a, . . . , a︸ ︷︷ ︸

n

; b, . . . , b︸ ︷︷ ︸
n−1

)
)

= un+1

= aun + bun−1

with u0 = 0 and u1 = 1.

If the initial values are also arbitrary, then we have the following.

Corollary 2. For a positive integer n,

Z
(
Dn(v1, a, . . . , a︸ ︷︷ ︸

n−1

; bv0, b, . . . , b︸ ︷︷ ︸
n−2

)
)

= vn

= avn−1 + bvn−2 (n ≥ 2) .

More specific cases are for Fibonacci Fn, Lucas Ln, Pell Pn, Pell-Lucas Qn and Jacob-

sthal numbers Jn, where

Fn = Fn−1 + Fn−2 (n ≥ 2) with F0 = 0 and F1 = 1 ,

Ln = Ln−1 + Ln−2 (n ≥ 2) with L0 = 2 and L1 = 1 ,

Pn = 2Pn−1 + Pn−2 (n ≥ 2) with P0 = 0 and P1 = 1 ,

Qn = 2Qn−1 +Qn−2 (n ≥ 2) with Q0 = 2 and Q1 = 2 ,

Jn = Jn−1 + 2Jn−2 (n ≥ 2) with J0 = 0 and J1 = 1 .

Z
(
Dn(1, . . . , 1︸ ︷︷ ︸

n

; 1, . . . , 1︸ ︷︷ ︸
n−1

)
)

= Fn+1 ,

Z
(
Dn(1, . . . , 1︸ ︷︷ ︸

n

; 2, 1, . . . , 1︸ ︷︷ ︸
n−2

)
)

= Ln ,

Z
(
Dn(2, . . . , 2︸ ︷︷ ︸

n

; 1, . . . , 1︸ ︷︷ ︸
n−1

)
)

= Pn+1 ,

Z
(
Dn(2, . . . , 2︸ ︷︷ ︸

n

; 2, 1, . . . , 1︸ ︷︷ ︸
n−2

)
)

= Qn+1 ,

Z
(
Dn(1, . . . , 1︸ ︷︷ ︸

n

; 2, . . . , 2︸ ︷︷ ︸
n−1

)
)

= Z
(
Bn−1

)
= Jn+1 .

The first four cases can be seen in [10–12]. The last case is exactly the same as

Theorem 1. In [10] more numbers with corresponding graphs are presented, and graphs

-408-



of Ln and Qn are different. Another graph of Ln by Hosoya is the monocyclic graph Cn,

where Z(Cn) = Ln.

• • • • • • • • • • •
• •

• • •
• • •

• • • •
• • • •

L2 = 3 L3 = 4 L4 = 7 Q3 = 6 Q4 = 14 Q5 = 34

4.2 Applications

Using the continued fraction expansion, we can compute the topological index of the

graph by Theorem 2.

On the other hand, we can constitute the graph (without any ring) whose topological

index is given. For example, we shall find the graphs whose topological index are 17.

Then, concerning the continued fractions we get

17,
17

2
= 8 +

1

2
,

17

3
= 5 +

2

3
,

17

4
= 4 +

1

4
,

17

5
= 3 +

2

5
,

17

6
= 2 +

5

6
,

17

7
= 2 +

3

7
,

17

8
= 2 +

1

8
,

17

9
= 1 +

1

1 +
1

8

,
17

10
= 1 +

1

1 +
3

7

,
17

11
= 1 +

1

1 +
5

6

,

17

12
= 1 +

1

2 +
2

5

,
17

13
= 1 +

1

3 +
1

4

,
17

14
= 1 +

1

4 +
2

3

,
17

15
= 1 +

1

7 +
1

2

,
17

16
= 1 +

1

16
.

If we allow (7) and (8), we still have different expressions with the same value. For

example,
17

3
= 5 +

2

3
= 5 +

1

1 +
1

2

= 5 +
1

1 +
1

1 +
1

1

and
17

14
= 1 +

3

14
= 1 +

1

4 +
2

3

= 1 +
1

4 +
1

1 +
1

2

= 1 +
1

4 +
1

1 +
1

1 +
1

1

.

However, the graph structures of 17
3

and 17
14

are essentially the same. It is similar for 17
q

and 17
17−q . Therefore, the essentially different graphs whose topological indices are equal
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to 17 are given as follows.

17
17

2

17

3

17

4

17

6

17

7

•• •• •• •• • •• •• •• ••

• • • • •
• •
• • •

• • •
• •
• • •

• • • • • •
• •

• • • •
• •
• •

• • • •
• •
• •

Notice that other continued fraction expansions are the essentially the same as one of the

above 6 graphs. Namely,

17 ∼ 17

16
,

17

2
∼ 17

8
∼ 17

9
∼ 17

15
,

17

3
∼ 17

5
∼ 17

12
∼ 17

14
,

17

4
∼ 17

13
,

17

6
∼ 17

11
,

17

7
∼ 17

10

4.3 Examples in chemistry

Ethylene, acetone (or dimethyl sulfoxide) and diazene correspond to the continued fraction

expansions

3 +
2

3
=

11

3
, 3 +

2

1
=

5

1
and 2 +

2

2
=

6

2
,

respectively. These topological indices are given by 11, 5 and 6, respectively. In fact, the

structure of diazene can be explained by Pell-Lucas number Q3.

