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Abstract

For any square complex matrix A the energy of A, denoted by E(A), is defined as
the sum of the absolute values of the eigenvalues of A. In this paper we investigate
the energy of matrices and find some bounds for E(A). As a consequence we obtain
some bounds for energy of graphs.

1 Introduction

In this paper the matrices are complex and the graphs are simple (that is graphs are finite

and undirected, without loops and multiple edges). The conjugate transpose of a complex

matrix A is denoted by A∗. A Hermitian matrix (or self-adjoint matrix) is a complex

square matrix that is equal to its own conjugate transpose. We note that when A is a

real matrix, then A is Hermitian if and only if A is symmetric. It is well known that

the eigenvalues of Hermitian matrices (in particular, the eigenvalues of real symmetric

matrices) are real. A complex square matrix A is called normal if it commutes with its

conjugate transpose, that is AA∗ = A∗A. For example, every real symmetric matrix is

normal. Let B be a square complex matrix. The trace and the determinant of B are

denoted by tr(B) and det(B), respectively. The energy of B, denoted by E(B), is defined

as the sum of the absolute values of its eigenvalues. In other words, if B is an n × n

complex matrix with eigenvalues λ1, . . . , λn, then

E(B) = |λ1|+ · · ·+ |λn|. (1)
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Nikiforov [9] defined the energy of any complex matrix A by considering the singular

values. This definition of energy of matrices coincides with the previous definition of

energy of matrices if and only if the matrix is normal [1].

Let G = (V (G), E(G)) be a simple graph. The order of G denotes the number of

vertices of G. For a vertex v of G, the degree of v is the number of edges incident with

v. An isolated vertex of G is a vertex of G with degree zero. The complete graph of order

n is denoted by Kn. Let t ≥ 2 and n1, . . . , nt be some positive integers. By Kn1,...,nt

we mean the complete multipartite graph with parts size n1, . . . , nt. In particular, the

complete bipartite graph with part sizes m and n is denoted by Km,n.

Let G be a simple graph with vertex set {v1, . . . , vn}. The adjacency matrix of G,

denoted by A(G), is the n × n matrix such that the (i, j)-entry is 1 if vi and vj are

adjacent, and is 0 otherwise. Since A(G) is symmetric, all of its eigenvalues are real. By

the eigenvalues of G we mean those of its adjacency matrix. By Spec(G) we mean the

multiset of all eigenvalues of G. The energy of G, denoted by E(G), is defined as the

energy of the adjacency matrix of G. In other words, the energy of G is the sum of the

absolute values of all eigenvalues of G. More precisely, E(G) = |λ1| + · · · + |λn|, where

Spec(G) = {λ1, . . . , λn}. For instance, since the eigenvalues of the complete graph Kn

are n − 1 (with multiplicity 1) and −1 (with multiplicity n − 1), so E(Kn) = 2n − 2.

The energy of graphs was defined by Ivan Gutman [7]. Many papers are devoted to

studying the properties of the spectra of adjacency matrix, in particular studying the

energy of graphs. For instance see [1]– [20] and the references therein. There are many

other matrices associated to graphs such as Laplacian matrix, signless Laplacian matrix.

We recall that the Laplacian matrix and the signless Laplacian matrix of a graph G are

defined as D(G) − A(G) and D(G) + A(G), respectively, where A(G) is the adjacency

matrix of G and D(G) is the diagonal matrix of vertex degrees of G.

In this paper first we obtain some bounds for energy of complex matrices and real

symmetric matrices with trace zero. Finally by using the bounds related to energy of

matrices, we obtain some bounds for energy of graphs.

2 Energy of matrices

In this section we obtain some bounds for the energy of matrices. First we recall some

inequalities. The following is well known.
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Theorem 1. Let n ≥ 2 and x1, x2, . . . , xn be some non-negative real numbers. Let α and

β be the arithmetic average and geometric average of x1, x2, . . . , xn, respectively, that is

α =
x1 + x2 + · · ·+ xn

n
and β = n

√
x1x2 · · ·xn.

Then α ≥ β and the equality holds if and only if x1 = x2 = · · · = xn.

In [8] Kober generalizes the above inequality as the following.

Theorem 2. [8] Let n ≥ 2 and x1, x2, . . . , xn be some non-negative real numbers. Let

α and β be the arithmetic average and geometric average of x1, x2, . . . , xn, respectively.

