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Abstract

Among more than two hundreds of eigenvalue–based topological indices only a
couple of them are defined using the eigenvalues devised from the adjacency matrix
of a graph. The resolvent energy is probably the most recent-one such an index. In
this article, the degeneracy of the energy, Estrada index, and the resolvent energy is
presented. The specious degeneracy of the resolvent energy in the case of chemical
trees is discussed. Then, the data on searching for resolvent equienergetic chemical
trees is given.

1 Introduction

A need for the quantification of a molecular structure can be traced back to the very

beginnings of the structural and theoretical chemistry. Numerous counting, topological,

geometric, and quantum–based molecular descriptors have been devised for this purpose

[36]. A prominent and probably the largest group among them is the topological indices.

They can be assorted into two major classes of degree– and distance–based descriptors

[10–12]. However, there are existing topological indices that cannot be fitted into any
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of these two classes, such as degree–distance and eigenvalue–based topological molecular

descriptors. While there are just a few degree–distance topological indices, the number

of eigenvalue–based descriptors has been largely increasing these days [13–15, 18, 19, 25].

Currently, about 200 such indices were introduced, creating a novel class of eigenvalue–

based topological molecular descriptors [15,19].

The first, oldest and the most investigated member of a class of the eigenvalue–based

topological molecular descriptors is the graph energy . It was introduced in 1978 as a

simplification and, at the same time, the generalization of the formula for calculating the

total π-energy of conjugated molecules at the HMO-level of theory [9, 25]. The graph

energy is defined as

E(G) =
n∑
i=1

|λi| (1)

where λi is the i-th eigenvalue of a graph G , obtained from its adjacency matrix.

For more than twenty years, research of this quantity was scarce and random. How-

ever, in the last twenty years, scientists from all around the globe embraced it, and the

properties of the graph energy have been heavily investigated. The popularity of this

topological invariant has been growing rapidly. Its definition is being used as a template

for introducing dozens of other descriptors [15,19]. These indices are based on the eigen-

values derived from graph matrices other than the adjacency matrix of a graph G . This

paper is focused on the topological descriptors that are calculated using the eigenvalues

devised from the adjacency matrix of a graph. In the rest of the text such eigenvalues

will be denoted as A-eigenvalues.

The second most popular eigenvalue–based topological index is the Estrada index . It

was introduced in 2000 as a descriptor that harvests information on folding in proteins

and other biomolecules [6]. The Estrada index is defined as

EE(G) =
n∑
i=1

eλi (2)

where λi is the i-th A-eigenvalue of a graph G .

Since its introduction, the Estrada index attracted the attention of researchers. Count-

less papers are dealing with its properties and possible applications (see [20, 32] and ref-

erences cited therein). Similarly as in the case of the graph energy, the definition (2) is

being frequently used as a template for making novel topological descriptors [1, 4, 21, 24,

27,28,33,34,37].
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The resolvent energy is one of the latest topological descriptors based on the A-

eigenvalue of graphs. It was defined in 2016 [16,17] as

ER(G) =
n∑
i=1

1

n− λi
(3)

where λi is the i-th A-eigenvalue of a graph G .

The resolvent energy attracted the attention of the predominantly mathematicians,

resulting in more than a few papers [3,5,7,8,38,39]. The definition of the resolvent energy

was already used as a mold for the introduction of a few novel molecular descriptors

(see [35] and references cited therein).

The relations among the energy, Estrada index and the resolvent energy were elabo-

rated in [30]. The prediction potential of these indices and their comparative analysis were

performed in [31]. In the next section the degeneracy (a.k.a. sensitivity) of these indices

in the case of chemical trees is discussed. Then, the problem of resolvent equienergetic

chemical trees will be tackled.

2 On discriminating ability of A-eigenvalue–based

molecular descriptors

One of the main qualities of a “proper” molecular descriptor is its possible ability to

discriminate among the isomers [29]. Nowadays, there are thousands of topological de-

scriptors, but none of them succeeded to completely fulfill this property. Therefore, it

is purposeful to rank the molecular descriptors according to their discriminating ability.

