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Abstract

Let G be a graph with vertex set V = V (G) = {v1, v2, · · · , vn} and edge set

E = E(G). In 1994, Yang et al. proposed the extended adjacency matrix, denoted

by Aex = Aex(G), which is defined that its (i, j)-entry is equal to 1
2

(
di
dj

+
dj
di

)
if the

vertices vi and vj are adjacent, and 0 otherwise, where di is the degree of vertex vi.

In this paper, we first derive some new bounds for the extended spectral radius (η1)

in terms of some significant graph parameters, such as the minimum and maximum

degree of G, the chromatic number (χ), the Randić index (R), the modified second

Zagreb index (M∗2 ), the Symmetric Division Deg index (SDD) and so on. Moreover,

several eigenvalue properties of extended adjacency matrix are presented. Finally,

we characterize some new lower and upper bounds on Eex.
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1 Introduction

Eigenvalue-based topological molecular descriptors have played an increasingly im-

portant role in chemical research in recent years. Graph energy, introduced by I.Gutman

[12,13], is a significant and representative eigenvalue-based topological molecular descrip-

tors, since it can be used to approximate the total π-electron energy of molecule. Let G

be a graph with vertex set V = V (G) = {v1, v2, · · · , vn} and edge set E = E(G). The

adjacent matrix of the graph G, denoted by A(G), is defined that its (i, j)-entry is equal

to 1 if vivj ∈ E(G) (vi ∼ vj) and 0 otherwise. Let λ1 ≥ λ2 · · · ≥ λn be the eigenvalues

of A(G). The greatest eigenvalue of λ1 is usually referred to as the spectral radius of G.

The energy of the graph G is defined as

E = E(G) =
n∑
i=1

|λi|.

Nowadays, relevant researches on graph energy are very popular. Several important con-

clusions can be found in the recent papers [5,6,14,16,21], and the references cited therein.

In 1994, Yang et al. [26] proposed the extended adjacency matrix of the graph G,

which is denoted by Aex = Aex(G). An element of this matrix can be defined in the

following equations:

aexij =

1
2
( di
dj

+
dj
di

), if vertices vi and vj are adjacent

0 otherwise

which di and dj are the degrees of the vertices vi and vj, respectively.

Similarly, let η1 ≥ η2 · · · ≥ ηn be eigenvalues of Aex(G). The greatest eigenvalue of η1

is usually viewed as the extended spectral radius of G. The extended graph energy of the

graph G is defined as

Eex = Eex(G) =
n∑
i=1

|ηi|,

(see [26]).

Some papers [2, 7, 15, 17, 25] on extended graph energy published in past three years

have established some mathematical properties of Eex and contributed to further research

on this matter.

In the later part of this paper we shall need some important classical graph parameters.

The maximum and minimum degrees of the graph G are denoted by ∆ and δ, respectively.

The chromatic number of G is the smallest number of colours needed to colour a graph

G, denoted by χ(G). The Randić index of G, denoted by R(G), is defined as

R = R(G) =
∑

vivj∈E(G)

1√
didj

.

The modified second Zagreb index of G [22], is defined as

M∗
2 = M∗

2 (G) =
∑

vivj∈E(G)

1

didj
,
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for lower and upper bounds on M∗
2 , see [19]. The Symmetric Division Deg index [24] is

SDD = SDD(G) =
∑

vivj∈E(G)

(
di
dj

+
dj
di

)
,

and relevant researches on SDD-index can refer to [1, 9, 20,23].

In this paper, we first derive some new bounds for the extended spectral radius (η1) in

terms of some significant graph parameters, such as the minimum and maximum degree

of G, the chromatic number (χ), the Randić index (R), the modified second Zagreb index

(M∗
2 ), the Symmetric Division Deg index (SDD) and so on. Moreover, several eigenvalue

properties of extended adjacency matrix are presented. Finally, we characterize some new

lower and upper bounds on Eex.