Acetylene can be written as D4(1, 1, 1, 1; 1, 3, 1), D3(2, 1, 1; 3, 1) (or D3(1, 1, 2; 1, 3)) or

D2(2, 2; 3). Then the corresponding continued fractions are

1 +
1

1 +
3

1 +
1

1

=
7

5
, 2 +

3

1 +
1

1

=
7

2
or 2 +

3

2
=

7

2
.

In any case its topological index is given by 7.

For cyanogen, by the continued fraction expansion

1 +
3

1 +
1

1 +
3

1

=
17

5
,

its topological index is given by Z
(
D4(1, 1, 1, 1; 3, 1, 3)

)
= 17.
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5 Awful graphs and branched continued fractions

Caterpillar-bond graphs associated with general continued fractions are not only mere

extensions of caterpillar graphs with simple continued fractions, but also yield more avail-

abilities. For example, by using several expressions of the same value by general continued

fractions

3 +
3

1 +
4

2 +
1

4

= 3 +
3

1 +
16

9

= 3 +
27

25
=

102

25
,

the topological indices are given by

Z
(
D4(3, 1, 2, 4; 3, 4, 1)

)
= Z

(
D3(3, 1, 9; 3, 16)

)
= Z

(
D2(3, 25; 27)

)
= 102 .

Although the appearance may be bad, the techniques used here are useful for calcu-

lating the topological index of more complex graphs.

8︷ ︸︸ ︷ 24︷ ︸︸ ︷
• • • • •

· · ·

• •
16

•

• • • • • • •

· · ·

•
27

•

D3(3, 1, 9; 3, 16) D2(3, 25; 27)

Namely, the given graph cannot be reduced to any of caterpillar-bond graphs, the

method in Theorem 2 cannot be used directly. In [3], it is shown that the largest topolog-

ical indices of (n, n+ 1)-graphs is Fn+1 +Fn−1 + 2Fn−3, where Fn are Fibonacci numbers,

defined by Fn = Fn−1 +Fn−2 (n ≥ 2) with F0 = 0 and F1 = 1. In [4], the lower bound for

the topological index in (n, n+ 1)-graphs is determined.

In this section, we show how to calculate Hosoya index of the given tree graph or the

graph which includes circle type graphs, by using the continued fraction expansions. In

fact, totally, we would calculate the continued fraction including other continued fractions

like

1 +
1

1 +
2

2
+

2

1 +
2

1 +
1

2

+
1

1
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(see Subsection 6.1). Such continued fractions are sometimes called branched continued

fractions (see, e.g., [2, 18]), or Two-dimensional continued fraction (see, e.g. [16, 17]) if

they are divided into 2 parts. These continued fractions were proposed by Kuchmins’ka

in the late of 1970’s.

5.1 Combined caterpillar-bond graph

The main and basic result explains how to calculate Hosoya index of the caterpillar-bond

graph attached with another caterpillar-bond graph.

a0−1︷ ︸︸ ︷ a1−1︷ ︸︸ ︷ ai−1−1︷ ︸︸ ︷ ai+1−1︷ ︸︸ ︷ an−1−1︷ ︸︸ ︷ c1−1︷ ︸︸ ︷ ck−1︷ ︸︸ ︷
• • • • • • • • • D(Ai) • • • • • •

•
b1

•
b2

• •
bi

◦
bi+1

• •
bn−1

•

where • • • • • •

◦
d1

•
d2

• • •
dk

Dn(a0, . . . , ai−1, Ai, ai+1, . . . , an−1; b1, . . . , bn−1) D(Ai) := Dk+1(1, c1, . . . , ck; d1, . . . , dk)

Theorem 3. For some i, let Ai be a positive rational number which continued fraction is

given by

Ai =
Pi
Qi

= 1 +
d1

c1 + ...
+
dk
ck

for positive integers cj and dj (j ≥ 1), according to the similar recurrence relation (5) and

(6). Then, for positive integers ah (h 6= i) and bh, the Hosoya index of above combined

caterpillar-bond graph is equal to

Z
(
Dn(a0, . . . , ai−1, Ai, ai+1, . . . , an−1; b1, . . . , bn−1)

)
= pn−1 ,

where a positive integer ai in (9) is replaced by Ai.

An important remark. Because of the recurrence relations (5) and (6), Pi/Qi and fractional

calculations that appear in the middle do not reduce. For example, we keep the unreduced

form as
7

4
+

5

8
=

7 · 8 + 5 · 4
4 · 8

=
76

32

though it can be reduced to 19/8. In other words, after usual calculation the greatest

common divisor is multiplied. That is, as gcd(4, 8) = 4 we calculate as

7

4
+

5

8
=

19

8
=

19× 4

8× 4
=

76

32
.
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In order to prove Theorem 3, we need the known relations, which were first suggested

by Hosoya [8,9] and were elaborated by Gutman and Polansky [7]. Though we need only

the first one in this paper, we also list related relations for convenience.