For such task a measure is needed, which would be able to properly quantify the level of

degeneracy (a.k.a. sensitivity) of a molecular descriptor.

Although there were earlier attempts to assess the discriminating power of topological

indices, a measure that is now in use was proposed by Konstantinova [23]. She named it

as the sensitivity of the topological descriptor. It is defined as

S(G) =
N −NTI

N

where N is the total number of isomers, and NTI is number of isomers that cannot be

distinguished by the topological index TI .

The value of the sensitivity of topological indices varies in the range between 0 and

1. Therefore, it is usually reported as the percentage of sensitivity, or more frequently as

the percentage of degeneracy of a topological index (calculated as [1− S(G)] ∗ 100% ).
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We have examined here the discrimination ability of the graph energy, Estrada index,

and the resolvent energy on chemical trees having from 9 to 20 vertices. For this purpose,

an in-house Python program was developed. Two chemical trees A and B are considered

to have the same value of above–mentioned topological indices if |TI(A) − TI(B)| <

10−13 . This threshold is taken because of the limit in precision of common numerical

computations in Python, which is 10−15 . The results are presented in the Table 1 and

Figure 1.

Table 1. The percentage of degeneracy of the graph energy, Estrada index, and
resolvent energy.

n # chemical trees E EE ER

9 35 17.14 % 14.29 % 14.29 %

10 75 2.67 % 2.67 % 2.65 %

11 159 14.47 % 14.47 % 14.48 %

12 355 13.52 % 13.52 % 13.52 %

13 802 18.70 % 18.70 % 21.45 %

14 1858 15.02 % 14.96 % 25.78 %

15 4347 19.88 % 19.85 % 37.87 %

16 10359 17.26 % 17.24 % 48.34 %

17 24894 20.52 % 20.52 % 61.22 %

18 60523 16.83 % 16.83 % 71.49 %

19 148284 17.43 % 17.48 % 88.69 %

20 366319 14.43 % 14.89 % 92.90 %

From data given in the Table 1 and Figure 1, it can be seen that all three lines

are nearly overlapping upon 13 vertices. After that, the behavior of the degeneracy

of the graph energy and the Estrada index is practically the same, showing the level of

degeneracy around 20 %. Moreover, it is noticeable the mediocre rise in the discrimination

ability of these descriptors for chemical trees with the large number vertices. On the other

hand, the flow of the degeneracy of the resolvent energy are showing an unexpected steep

rise. It is astonishing that the level of sensitivity of the resolvent energy for chemical

trees with 20 vertices is only around 7 %.

Obtained results on discrimination ability of the resolvent energy suggest that there

are many resolvent equienergetic chemical trees. However, the definition (3) and an

elementary knowledge on the equality of rational numbers indicate much larger sensitivity
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Figure 1. A flow of percentage of the degeneracy of the graph energy, Estrada
index, and resolvent energy with the number of vertices.

of ER . This will be discussed in the next section.

3 On r-equienergetic chemical trees

The A-eigenvalue–based topological descriptors cannot completely discriminate among

molecules in most of the classes of isomers because of the presence of so-called isospectral

molecular graphs [2]. This fact was long-time known, but discovering non-isospectral iso-

mers that share the same graph energy value was rather surprising. Such graphs are being

called equienergetic. The search for the families of such graphs was particularly actual in

the first decade of the 21st century. In [26], the screening of trees for equienergetic-ones

revealed that there are trees with nearly the same values of the graph energy. Such trees

are being called almost-equienergetic.

The assessment of the degeneracy of resolvent energy, shown in the Section 2, imply

that as the size of chemical trees is increasing, almost all of them belong to some of

resolvent equienergetic families. In the rest of the text, the chemical trees with the same

resolvent energy will be named as r-equienergetic chemical trees. Having in mind the

condition of equality of rational numbers, such tendency of resolvent energy is rather

surprising.