2 Lemmas

In this section, we list some previously known results which are necessary for subse-

quent part.

Lemma 1. (Rayleigh-Ritz [27]) If B is symmetric n × n matrix with eigenvalues ρ1 ≥
ρ2 ≥ · · · ≥ ρn, then for any x ∈ Rn, such that x 6= 0,

xTBx ≤ ρ1x
Tx.

Equality holds if and only if x is an eigenvalue of B corresponding to the largest eigenvalue

ρ1.

Lemma 2. [18] Let B = (bij) and C = (cij) be symmetric, non-negative matrices of

order n. If B ≥ C, i.e. bij ≥ cij for all i, j, then ρ1(B) ≥ ρ1(C), where ρ1 is the largest

eigenvalue.

Lemma 3. [3] The spectrum of an empty graph of order n is λ1 = λ2 = · · · = λn = 0, the

spectrum of a complete graph Kn is λ1 = n − 1, λ2 = λ3 = · · · = λn = −1, the spectrum

of a complete bipartite graph Kp,q with p + q = n is λ1 =
√
pq, λ2 = · · ·λn−1 = 0,

λn = −√pq, and that of a regular graph G of degree k is k = λ1 ≥ λ2 ≥ · · · ≥ λn.

Lemma 4. [4] Let G be a graph of order n with m edges and minimum (resp. maximum)

degree δ ≥ 1 (resp.∆). Then

λ1 ≤
√

2m− δ(n− 1) + (δ − 1)∆,

with equality holding if and only if G is regular, a star plus copies of K2, or a complete

graph plus a regular graph with smaller degree of vertices.

Lemma 5. [8] For any connected graph, λ1 ≤
√

2m(χ− 1)/χ.
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Lemma 6. [7] Let G be a graph of order n with maximum degree ∆ and minimum degree

δ. Then

η1 ≤
[
1 +

(∆− δ)2

2δ2

]
λ1,

with equality holding if and only if G is regular.

Lemma 7. [7] Let G be a graph of order n. Then |η1| = |η2| = · · · = |ηn| if and only if

G ∼= Kn or G ∼= n
2
K2.

3 Eigenvalue properties of extended adjacency ma-

trix of graphs

We state here some equations which show the elementary properties of extended ad-

jacency matrix of G.
n∑
i=1

ηi =
n∑
i=1

λi = 0,
n∑
i=1

λ2
i = 2

∑
i<j

(aij)
2 = 2m, (1)

n∑
i=1

η2
i = 2

∑
i<j

(aexij )2 =
1

2

∑
vivj∈E(G)

(
di
dj

+
dj
di

)2

. (2)

The following two theorems present some new bounds for the extended spectral radius

η1.

Theorem 8. Let G be a non-empty graph of order n with m edges, maximum degree ∆

and minimum degree δ. Then

(i)

η1 ≤
1

2

(
δ

∆
+

∆

δ

)√
2m(χ− 1)/χ,

with equality holding if and only if G is the direct sum of r complete ( n
n−rk )-part

graph Kn−rk
r

,n−rk
r

,··· ,n−rk
r

or G is the direct sum of r complete bipartite graph Kp,q,

with p+ q = n
r
.

(ii)

η1 ≤
[
1 +

(∆− δ)2

2δ2

]√
2m(χ− 1)/χ,

with equality holding if and only if G is the direct sum of r complete ( n
n−rk )-part

graph Kn−rk
r

,n−rk
r

,··· ,n−rk
r

.

(iii)

η1 ≤
[
1 +

(∆− δ)2

2δ2

]√
2m− δ(n− 1) + (δ − 1)∆,

with equality holding if and only if G is a regular.
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Proof. (i) For any edge vivj ∈ E(G), we have

di
dj

+
dj
di
≤ ∆

δ
+
δ

∆
(3)

with equality holding if and only if di = ∆, dj = δ or di = δ, dj = ∆.

Consider the following two cases.