Lemma 2. 1. If e = uv is an edge of a graph G, then Z(G) = Z(G−e)+Z(G−{u, v}).

2. If v is a vertex of a graph G, then Z(G) = Z(G − v) +
∑

uv Z(G − uv), where the

summation extends over all vertices adjacent to v.

3. If G1, G2, . . . , Gk are connected components of G, then Z(G) =
∏k

i=1 Z(Gi).

Proof of Theorem 3. Notice that the caterpillar-bond graph Dk+1(c0, c1, . . . , ck; d1, . . . , dk)

can be transformed into the most reduced caterpillar-bond graph D2(1, Qi;Pi−Qi) without

changing its Hosoya index as Pi.

c1−1︷ ︸︸ ︷ ck−1︷ ︸︸ ︷ Qi︷ ︸︸ ︷
• • • • • •

•
d1

•
d2

• • •
dk

=⇒ • • • • •
· · ·

•
Pi−Qi

•

Dk+1(c0, c1, . . . , ck; d1, . . . , dk) D2(1, Qi;Pi −Qi)

First, consider the case

Z
(
Dn(A0, a1, . . . , an−1; b1, . . . , bn−1)

)
,

where

A0 =
P0

Q0

= 1 +
d1

c1 + ...
+
dk
ck

.

By applying Lemma 2 (1) repeatedly,

Z
(
Dn(A0, a1, . . . , an−1; b1, . . . , bn−1)

)
= Q0 · Z

(
Dn(1, a1, . . . , an−1; b1, . . . , bn−1)

)
+ (P0 −Q0) · Z

(
Dn−1(a1, . . . , an−1; b2, . . . , bn−1)

)
= Q0(P

′ + b1Q
′) + (P0 −Q0)P

′ = P0P
′ + b1Q0Q

′ ,

where
P ′

Q′
:= a1 +

b2

a2 + ...
+
bn−1
an−1

,
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where P ′ and Q′ are positive integers that are not necessarily coprime after applying the

similar relation in (5) and (6). On the other hand,

A0 +
b1

a1 + ...
+
bn−1
an−1

=
P0

Q0

+
b1Q

′

P ′
=
P0P

′ + b1Q0Q
′

Q0P ′
.

Therefore, Hosoya index can be calculated as the numerator from the continued fraction

expansion

A0 +
b1

a1 + ...
+
bn−1
an−1

,

where

A0 = 1 +
d1

c1 + ...
+
dk
ck

.

The simple continued fraction expansion, where b = 1 in (9), for a real number can be

represented using 2×2 matrices. The use of such matrices to represent continued fractions

is apparently due to Hurwitz and appears in Frame [6] and Kolden [15], independently,

but popularized by van der Poorten (e.g., see [21, 22]). For the general case, we use the

matrices’ relation of the continued fraction expansion in (9) as(
a0 1
1 0

)(
a1 1
b1 0

)
· · ·
(
an−1 1
bn−1 0

)
=

(
pn−1 pn−2
qn−1 qn−2

)
.

By applying Lemma 2 (1) repeatedly, we have

Z
(
Dn(a0, . . . , ai−1, Ai, ai+1, . . . , an−1; b1, . . . , bn−1)

)
= Z

(
Dn(a0, . . . , ai−1, Pi −Qi + 1, ai+1, . . . , an−1; b1, . . . , bn−1)

)
+ (Qi − 1) · Z

(
Dn(a0, . . . , ai−1, 1, ai+1, . . . , an−1; b1, . . . , bn−1)

)
.

Put
P ′

Q′
:= ai+1 +

bi+2

ai+2 + ...
+
bn−1
an−1

,

where P ′ and Q′ are positive integers that are not necessarily coprime after applying the

similar relation in (5) and (6). Then by the matrices’ calculation, we get for a positive
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real number α(
a0 1
1 0

)(
a1 1
b1 0

)
· · ·
(
ai−1 1
bi−1 0

)(
α 1
bi 0

)(
ai+1 1
bi+1 0

)
· · ·
(
an−1 1
bn−1 0

)
=

(
pi−1 pi−2
qi−1 qi−2

)(
α 1
bi 0

)(
P ′ S

bi+1Q
′ R

)
=

(
(αpi−1 + bipi−2)P

′ + bi+1pi−1Q
′ S ′

(αqi−1 + biqi−2)P
′ + bi+1qi−1Q

′ R′

)
,

where S, R, S ′ and R′ are some positive integers. Then

= Z
(
Dn(a0, . . . , ai−1, Pi −Qi + 1, ai+1, . . . , an−1; b1, . . . , bn−1)

)
+ (Qi − 1) · Z

(
Dn(a0, . . . , ai−1, 1, ai+1, . . . , an−1; b1, . . . , bn−1)

)
=
(
(Pi −Qi + 1)pi−1 + bipi−2

)
P ′ + bi+1pi−1Q

′ + (Qi − 1)
(
αpi−1 + bipi−2)P

′ + bi+1pi−1Q
′)

= (Pipi−1 +Qibipi−2)P
′ +Qibi+1pi−1Q

′ .