We performed systematic search for r-equienergetic graphs on databases consisting
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of chemical trees from 9 to 19 vertices. Two chemical trees A and B are considered as

r-equienergetic if |ER(A) − ER(B)| < 10−20 . A reason for decreasing the threshold to

10−20 lays in the fact that at least 5 digits in the value of resolvent energy of chemical

trees are constant for all n-vertex isomers. Also, it was expected that many almost–r-

equienergetic chemical trees will be eliminated from the screening results by using smaller

threshold. In order to be able to calculate the resolvent energy with such precision, an

in-house Python program has been developed, which is using mpmath module [22] for

performing arbitrary-precision float-point arithmetic. Results are collected and presented

in the Table 2.

Table 2. Families of the n-vertex chemical trees whose resolvent energies differ
by less than 10−20 . # families is the number of families of a given size
and a given type. The type a + b + · · · means that family consists of a
isospectral members, b isospectral members that are not isospectral with
the members of a, and so on.

n # families size type

9 5 2 2 + 0

10 2 2 2 + 0

11 19 2 2 + 0

2 3 3 + 0

12 38 2 2 + 0

5 3 3 + 0

13 98 2 2 + 0

26 3 3 + 0

14 232 2 2 + 0

20 3 3 + 0

2 4 4 + 0

15 597 2 2 + 0

99 3 3 + 0

16 4 4 + 0

5 5 5 + 0

16 1245 2 2 + 0

207 3 3 + 0

34 4 4 + 0
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n # families size type

5 5 5 + 0

1 6 6 + 0

17 3144 2 2 + 0

645 3 3 + 0

144 4 4 + 0

40 5 5 + 0

14 6 6 + 0

2 7 7 + 0

18 6605 2 2 + 0

1147 3 3 + 0

236 4 4 + 0

49 5 5 + 0

11 6 6 + 0

2 7 7 + 0

1 8 8 + 0

497 2 1 + 1

199 3 2 + 1

19 3 1 + 1 + 1

24 4 3 + 1

20 4 2 + 2

9 4 2 + 1 + 1

5 5 4 + 1

6 5 3 + 2

4 5 3 + 1 + 1

1 5 2 + 2 + 1

2 6 4 + 2

1 6 3 + 2 + 1

1 8 4 + 4

19 15819 2 2 + 0

2601 3 3 + 0

633 4 4 + 0

193 5 5 + 0

58 6 6 + 0

14 7 7 + 0
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n # families size type

5 8 8 + 0

2 9 9 + 0

2680 2 1 + 1

1080 3 2 + 1

176 3 1 + 1 + 1

241 4 3 + 1

145 4 2 + 2

129 4 2 + 1 + 1

15 4 1 + 1 + 1 + 1

56 5 4 + 1

57 5 3 + 2

25 5 3 + 1 + 1

39 5 2 + 2 + 1

15 5 2 + 1 + 1 + 1

2 5 1 + 1 + 1 + 1 + 1

18 6 5 + 1

8 6 4 + 2

5 6 3 + 3

2 6 4 + 1 + 1

14 6 3 + 2 + 1

3 6 2 + 2 + 2

10 6 2 + 2 + 1 + 1

1 6 2 + 1 + 1 + 1 + 1

1 7 6 + 1

7 7 5 + 2

8 7 4 + 3

1 7 5 + 1 + 1

2 7 4 + 2 + 1

1 7 3 + 3 + 1

2 7 3 + 2 + 2

1 7 2 + 2 + 2 + 1

1 7 2 + 2 + 1 + 1 + 1

1 8 6 + 2

1 8 5 + 3

1 8 3 + 2 + 2 + 1
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n # families size type

1 9 5 + 4

1 9 5 + 2 + 2

1 10 7 + 3

1 11 4 + 4 + 3

It is evident that up to 17 vertices there are no r-equiresolvent chemical trees other

than isospectral-ones. Chemical trees with 18 vertices have many families of non-isomo-

rphic graphs whose resolvent energies differs by less than 10−20 . The number of such

families in the case of chemical trees with 19 vertices is even larger. For example, five

non-isospectral chemical trees with 19 vertices, having ER = 1.0052992142869941494 ,

are presented on Figure 2.