Case 1. If di = dj = ∆ = δ, it is obvious that G is a regular graph. In this case,

Aex(G) = A(G).

Case 2. If ∆ 6= δ, then we let p = ∆, q = δ or p = δ, q = ∆. It is easy to obtain that

G is the direct sum of r complete bipartite graph Kp,q, with p+ q = n
r
.

If ρ1 is the largest eigenvalue of the matrix 1
2
(∆
δ

+ δ
∆

)A(G), then by Lemma 2, we know

that η1 ≤ ρ1. In view of (3), then

η1 ≤
1

2

(
∆

δ
+
δ

∆

)
λ1, (4)

with equality holding if and only if G is a regular graph or G is the direct sum of r

complete bipartite graph Kp,q (p+ q = n
r
).

For a connected regular graph G of degree k, m =
nk

2
. Let λ1 =

√
2m(χ− 1)/χ, by

Lemma 3, then

k =
√
nk(χ(G)− 1)/χ(G).

Thus,
χ(G)− 1

χ(G)
=
k

n
,

where k = 1, 2, · · · , n − 1. Since χ(G), k and n are integer, then the following equation

system is easy to obtained: 

k = 1, χ(G) = n
n−1

,

k = 2, χ(G) = n
n−2

,
...

k = n− 3, χ(G) = n
3
,

k = n− 2, χ(G) = n
2
,

k = n− 1, χ(G) = n.

By derivation, we can know that for a connected regular graph G of degree k, λ1 =√
2m(χ− 1)/χ if and only if G is the complete ( n

n−k )-part graph Kn−k,n−k,··· ,n−k. If

λ1 = λ2 = · · · = λr = k, by the Perron-Frobenius theorem, one can see that the graph G

is the direct sum of r complete ( n
n−rk )-part graph Kn−rk

r
,n−rk

r
,··· ,n−rk

r
.

In Case 2, χ(Kp,q) = 2, and m(Kp,q) = pq. If p+q = n, then we have
√

2m(χ− 1)/χ =
√
m =

√
pq = λ1(Kp,q). Thus, G ∼= Kp,q. Similarly, if λ1 = λ2 = · · · = λr, one can check

that G is the direct sum of r complete bipartite graph Kp,q, with p+ q = n
r
.
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On the whole, from Lemma 3, Lemma 5 and (4), we can get

η1 ≤
1

2

(
δ

∆
+

∆

δ

)√
2m(χ− 1)/χ

with equality holding if and only if G is the direct sum of r complete ( n
n−rk )-part graph

Kn−rk
r

,n−rk
r

,··· ,n−rk
r

or G is the direct sum of r complete bipartite graph Kp,q, with p+q = n
r
.

(ii)-(iii) In view of Lemma 4 - 6 and the proofs of Theorem 8 (i), it is easy to obtain

the results of Theorem 8 (ii)-(iii).

This completes the proofs of Theorem 8.

Theorem 9. Let G be a non-empty graph of order n with m edges and minimum degree

δ. Then

(i)

η1 ≥
4δ2M∗

2

n
− 2m

n
≥ 4δ2R2

nm
− 2m

n
, (5)

with all equalities holding if and only if G is a regular graph.

(ii)

η1 ≥
SDD

n
, (6)

with equality holding if and only if G is a regular graph.

(iii)

η1 ≥
2m

n
, (7)

with equality holding if and only if G is a regular graph.