On the other hand,

a0 +
b1

a1 + ...
+ai−1 +

bi

Ai +
bi+1

ai+1 + ...
+
bn−1
an−1

=
(Aipi−1 + bipi−2)P

′ + bi+1pi−1Q
′

(Aiqi−1 + biqi−2)P ′ + bi+1qi−1Q′

=
(Pipi−1 +Qibipi−2)P

′ +Qibi+1pi−1Q
′

(Piqi−1 +Qibiqi−2)P ′ +Qibi+1qi−1Q′
.

Hence,

Z
(
Dn(a0, . . . , ai−1, Ai, ai+1, . . . , an−1; b1, . . . , bn−1)

)
= (Pipi−1 +Qibipi−2)P

′ +Qibi+1pi−1Q
′ .

5.2 Examples

Theorem 3 can be extensively more applicable. If the part Ai cannot be written as a

caterpillar-bond graph, then it is resolved into more subgraphs further until all the parts

are caterpillar-bond graphs.

Suppose that we want to calculate Hosoya index of the following tree graph.

•
•

• • ◦ • •
•
•

or • •
• • • •
• ◦ •
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Here ◦ denotes the disjoint vertex. This graph does not have the corresponding general

continued fraction, but a branched continued fraction

2 +
1

A1 +
1

2

.

This graph can be factorized by separating the part of A1 as follows.

• •
• ◦ •

and •
• •
◦ •

A1 still does not have the corresponding caterpillar graph. The second graph of A1 part

corresponds to the continued fraction

A1 = B0 +
1

2

respectively, where

B0 = 1 +
1

2
=

3

2
. •

◦ •
Since the denominators are not coprime,

A1 = B0 +
1

2
=

4

2
=

8

4

and

2 +
1

A1 +
1

2

= 2 +
1

8

4
+

1

2

= 2 +
1

20

8

=
48

20
.

Therefore, Hosoya index of the given graph is 48.

There is not only one way to interpret or factorize the original graph. One of other

ways is as follows.

• • •
• • • •
• •

A0 +
1

2

• •
• • •
• •

A0 = Ã0 +
1

2

•
• •
• •

Ã0 = B0 +
1

2

By noticing the denominators are not coprime,

Ã0 =
3

2
+

1

2
=

8

4
, A0 =

8

4
+

1

2
=

20

8

-416-



and
20

8
+

1

2
=

48

16
.

Therefore, Hosoya index of the given graph is 48. The denominator is different because

the factorization is different.

Repeating this process, we can get Hosoya index of the following graph as 1280.

•• ••• •• • • • •• ••• ••

Indeed,

48

16
+

1

2
=

112

32
,

112

32
+

1

2
=

112

32
,

112

32
+

1

2
=

256

64
,

256

64
+

1

2
=

576

128

and
576

128
+

1

2
=

1280

256
.

Hence, Hosoya index is equal to 1280.

6 Graphs with cycles

In the case of tree graphs, by resolving the tree, it would be possible to calculate Hosoya

index from its corresponding continued fraction expansion. However, if the graph includes

a cycle, we cannot calculate Hosoya index by using the continued fractions. Nevertheless,

some graphs with cycles can be converted into the caterpillar-bond graphs.

In this section, we show how to calculate Hosoya index if the graph contains one cycle

graph Cn, which represents cycloraraffin CnH2n. It is known that Z(Cn) = Ln ( [10]),

where Ln are Lucas numbers, defined by Ln = Ln−1 + Ln−2 (n ≥ 2) with L0 = 2 and

L1 = 1.

•
• •
• •
•

⇐⇒ •
• •
• ◦ •
•

⇐⇒ •
• • • • •

C6 cyclohexane D5(1, 1, 1, 1, 2; 2, 1, 1, 1)
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Theorem 4. The cycle graph Cn can be transformed into the caterpillar-bond graph

Dn−1(1, . . . , 1︸ ︷︷ ︸
n−2

, 2; 2, 1, . . . , 1︸ ︷︷ ︸
n−3

) .

Proof. First, notice that the numbers of edges and vertices are unchanged. Since the

corresponding continued fraction expansion is

1 +
2

1 +
1

1 + ...
+1 +

1

1 +
1

2

= 1 +
2

Fn

Fn−1

=
Fn + 2Fn−1

Fn
=
Fn+1 + Fn−1

Fn
=
Ln
Fn

,

Hosoya index is given by Z
(
Dn−1(1, . . . , 1︸ ︷︷ ︸

n−2

, 2; 2, 1, . . . , 1︸ ︷︷ ︸
n−3

)
)

= Ln.

In addition, comb related graphs, including monocycle graphs Cn and cyclic comb

graphs CUn [10], can be converted into the caterpillar-bond graphs.

Indeed, CVn can be converted into Dn(3, . . . , 3︸ ︷︷ ︸
n

; 2, 1, . . . , 1︸ ︷︷ ︸
n−2

) by cutting one edge to

another edge into bond edges by turning around.

• •
• •
• •
◦ •

• •
• •

=⇒ • • • • • • • •

◦ • • •

For, by the first relation in Lemma 2, both graphs can be factorized into the same

graphs.