Then
1

n

∑
1≤i<j≤n

(
√
xi −

√
xj)

2 ≥ α− β ≥ 1

n(n− 1)

∑
1≤i<j≤n

(
√
xi −

√
xj)

2.

Moreover the equality holds if and only if x1 = x2 = · · · = xn.

Applying the above inequality we obtain the following result for energy of square

complex matrices. See also [5] for some applications of Kober’s inequality.

Theorem 3. Let n ≥ 3 and A be an n×n complex matrix with eigenvalues λ1, λ2, . . . , λn.

Then

E(A) ≥ 2

n− 2

∑
1≤i<j≤n

√
|λiλj| −

n

n− 2
n
√
|det(A)|.

Proof. Let xi = |λi|, for i = 1, 2, . . . , n. Since det(A) = λ1λ2 · · ·λn, we find that |det(A)| =

x1x2 · · · xn. In addition, since E(A) = |λ1| + |λ2| + · · · + |λn|, we conclude that E(A) =

x1 + x2 + · · ·+ xn. Using Theorem 2 we find that

1

n

∑
1≤i<j≤n

(
√
xi −

√
xj)

2 ≥ E(A)

n
− n
√
|det(A)|. (2)

On the other hand one can see that∑
1≤i<j≤n

(
√
xi −

√
xj)

2 = (n− 1)
n∑

i=1

xi − 2
∑

1≤i<j≤n

√
xixj. (3)

By combining Equations (2) and (3) and some computations we conclude that

E(A) ≥ 2

n− 2

∑
1≤i<j≤n

√
xixj −

n

n− 2
n
√
|det(A)|. (4)

Thus the result follows.

In sequel we obtain some bounds for energy of real symmetric matrices in terms of

their positive eigenvalues.
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Theorem 4. Let A be a square real symmetric matrix such that tr(A) = 0. Assume that

A has at least two positive eigenvalues and λ1, λ2, . . . , λp are all positive eigenvalues of A.

Then

E(A) ≥ 4

p− 1

∑
1≤i<j≤p

√
λiλj,

and the equality holds if and only if λ1 = λ2 = · · · = λp.

Proof. First we note that the eigenvalues of every real symmetric matrix are real. Suppose

that λp+1, . . . , λn are all non-positive eigenvalues of A. Thus

E(A) = λ1 + · · ·+ λp − λp+1 − · · · − λn.

On the other hand λ1 + · · · + λp + λp+1 + · · · + λn = 0 (since tr(A) = 0). Therefore we

obtain that (for every integer p ≥ 0)

E(A) = 2(λ1 + · · ·+ λp). (5)

It is not hard to see that∑
1≤i<j≤p

(
√
λi −

√
λj)

2 = (p− 1)

p∑
i=1

λi − 2
∑

1≤i<j≤p

√
λiλj. (6)

This shows that (since p ≥ 2)

p∑
i=1

λi ≥
2

p− 1

∑
1≤i<j≤p

√
λiλj, (7)

and the equality holds if and only if λ1 = λ2 = · · · = λp. Now by combining Equations (5)

and (7) we find that

E(A) ≥ 4

p− 1

∑
1≤i<j≤p

√
λiλj,

and the equality holds if and only if λ1 = λ2 = · · · = λp.

We note that if A is a square zero matrix, then every eigenvalue of A is equal to zero

and so E(A) = 0. Now we obtain some bounds for the energy of non-zero matrices in

terms of the positive eigenvalues.

Theorem 5. Let A 6= 0 be a square real symmetric matrix such that tr(A) = 0. Assume

that λ1, . . . , λp are all positive eigenvalues of A. Then
√

2
(√

λ1 + · · ·+
√
λp

)
≥
√
E(A) ≥

√
2

p

(√
λ1 + · · ·+

√
λp

)
.

Moreover in the left hand side the equality holds if and only if p = 1 and in the right hand

side the equality holds if and only if p = 1 or p ≥ 2 and λ1 = · · · = λp.
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Proof. It is well known that every real non-zero square real symmetric matrix has at least

one non-zero eigenvalue. Thus A has at least one non-zero eigenvalue. Since tr(A) = 0,

we obtain that A has at least one positive eigenvalue and one negative eigenvalue. We

recall that for every integer p ≥ 0 (see Equation (5))

E(A) = 2(λ1 + · · ·+ λp). (8)

First assume that A has exactly one positive eigenvalue, that is p = 1. Thus by Equa-

tion (8) we obtain that E(A) = 2λ1 and so there is nothing to prove.