Proof. (i) Let x = (x1, x2, · · · , xn)T be any unit vector in Rn. Then we have

xTAex(G)x =
∑

vivj∈E(G)

(
di
dj

+
dj
di

)
xixj

=
∑

vivj∈E(G)

(di + dj)
2

didj
xixj − 2

∑
vivj∈E(G)

xixj

≥ 4δ2
∑

vivj∈E(G)

1

didj
xixj − 2

∑
vivj∈E(G)

xixj. (8)

Suppose x = ( 1√
n
, 1√

n
, · · · , 1√

n
), then

xTAex(G)x ≥ 4δ2M∗
2

n
− 2m

n
. (9)

By the Cauchy-Schwarz inequality, ∑
vivj∈E(G)

1√
didj

2

≤ m
∑

vivj∈E(G)

1

didj
.
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Thus, we can get M∗
2 ≥ R2

m
. Equality holds if and only if G is a regular graph or G is the

direct sum of r complete bipartite graph Kp,q, with p + q = n
r
. Combining with (9), we

have

xTAex(G)x ≥ 4δ2M∗
2

n
− 2m

n
≥ 4δ2R2

nm
− 2m

n
.

By Lemma 1, we get

η1 ≥ xTAex(G)x ≥ 4δ2M∗
2

n
− 2m

n
≥ 4δ2R2

nm
− 2m

n
.

Assume now that all equalities hold in (5), then all the above inequalities must be

equalities. If equality holds in (8), then d1 = d2 = · · · = dn = δ. Further, from η1 =

xTAex(G)x, it follows that x = ( 1√
n
, 1√

n
, · · · , 1√

n
)T is an eigenvector corresponding to the

eigenvalue η1. Hence G is a regular graph.

This completes the proofs of Theorem 9 (i).

(ii) Similarly, let x = (x1, x2, · · · , xn)T be any unit vector in Rn. Then

xTAex(G)x =
∑

vivj∈E(G)

(
di
dj

+
dj
di

)
xixj. (10)

Putting x = ( 1√
n
, 1√

n
, · · · , 1√

n
) into (10), we have

xTAex(G)x =
1

n

∑
vivj∈E(G)

(
di
dj

+
dj
di

) =
SDD

n
.

Then by Lemma 1, η1 ≥ xTAex(G)x = SDD
n

. Equality holds if and only if x =

( 1√
n
, 1√

n
, · · · , 1√

n
) is an eigenvector corresponding to the eigenvalue η1.

Since the extended spectrum of a regular graph coincides with the ordinary graph

spectrum, one can easily check that G is a regular graph.

This completes the proofs of 9 (ii).

(iii) Let x = (x1, x2, · · · , xn)T be any unit vector in Rn. Based on fundamental

inequality, we have

xTAex(G)x =
∑

vivj∈E(G)

(
di
dj

+
dj
di

)
xixj ≥ 2

∑
vivj∈E(G)

xixj. (11)

with equality holding if and only if di = dj for any vivj ∈ E(G).

Putting x = ( 1√
n
, 1√

n
, · · · , 1√

n
) into (11),then,

η1 ≥ xTAex(G)x ≥ 2m

n
. (12)

Based on the proofs of Theorem 9 (i)-(ii), similarly, we can prove that all equalities

hold in (12) if and only if G is a regular graph.

This completes the proofs of Theorem 9 (iii).

Then we give two theorems which show some eigenvalue properties of extended adja-

cency matrix of several special graphs.
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Theorem 10. For a bipartite graph of order n, then η1 = −ηn. The extended spectrum

of a complete bipartite graph Kp,q is η1 = 1
2

(
p
q

+ q
p

)√
pq, η2 = · · · = ηn−1 = 0, ηn =

−1
2

(
p
q

+ q
p

)√
pq, and that of a complete graph Kn is η1 = n−1, η2 = η3 = · · · = ηn = −1.

Proof. The extended adjacency matrix of a bipartite graph has the form

Aex =

(
0 C

CT 0

)
.

The extended spectrum of a bipartite graph is symmetric. If (u,v)T is an eigenvector

with eigenvalue ρ, then (u,−v)T is an eigenvector with eigenvalue −ρ. Since η1 is the

extended spectral radius of bipartite graph G, then we have η1 = −ηn.

It is obvious that for a complete bipartite graph Kp,q, Aex(Kp,q) = 1
2
(p
q

+ q
p
)A(Kp,q),

and for a complete graph Kn, Aex(Kn) = A(Kn). By Lemma 3, one can easily obtain the

conclusions.