• • • • • • • •

• • • •

+ • • • •

• •
For instance,

Z(CV4) = Z
(
D4(3, 3, 3, 3; 2, 1, 1)

)
= 119

because

3 +
2

3 +
1

3 +
1

3

=
119

33
.
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Similarly,

Z(Cn) = Z
(
Dn(1, . . . , 1︸ ︷︷ ︸

n

; 2, 1, . . . , 1︸ ︷︷ ︸
n−2

)
)
,

Z(CUn) = Z
(
Dn(2, . . . , 2︸ ︷︷ ︸

n

; 2, 1, . . . , 1︸ ︷︷ ︸
n−2

)
)
,

Z(CVn) = Z
(
Dn(3, . . . , 3︸ ︷︷ ︸

n

; 2, 1, . . . , 1︸ ︷︷ ︸
n−2

)
)
,

Z(CWn) = Z
(
Dn(4, . . . , 4︸ ︷︷ ︸

n

; 2, 1, . . . , 1︸ ︷︷ ︸
n−2

)
)
.

• •

• •

• •
• •

• •
• •

• • • •
• •
• •
• •

• •
• • • •

C4 CU4 CW4

◦ • • • • • • •

◦ • • •

• • • • • • • • • • • •

◦ • • •
D4(1, 1, 1, 1; 2, 1, 1) D4(2, 2, 2, 2; 2, 1, 1) D4(4, 4, 4, 4; 2, 1, 1)

In general, let Cn,a,b be the graph which each vertex has a additional branches and

each edge is b-tupled on the monocycle Cn. When a = 0 and b = 1, Cn = Cn,0,1. When

a = 1 and b = 1, CUn = Cn,1,1. When a = 2 and b = 1, CVn = Cn,2,1. When a = 3 and

b = 1, CWn = Cn,3,1.

Then, Cn,a,b can be transformed into the caterpillar-bond graph

Dn(a+ 1, . . . , a+ 1︸ ︷︷ ︸
n

; 2b, b, . . . , b︸ ︷︷ ︸
n−2

)

without changing of the numbers of vertices and edges.

• • • •
• •
• •
• •

• •
• • • •

=⇒ • • • • • • • • • • • •

• • • •

C4,3,3 D4(4, 4, 4, 4; 6, 3, 3)
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Theorem 5. We have

Z(Cn,a,b) = Z
(
Dn(a+ 1, . . . , a+ 1︸ ︷︷ ︸

n

; 2b, b, . . . , b︸ ︷︷ ︸
n−2

)
)
.

Proof. By using Lemma 2 (1) repeatedly,

Z(Cn,a,b)

= Z(Cn,a,b−1) + Z
(
Dn−2(a+ 1, . . . , a+ 1︸ ︷︷ ︸

n−2

; b, . . . , b︸ ︷︷ ︸
n−3

)
)

= · · ·

= Z(Cn,a,1) + (b− 1)Z
(
Dn−2(a+ 1, . . . , a+ 1︸ ︷︷ ︸

n−2

; b, . . . , b︸ ︷︷ ︸
n−3

)
)

= Z(Dn(a+ 1, . . . , a+ 1︸ ︷︷ ︸
n

; b, . . . , b︸ ︷︷ ︸
n−1

)
)

+ b · Z
(
Dn−2(a+ 1, . . . , a+ 1︸ ︷︷ ︸

n−2

; b, . . . , b︸ ︷︷ ︸
n−3

)
)

= Z(Dn(a, a+ 1, . . . , a+ 1︸ ︷︷ ︸
n−1

; b, . . . , b︸ ︷︷ ︸
n−1

)
)

+ Z
(
Dn−1(a+ 1, . . . , a+ 1︸ ︷︷ ︸

n−1

; b, . . . , b︸ ︷︷ ︸
n−2

)
)

+ b · Z
(
Dn−2(a+ 1, . . . , a+ 1︸ ︷︷ ︸

n−2

; b, . . . , b︸ ︷︷ ︸
n−3

)
)

= · · ·

= Z(Dn(1, a+ 1, . . . , a+ 1︸ ︷︷ ︸
n−1

; b, . . . , b︸ ︷︷ ︸
n−1

)
)

+ a · Z
(
Dn−1(a+ 1, . . . , a+ 1︸ ︷︷ ︸

n−1

; b, . . . , b︸ ︷︷ ︸
n−2

)
)

+ b · Z
(
Dn−2(a+ 1, . . . , a+ 1︸ ︷︷ ︸

n−2

; b, . . . , b︸ ︷︷ ︸
n−3

)
)

= Z(Dn(1, a, a+ 1, . . . , a+ 1︸ ︷︷ ︸
n−1

; b− 1, b, . . . , b︸ ︷︷ ︸
n−2

)
)

+ a · Z
(
Dn−1(a+ 1, . . . , a+ 1︸ ︷︷ ︸

n−1

; b, . . . , b︸ ︷︷ ︸
n−2

)
)

+ (b+ 1) · Z
(
Dn−2(a+ 1, . . . , a+ 1︸ ︷︷ ︸

n−2

; b, . . . , b︸ ︷︷ ︸
n−3

)
)

= · · ·

= Z(Dn(1, a, a+ 1, . . . , a+ 1︸ ︷︷ ︸
n−1

; 1, b, . . . , b︸ ︷︷ ︸
n−2

)
)