Now assume that A has at least two positive eigenvalues. In other words, assume that

p ≥ 2. By Theorem 4 we find that

E(A) ≥ 4

p− 1

∑
1≤i<j≤p

√
λiλj (9)

and the equality holds if and only if λ1 = λ2 = · · · = λp. By Equation (8) and the fact

that (√
λ1 + · · ·+

√
λp

)2
=

p∑
i=1

λi + 2
∑

1≤i<j≤p

√
λiλj,

we obtain that

∑
1≤i<j≤p

√
λiλj =

(√
λ1 + · · ·+

√
λp

)2
2

− E(A)

4
. (10)

Using Equations (9) and (10) we conclude that

E(A) ≥ 2

p

(√
λ1 + · · ·+

√
λp

)2
,

and the equality holds if and only if λ1 = λ2 = · · · = λp. This completes the right hand

side part.

Now we prove the other part. It is obvious that
√
λ1 + · · · +

√
λp ≥

√
λ1 + · · ·+ λp

and the equality holds if and only if p = 1. Since E(A) = 2(λ1 + λ2 + · · ·+ λp), the latter

inequality shows that
√

2
(√

λ1 + · · ·+
√
λp

)
≥
√
E(A)

and the equality holds if and only if p = 1. This completes the proof.

3 Energy of graphs

In this section as some applications of the previous theorems we find some bounds for

energy of graphs. First we recall some results.
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Theorem 6. [2] Let G be a graph and ρ(G) be the largest eigenvalue (the spectral radius)

of G. Then the following hold:

(i) If G is connected, then the multiplicity of ρ(G) is one.

(ii) For every eigenvalue λ of G, |λ| ≤ ρ(G).

Theorem 7. [20] A graph has exactly one positive eigenvalue if and only if its non-isolated

vertices form a complete multipartite graph.

By applying Theorem 3 for the adjacency matrices of graphs we obtain the follow-

ing result immediately. For every graph G, by det(G) we mean the determinant of the

adjacency matrix of G.

Theorem 8. Let G be a graph of order n ≥ 3. Assume that λ1, λ2, . . . , λn are the

eigenvalues of G. Then

E(G) ≥ 2

n− 2

∑
1≤i<j≤n

√
|λiλj| −

n

n− 2
n
√
|det(G)|.

Theorem 9. Let G be a connected graph of order n. Assume that G has at least two

positive eigenvalues and λ1, λ2, . . . , λp are all positive eigenvalues of G. Then

E(G) >
4

p− 1

∑
1≤i<j≤p

√
λiλj.

Proof. Without losing the generality assume that λ1 ≥ λ2 ≥ · · · ≥ λp. Since G is

connected by the first part of Theorem 6, we conclude that λ1 > λ2 ≥ λ3 ≥ · · · ≥ λp.

Now, by applying Theorem 4 for A = A(G) we obtain that

E(G) >
4

p− 1

∑
1≤i<j≤p

√
λiλj.

We finish the paper by obtaining a lower bound and an upper bound for the energy

of graphs in terms of the positive eigenvalue of graphs. We note that if G is a graph with

at least one edge, then G has at least one positive eigenvalue.

Theorem 10. Let G be a connected graph of order n ≥ 2. Assume that λ1, . . . , λp are all

positive eigenvalues of A. Then

√
2
(√

λ1 + · · ·+
√
λp

)
≥
√
E(A) ≥

√
2

p

(√
λ1 + · · ·+

√
λp

)
.
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Moreover in the left hand side the equality holds if and only if G is a complete multipartite

graph. Similarly, in the right hand side the equality holds if and only if G is a complete

multipartite graph.

Proof. First assume that G is a complete multipartite graph. Thus by Theorem 7 we find

that p = 1. Hence by applying Theorem 5 we conclude that

√
2
(√

λ1 + · · ·+
√
λp

)
=
√
E(G) =

√
2

p

(√
λ1 + · · ·+

√
λp

)
.

Now assume that G is not a complete multipartite graph. Thus by Theorem 7, p ≥ 2.

Without losing the generality suppose that λ1 ≥ λ2 ≥ · · · ≥ λp. Since G is connected, by

the first part of Theorem 6, we find that λ1 > λ2 ≥ λ3 ≥ · · · ≥ λp. Using Theorem 5 for

A = A(G) we deduce that

√
2
(√

λ1 + · · ·+
√
λp

)
>
√
E(G) >

√
2

p

(√
λ1 + · · ·+

√
λp

)
.

This completes the proof.
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