Theorem 11. The extended adjacency matrix of graphs has only one distinct eigenvalue

if and only if G is an empty graph; has two distinct eigenvalues µ1 > µ2 multiplicities m1

and m2 if and only if G is the direct sum of m1 complete graphs of order µ1 + 1. In this

case, µ2 = −1 and m2 = m1µ1.

Proof. Since Aex(G) is a real symmetric matrix, if Aex(G) has one eigenvalue µ, then the

minimal polynomial m(x) = x − µ. Thus Aex = µI. Since Aex is zero on the diagonal,

µ = 0 and Aex = 0. Thus G is an empty graph,

If G has two distinct eigenvalues µ1 > µ2, with multiplicities m1 and m2, respectively.

Since
n∑
i=1

ηi = 0,

Then we have the following equations:

m1 +m2 = n, m1µ1 +m2µ2 = 0. (13)

By the Perron-Frobenius theorem, for any connected graph Γ, the largest eigenvalue

of Aex(Γ) (ρ1(Γ)) has multiplicity 1. If ρ1(Γ) has multiplicity r, then graph Γ has r

connected branches.

Let l =
m2

m1

, and we assert that l is a positive integer. In fact, by adjusting the label

of the vertex of graph G, we have

Aex =



Q1 0 0 · · · 0 0

0 Q2 0 · · · 0 0

0 0 Q3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · Qm1−1 0

0 0 0 · · · 0 Qm1


n×n

(14)
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where Qi = Aex(Hi) (i = 1, 2, · · · ,m1) has distinct eigenvalues µ1 > µ2 with multiplicities

1 and ti. In this case,
∑m1

i=1 ti = m2. For any connected branches Hi, µ1 + tiµ2 = 0. One

can easily check that t1 = t2 = · · · = tm1 = l.

Therefore, l =
m2

m1

is a positive integer, then

m1(l + 1) = n, µ1 = −lµ2.

Now Qi = |µ2|Aex(K µ1
|µ2|

+1) = |µ2|A(K µ1
|µ2|

+1), with i = 1, 2, · · · ,m1. From Lemma 3,

we get µ2 = −1 and µ1 = λ1 = l . It is obvious that G is the direct sum of m1 complete

graphs of order µ1 + 1. In this case, µ2 = −1 and m2 = m1µ1.

4 Bounds for the energy of extended adjacency ma-

trix of graphs

The following theorems show some new upper and lower bounds of extended energy

of graphs.

Theorem 12. Let G be a non-empty graph of order n and with m edges, maximum degree

∆ and minimum degree δ. Then

(i)

Eex(G) ≤ n

2

(
δ

∆
+

∆

δ

)√
2m(χ− 1)/χ,

with equality holding if and only if G ∼= n
2
K2.

(ii)

Eex(G) ≤ n

[
1 +

(∆− δ)2

2δ2

]√
2m(χ− 1)/χ,

with equality holding if and only if G ∼= n
2
K2.

(iii)

Eex(G) ≤ n

[
1 +

(∆− δ)2

2δ2

]√
2m− δ(n− 1) + (δ − 1)∆,

with equality holding if and only G ∼= n
2
K2.

Proof. Since

Eex(G) =
n∑
i=1

|ηi| ≤ n|η1|,

with equality holding if and only if |η1| = |η2| = · · · = |ηn|.
From Lemma 7 and Theorem 8, it is easy to obtain the conclusions.

Theorem 13. Let G be a non-empty graph of order n with m edges, minimum degree δ.

Then
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(i)

Eex(G) ≥ 8δ2

n
M∗

2 −
4m

n
≥ 8δ2

nm
R2 − 4m

n
.

This lower bounds achieved for G ∼= Kn or G ∼= Kn
2
,n
2

.

(ii)

Eex(G) ≥ 2

n
SDD.