+ a · Z
(
Dn−1(a+ 1, . . . , a+ 1︸ ︷︷ ︸

n−1

; b, . . . , b︸ ︷︷ ︸
n−2

)
)

+ (2b− 1) · Z
(
Dn−2(a+ 1, . . . , a+ 1︸ ︷︷ ︸

n−2

; b, . . . , b︸ ︷︷ ︸
n−3

)
)

= (a+ 1) · Z
(
Dn−1(a+ 1, . . . , a+ 1︸ ︷︷ ︸

n−1

; b, . . . , b︸ ︷︷ ︸
n−2

)
)

+ 2b · ·Z
(
Dn−2(a+ 1, . . . , a+ 1︸ ︷︷ ︸

n−2

; b, . . . , b︸ ︷︷ ︸
n−3

)
)
.

On the other hand,

Z
(
Dn(a+ 1, . . . , a+ 1︸ ︷︷ ︸

n

; 2b, b, . . . , b︸ ︷︷ ︸
n−2

)
)
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= Z
(
Dn(a, a+ 1, . . . , a+ 1︸ ︷︷ ︸

n−1

; 2b, b, . . . , b︸ ︷︷ ︸
n−2

)
)

+ Z
(
Dn−1(a+ 1, . . . , a+ 1︸ ︷︷ ︸

n−1

; b, . . . , b︸ ︷︷ ︸
n−2

)
)

= · · ·

= Z
(
Dn(1, a+ 1, . . . , a+ 1︸ ︷︷ ︸

n−1

; 2b, b, . . . , b︸ ︷︷ ︸
n−2

)
)

+ a · Z
(
Dn−1(a+ 1, . . . , a+ 1︸ ︷︷ ︸

n−1

; b, . . . , b︸ ︷︷ ︸
n−2

)
)

= Z
(
Dn(1, a+ 1, . . . , a+ 1︸ ︷︷ ︸

n−1

; 2b− 1, b, . . . , b︸ ︷︷ ︸
n−2

)
)

+ a · Z
(
Dn−1(a+ 1, . . . , a+ 1︸ ︷︷ ︸

n−1

; b, . . . , b︸ ︷︷ ︸
n−2

)
)

+ Z
(
Dn−2(a+ 1, . . . , a+ 1︸ ︷︷ ︸

n−2

; b, . . . , b︸ ︷︷ ︸
n−3

)
)

= · · ·

= Z
(
Dn(1, a+ 1, . . . , a+ 1︸ ︷︷ ︸

n−1

; 1, b, . . . , b︸ ︷︷ ︸
n−2

)
)

+ a · Z
(
Dn−1(a+ 1, . . . , a+ 1︸ ︷︷ ︸

n−1

; b, . . . , b︸ ︷︷ ︸
n−2

)
)

+ (2b− 1)Z
(
Dn−2(a+ 1, . . . , a+ 1︸ ︷︷ ︸

n−2

; b, . . . , b︸ ︷︷ ︸
n−3

)
)

= (a+ 1) · Z
(
Dn−1(a+ 1, . . . , a+ 1︸ ︷︷ ︸

n−1

; b, . . . , b︸ ︷︷ ︸
n−2

)
)

+ 2b · ·Z
(
Dn−2(a+ 1, . . . , a+ 1︸ ︷︷ ︸

n−2

; b, . . . , b︸ ︷︷ ︸
n−3

)
)
.

6.1 One more example

Consider the following graph with one double bond and two cycles.

• • •

• •

• • • •
This can be written as the graph D4(1,C3,C4, 1; 1, 2, 1) := G, which continued fraction

expansion is

1 +
1

c3 +
2

c4 +
1

1

.

Now, C3 and C4 can be transformed into the caterpillar-bond graphs D2(1, 2; 2) and

D3(1, 1, 2; 2, 1), respectively. Their continued fractions are

1 +
2

2
=

4

2
:= c3 and 1 +

2

1 +
1

2

=
7

3
:= c4 ,
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respectively. Hence, the original continued fraction can be calculated as

1 +
1

c3 +
2

c4 +
1

1

= 1 +
1

4

2
+

2

7

3
+

1

1

=
72

56
.

Therefore, Hosoya index of the given graph is 72. Indeed,

Z(G) = p(G, 0) + p(G, 1) + p(G, 2) + p(G, 3) + p(G, 4)

= 1 + 11 + 31 + 25 + 4 = 72 .

7 Continued fractions with one additional branch

In [3, 4], some transformations are used by changing the connected position or resolving

the original graph. In this section, we show the exact situation of the gap change of

Hosoya index by changing the position on the path or bond graph.

•
• •
•

b

•
b

•
b

• •
b

•

•
• •

•
b

•
b

•
b

• •
b

•

•
• •

•
b

•
b

•
b

• •
b

•

Dn(α, 1, . . . , 1; b, . . . , b) Dn(1, α, 1, . . . , 1; b, . . . , b) Dn(1, 1, α, 1, . . . , 1; b, . . . , b)

Note that α ≥ 1 (in this example, α = 7/3).