A CB

D E

Figure 2. Non-isospectral chemical trees having the same resolvent energy up to
20 decimal digits.
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The spectra of the chemical trees, depicted on Figure 2 are given bellow:

Spec(A) = {−2.2404,−2.0064,−1.7806,−1.6064,−1.2162,−1.1216,−0.5564,−0.3969,

0, 0, 0, 0.3969, 0.5564, 1.1216, 1.2162, 1.6064, 1.7806, 2.0064, 2.2404}

Spec(B) = {−2.2406,−2.0043,−1.7907,−1.5877,−1.2656,−1.0705,−0.5966,−0.3625,

0, 0, 0, 0.3625, 0.5966, 1.0705, 1.2656, 1.5877, 1.7907, 2.0043, 2.2406}

Spec(C) = {−2.2412,−1.9953,−1.8236,−1.4820,−1.4142,−0.9268,−0.7357,−0.2713,

0, 0, 0, 0.2713, 0.7357, 0.9268, 1.4142, 1.4820, 1.8236, 1.9953, 2.2412}

Spec(D) = {−2.2409,−2,−1.8082,−1.5473,−1.3331,−1,−0.6631,−0.3125, 0, 0, 0,

0.3125, 0.6631, 1, 1.3331, 1.5473, 1.8082, 2, 2.2409}

Spec(E) = {−2.2407,−2.0022,−1.7998,−1.5684,−1.3008,−1.0336,−0.6307,−0.3357

0, 0, 0, 0.3357, 0.6307, 1.0336, 1.3008, 1.5684, 1.7998, 2.0022, 2.2407}

Since it would be astonishing if there is existing a pair of non-isomorphic chemical

trees with the same resolvent energy, we collected trees obtained for 18 and 19 vertices

in previous in-silico experiment and recalculated their resolvent energies with the higher

precision. We got that if the resolvent energies of chemical trees with 18 vertices are cal-

culated with the precision of 23 decimal digits, only isospectral-ones are r-equienergetic.

The same was obtained for chemical trees with 19 vertices and the precision of 24 decimal

digits.

4 Conclusions

The discrimination ability of the graph energy and the Estrada index in the case of chem-

ical trees are nearly the same and do not exceed 21 %. However, the sensitivity of the

resolvent energy is significantly decreasing with the number of vertices. This implies that

there are many r-equiresolvent chemical trees. Conducted screening shows that, although

the threshold was set to less than 10−20 , there are indeed a lot of r-equienergetic chemi-

cal trees with higher number of vertices. Additional investigation demonstrated that the

increasing of precision lowers the number of families of non-isospectral r-equienergetic

chemical trees. We dare to claim that there is not existing a single pair of r-equienergetic
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chemical trees other than isospectral-ones. In other words, all obtained non-isospectral

families with the same resolvent energy were almost–r-equienergetic. This also means

that obtained degeneracy of the resolvent energy is illusive, and that its sensitivity out-

performs other A-eigenvalue–based topological indices. However, the computational cost

and high precision calculations are preventing its practical use and possible application

in discriminating isomeric molecules.
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equienergetic trees, MATCH Commun. Math. Comput. Chem. 61 (2009) 451–461.

[27] N. J. Rad, A. Jahanbani, I. Gutman, Zagreb energy and Zagreb Estrada index of

graphs, MATCH Commun. Math. Comput. Chem. 79 (2018) 371–386.

[28] H. S. Ramane, G. A. Gouramma, A. Alhevaz, On Laplacian Estrada index of union

and Cartesian product of graphs, Kragujevac J. Math. 43 (2019) 23–30.
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[30] I. Redžepović, B. Furtula, On relationships of eigenvalue–based topological molecular

descriptors, Acta Chim. Slov. 67 (2020) 312–318.
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[39] E. Zogić, E. Glogić, New bounds for the resolvent energy of graphs, Sci. Publ. State

Univ. Novi Pazar A 9 (2017) 187–191.

-397-