This lower bounds achieved for G ∼= Kn or G ∼= Kn
2
,n
2
.

(iii)

Eex(G) ≥ 4m

n
.

This lower bounds achieved for G ∼= Kn or G ∼= Kn
2
,n
2
.

Proof. Since

Eex(G) =
n∑
i=1

|ηi| = 2
n∑

i=1,ηi≥0

|ηi| ≥ 2|η1|. (15)

Equality holds in (15) if and only if
∑n

i=2 |ηi| = η1. Combining with Theorem 9 and

Theorem 10, one can check that all equalities will hold if G ∼= Kn or G ∼= Kn
2
,n
2
.

Considering the case of extended energy, Gutman [15] defined a parameter M as

M =
∑

i<j(a
ex
ij )2. Then we have

∑n
i=1 η

2
i = 2M . Koolen and Moulton provided a new

method to obtain upper bounds of graph energy and discussed the maximal energy graphs

(see [10]) and the maximal energy bipartite graphs (see [11]) in their papers published in

2001 and 2003, respectively. Inspired by Gutman [15], Koolen and Moulton [10, 11], we

will derive the Koolen-Moulton bounds of extended energy of graphs and bipartite graphs

in the following two theorems.

By the Cauchy-Schwarz inequality, then

(
n∑
i=2

|ηi|)2 ≤ (n− 1)
n∑
i=2

|ηi|2, (16)

with equality holding if and only if |η2| = |η3| = · · · = |ηn|.

Theorem 14. Let G be a non-empty graph of order n with m edges. Then

(i)

Eex(G) ≤ τ +
√

(n− 1)[2M − τ 2],

where τ = max
{√

2M
n
,

4δ2M∗2−2m

n
, SDD

n
, 2m
n

}
. Equality holds if and only if G ∼= Kn

or G ∼= n
2
K2.

(ii)

Eex(G) ≤ τ +

√
(n− 1)

[
1

2
(
δ

∆
+

∆

δ
)SDD − τ 2

]
,
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where τ = max

{√
(δ2+∆2)SDD

2n∆δ
,

4δ2M∗2−2m

n
, SDD

n
, 2m
n

}
. Equality holds if and only if

G ∼= Kn or G ∼= n
2
K2.

Proof. By (2), (3), (16) and (17), we have

(i)

Eex(G) ≤ |η1|+

√√√√(n− 1)
n∑
i=2

|ηi|2 (17)

= |η1|+
√

(n− 1)[2M − |η1|2]

with equality holding in (17) if and only if |η2| = |η3| = · · · = |ηn|.
(ii)

Eex(G) ≤ |η1|+

√√√√√(n− 1)

1

2
(
δ

∆
+

∆

δ
)
∑

vivj∈E(G)

(
di
dj

+
dj
di

)
− |η1|2

 (18)

= |η1|+

√
(n− 1)

[
1

2
(
δ

∆
+

∆

δ
)SDD − |η1|2

]
with equality holding in (18) if and only if |η2| = |η3| = · · · = |ηn|, and di = ∆,

dj = δ or di = δ, dj = ∆.

Since the function g1(z) = z +
√

(n− 1)[2M − z2] decreases for
√

2M
n
≤ z ≤

√
2M ,

and the function h1(z) = z+
√

(n− 1)
[

1
2
( δ

∆
+ ∆

δ
)SDD − z2

]
decreases for

√
(δ2+∆2)SDD

2n∆δ
≤

z ≤
√

(∆
δ

+ δ
∆

)SDD. By Theorem 2,

(i)

Eex(G) ≤ τ +
√

(n− 1)[2M − τ 2], (19)

where τ = max
{√

2M
n
,

4δ2M∗2−2m

n
, SDD

n
, 2m
n

}
.

(ii)

Eex(G) ≤ τ +

√
(n− 1)

[
1

2
(
δ

∆
+

∆

δ
)SDD − τ 2

]
, (20)

where τ = max

{√
(δ2+∆2)SDD

2n∆δ
,

4δ2M∗2−2m

n
, SDD

n
, 2m
n

}
.