For simplicity, put Dn,k(b) := Z
(
Dn(1, . . . , 1︸ ︷︷ ︸

k−1

, α, 1, . . . , 1︸ ︷︷ ︸
n−k

; b, . . . , b︸ ︷︷ ︸
n−1

)
)
. Then, we have the

complete arrangement of sizes of Hosoya indices.

Let {rn} and {sn} be sequences, satisfying the recurrence relations

rn = rn−1 + brn−2 (n ≥ 0) with r−1 = 0, r−2 =
1

b

and

sn = sn−1 + bsn−2 (n ≥ 2) with s0 = 2 and s1 = 1 ,

respectively. In addition, rn can be written as

rn =

bn/2c∑
j=0

(
n− j
j

)
bj .

Notice that rn = Fn+1 and sn = Ln if b = 1.

Now, we have some different expressions of Hosoya index.
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Theorem 6. If α is a positive integer, then

Dn,k(b) = αrk−1rn−k + b(rk−1rn−k−1 + rk−2rn−k) (k ≥ 1) (11)

=
αsn+1 + 2bsn + (−1)k−1bk(α− 1)sn−2k+1

4b+ 1
(k ≥ 1) (12)

= α(rn−1 − brn−3 + b2rn−5 − · · ·+ (−1)k−1bk−1rn−2k+1)

+ brn−2 + brn−3 − b2rn−5 + · · ·+ (−1)kbk−1rn−2k+1 (k ≥ 2) . (13)

If α = p/q is a rational number, where p and q are positive integers which are not neces-

sarily coprime, then

Dn,k(b) = prk−1rn−k + bq(rk−1rn−k−1 + rk−2rn−k) (k ≥ 1) (14)

=
psn+1 + 2qbsn + (−1)k−1bk(p− q)sn−2k+1

4b+ 1
(k ≥ 1) (15)

= p(rn−1 − brn−3 + b2rn−5 − · · ·+ (−1)k−1bk−1rn−2k+1)

+ q
(
brn−2 + brn−3 − b2rn−5 + · · ·+ (−1)kbk−1rn−2k+1

)
(k ≥ 2) . (16)

In particular, when b = 1, we have the following Fibonacci-Lucas identities.

Corollary 3. If α is a positive integer, then

Dn,k(1) = αFkFn−k+1 + FkFn−k + Fk−1Fn−k+1

=
αLn+1 + 2Ln + (−1)k−1(a− 1)Ln−2k+1

5

= α
(
Fn − Fn−2 + Fn−4 − · · ·+ (−1)k−1Fn−2k+2

)
+
(
Fn−1 + Fn−2 − Fn−4 + · · ·+ (−1)kFn−2k+2

)
.

If α = p/q is a positive rational number, then

Dn,k(1) = pFkFn−k+1 + q(FkFn−k + Fk−1Fn−k+1)

=
pLn+1 + 2qLn + (−1)k−1(p− q)Ln−2k+1

5

= p
(
Fn − Fn−2 + Fn−4 − · · ·+ (−1)k−1Fn−2k+2

)
+ q
(
Fn−1 + Fn−2 − Fn−4 + · · ·+ (−1)kFn−2k+2

)
.

Remark. When α = 1 in Corollary 3, as is well-known,

[1; 1, . . . , 1︸ ︷︷ ︸
n

] =
Fn+1

Fn
.

Then, Dn,k(1) = Fn+1 = (Ln+1 + 2Ln)/5.
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Proof of Theorem 6. First, by the matrices’ relation of the continued fraction, we have(
1 1
1 0

)(
1 1
b 0

)
· · ·
(

1 1
b 0

)
︸ ︷︷ ︸

k−1

(
α 1
b 0

)(
1 1
b 0

)
· · ·
(

1 1
b 0

)
︸ ︷︷ ︸

n−k

=

(
1 1
1 0

)(
rk−2 rk−3
brk−3 brk−4

)(
α 1
b 0

)(
rn−k rn−k−1

brn−k−1 brn−k−2

)
=

(
rk−1 rk−2
rk−2 rk−3

)(
αrn−k + brn−k−1 αrn−k−1 + brn−k−2

brn−k brn−k−1

)
=

(
αrk−1rn−k + b(rk−1rn−k−1 + rk−2rn−k) ∗
αrk−2rn−k + b(rk−2rn−k−1 + rk−3rn−k) ∗∗

)
.

Hence, we obtain that

1 +
b

1 + ...
+

b

1 +
b

α +
b

1 + ...
+
b

1

=
αrk−1rn−k + b(rk−1rn−k−1 + rk−2rn−k)

αrk−2rn−k + b(rk−2rn−k−1 + rk−3rn−k)
.

Thus, we get (11) and (14).

Second, since

rn =
θn+1 − φn+1

θ − φ
(n ≥ 0)

with

θ =
1 +
√

4b+ 1

2
and φ =

1−
√

4b+ 1

2
,

satisfying θ + φ = 1, θφ = −b and θ − φ =
√

4b+ 1, we have for 1 ≤ k ≤ dn/2e,

rk−1rn−k =
sn+1 + (−1)k−1bksn−2k+1

4b+ 1
,

rk−1rn−k−1 + rk−2rn−k =
2sn + (−1)kbk−1sn−2k+1

4b+ 1
,

where sn = θn + φn (n ≥ 0). Thus, we get (12) and (15).