Then we consider the following two cases.

Case 1. If η1 = |η2| = · · · = |ηn|, by Lemma 7, then G ∼= n
2
K2. For n

2
K2,

4δ2M∗2−2m

n
=

SDD
n

= 2m
n

=
√

2M
n

, and ∆ = δ = 1.

Case 2. If η1 > |η2| = · · · = |ηn|, by Theorem 11, then G ∼= Kn. For Kn,
4δ2M∗2−2m

n
=

SDD
n

= 2m
n
≥
√

2M
n

, and ∆ = δ = n− 1.

In summary, equality holds in (19) and (20) if and only if G ∼= Kn or G ∼= n
2
K2.
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Theorem 15. Let G be a bipartite graph of order n with m edges. Then

(i)

Eex(G) ≤ 2τ +
√

(n− 2)[2M − 2τ 2],

where τ = max
{√

2M
n
,

4δ2M∗2−2m

n
, SDD

n
, 2m
n

}
. This upper bound is achieved for G ∼=

Kn
2
,n
2
, or G ∼= n

2
K2.

(ii)

Eex(G) ≤ 2τ +

√
(n− 2)[

1

2
(
δ

∆
+

∆

δ
)SDD − 2τ 2],

where τ = max

{√
(δ2+∆2)SDD

2n∆δ
,

4δ2M∗2−2m

n
, SDD

n
, 2m
n

}
. This upper bound is achieved

for G ∼= Kn
2
,n
2
, or G ∼= n

2
K2.

Proof. Since G is a bipartite graph, we have η1 = −ηn. By the Cauchy-Schwarz inequality,

n−1∑
i=2

|ηi| ≤

√√√√(n− 2)
n−1∑
i=2

|ηi|2 (21)

Hence,

(i)

Eex(G) ≤ 2|η1|+

√√√√(n− 2)
n−1∑
i=2

|ηi|2

= 2|η1|+
√

(n− 2) [2M − 2|η1|2]

with equality holding if and only if |η2| = |η3| = · · · = |ηn−1|.
(ii)

Eex(G) ≤ 2|η1|+

√√√√√(n− 2)

1

2
(
δ

∆
+

∆

δ
)
∑

vivj∈E(G)

(
di
dj

+
dj
di

)
− 2|η1|2


= 2|η1|+

√
(n− 2)

[
1

2
(
δ

∆
+

∆

δ
)SDD − 2|η1|2

]
with equality holding if and only if |η2| = |η3| = · · · = |ηn−1|, and di = ∆, dj = δ or

di = δ, dj = ∆.

Note that the function g2(z) = 2z +
√

(n− 2) [2M − 2z2] decreases for
√

2M
n
≤

z ≤
√

2M , and the function h2(z) = 2z +
√

(n− 2)
[

1
2
( δ

∆
+ ∆

δ
)SDD − 2z2

]
decreases

for
√

(δ2+∆2)SDD
2n∆δ

≤ z ≤
√

(∆
δ

+ δ
∆

)SDD. Based on Theorem 2, we have
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(i)

Eex(G) ≤ 2τ +
√

(n− 2)[2M − 2τ 2], (22)

where τ = max
{√

2M
n
,

4δ2M∗2−2m

n
, SDD

n
, 2m
n

}
.

(ii)

Eex(G) ≤ 2τ +

√
(n− 2)[

1

2
(
δ

∆
+

∆

δ
)SDD − 2τ 2], (23)

where τ = max

{√
(δ2+∆2)SDD

2n∆δ
,

4δ2M∗2−2m

n
, SDD

n
, 2m
n

}
.

By Lemma 7 and Theorem 11, one can check that equality will hold in (22) and (23)

if G ∼= Kn
2
,n
2

or G ∼= n
2
K2.
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