Third, we use the first identity (11). If k increases as k + 1, Hosoya index becomes

αsn+1 + 2sn + (−1)kbk+1(α− 1)sn−2k−1
4b+ 1

.

Hence, the gap between them is given by

(−1)k−1bk(α− 1)(sn−2k+1 + bsn−2k−1)

4b+ 1

= (−1)k−1bk(α− 1)rn−2k−1 .
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Thus, we get (13) and (16). This means that Hosoya index increases (or decreases) by

rn−2k−1 if the position of an additional branch is changed to the next vertex.

By Theorem 6 (11), we have the complete arrangement of Hosoya indices of Dn,k(b)

(k = 1, 2, . . . , n). It is clear that Dn,k(b) = Dn,n−k(b). So, it is good enough to show the

cases for 1 ≤ k ≤ dn/2e.

Corollary 4. If n = 2m is even, then

D2m,1(b) ≥ D2m,3(b) ≥ · · · ≥ D2m,2dm/2e−1(b) ≥ D2m,2bm/2c(b) ≥ · · · ≥ D2m,4(b) ≥ D2m,2(b) .

If n = 2m− 1 is even, then

D2m−1,1(b) ≥ D2m−1,3(b) ≥ · · · ≥ D2m−1,2dm/2e−1(b)

≥ D2m−1,2bm/2c(b) ≥ · · · ≥ D2m−1,4(b) ≥ D2m−1,2(b) .

The equation signs hold if and only if α = 1.

Proof. By Theorem 6 (11), for ` ≥ 1

Dn,2`−1(b)−Dn,2`+1(b) = (α− 1)(b2`−1rn−4`+1 − b2`rn−4`−1)

= (α− 1)b2`−1rn−4` ≥ 0

and

Dn,2`(b)−Dn,2`+2(b) = −(α− 1)(b2`rn−4`−1 − b2`+1rn−4`−3)

= −(α− 1)b2`rn−4`−2 ≤ 0 .

In addition, from Theorem 6 (12), (−1)k−1bk(α−1)sn−2k+1 ≥ 0 if k is odd; (−1)k−1bk(α−

1)sn−2k+1 ≤ 0 if k is even. Hence, Dn,2κ−1 ≥ Dn,2λ. If α is not an integer, that is, any

subgraph is attached with the path graph with one point, the situation is similar.

For example, let α = a be a positive integer. Since

[a; 1, 1, 1, 1, 1, 1] =
13a+ 8

13
, [1, a, 1, 1, 1, 1, 1] =

8a+ 13

8a+ 5
,

[1, 1, a, 1, 1, 1, 1] =
10a+ 11

5a+ 8
, [1, 1, 1, a, 1, 1, 1] =

9a+ 12

6a+ 7
,

[1, 1, 1, 1, a, 1, 1] =
10a+ 11

6a+ 7
, [1, 1, 1, 1, 1, a, 1] =

8a+ 13

5a+ 8
,

[1, 1, 1, 1, 1, 1, a] =
13a+ 8

8a+ 5
,
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we have

D7,1(1) = 13a+ 8, D7,2(1) = 8a+ 13, D7,3(1) = 10a+ 11, D7,4(1) = 9a+ 12,

D7,5(1) = 10a+ 11, D7,6(1) = 8a+ 13, D7,7(1) = 13a+ 8 .

Thus, for a ≥ 1,

13a+ 8 ≥ 10a+ 11 ≥ 9a+ 12 ≥ 8a+ 13 .

The equation sign holds only for a = 1.

8 Final remarks

For the moment, there is no way to transform a circle type graph without uniform pattern

into a caterpillar-bond graph directly. In other words, there is no method to calculate

Hosoya index of a circle type graph without uniform pattern directly by using continued

fractions. For example, consider the very famous benzene C6H6.

H

H C H

C C

C C

H C H

H

Though we cannot calculate this Hosoya index directly by using continued fractions,

we can calculate it as the sum of Hosoya indices of two caterpillar-bond graphs by Lemma

2 (1). For example,

•
• • •
• •
• •
• • •
•

= •
• • •
• •
• •
• • •
•

+
•
•

• •
• • •
•

Therefore,

Z(C6H6) = Z
(
D6(2, 2, 2, 2, 2, 2; 2, 1, 2, 1, 2)

)
+ Z
(
D4(2, 2, 2, 2; 1, 2, 1)

)
= 268 + 33 = 301
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because

2 +
2

2 +
1

2 +
2

2 +
1

2 +
2

2

=
268

24
and 2 +

1

2 +
2

2 +
1

2

=
33

14
.

Indeed,

Z(C6H6) = p(C6H6, 0) + p(C6H6, 1) + p(C6H6, 2) + p(C6H6, 3)

+ p(C6H6, 4) + p(C6H6, 5) + p(C6H6, 6)

= 1 + 15 + 72 + 125 + 72 + 15 + 1 = 301 .

Any complicated graph can be done similarly by resolving it into the sum of caterpillar

graphs.
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