Communications in Mathematical and in Computer Chemistry

A Very Short Proof for a Lower Bound for Energy of Graphs

Mohammad Reza Oboudi

Department of Mathematics, College of Sciences, Shiraz University, Shiraz, 71457-44776, Iran mr_oboudi@yahoo.com, mr_oboudi@shirazu.ac.ir

(Received December 16, 2019)

Abstract

Let G be a simple graph with n vertices v_1, \ldots, v_n and m edges. Let $A(G) = [a_{ij}]_{n \times n}$ be the adjacency matrix of G, that is $a_{ij} = 1$ if v_i and v_j are adjacent, and $a_{ij} = 0$, otherwise. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A(G). The energy of G, denoted by $\mathcal{E}(G)$, is defined as $|\lambda_1| + \cdots + |\lambda_n|$. Let G be a connected graph with minimum degree $\delta(G)$. In [X. Ma, MATCH Commun. Math. Comput. Chem. 81 (2019) 393–404] with a long proof, it is shown than $\mathcal{E}(G) \geq 2\delta(G)$ and that the equality holds if and only if G is a regular complete multipartite graph. In this paper we prove the same result in a few lines.

1 Introduction

Throughout this paper we will consider only simple graphs (finite and undirected, without loops and multiple edges). Let G = (V(G), E(G)) be a simple graph. For every vertex $v \in V(G)$, the *degree* of v is the number of edges incident with v and is denoted by $deg_G(v)$. An *isolated* vertex is a vertex with degree zero. A *regular* graph is a graph such that all of its vertices have the same degree. The *complete* graph with n vertices is denoted by K_n . Let $t \ge 2$ and n_1, \ldots, n_t be some positive integers. By K_{n_1,\ldots,n_t} we mean the *complete multipartite graph* with parts size n_1, \ldots, n_t . In particular, the *complete bipartite graph* with part sizes m and n is denoted by $K_{m,n}$.

Let G be a graph with vertex set $\{v_1, \ldots, v_n\}$. The *adjacency matrix* of G, $A(G) = [a_{ij}]$, is the $n \times n$ matrix such that $a_{ij} = 1$ if v_i and v_j are adjacent, and $a_{ij} = 0$, otherwise. Since A(G) is symmetric, all of the eigenvalues of A(G) are real. By the

-346-

eigenvalues of G we mean those of its adjacency matrix. We denote the eigenvalues of G by $\lambda_1(G) \geq \cdots \geq \lambda_n(G)$. The energy of graphs was defined by Ivan Gutman in 1978. For example, since the eigenvalues of the complete graph K_n are n-1 (with multiplicity 1) and -1 (with multiplicity n-1), so $\mathcal{E}(K_n) = 2n-2$. See [3–6,8,9] for more details. In [7] with a long proof it is shown that if G is a connected graph with minimum degree $\delta(G)$, then $\mathcal{E}(G) \geq 2\delta(G)$, and the equality holds if and only if G is a regular complete multipartite graph. In this paper we state a very short proof for this result.

2 A very short proof for the lower bound

In this section we prove the main result of the paper. We need the following well known results.

Theorem 1. [1] Let G be a graph with n vertices and m edges. Then

$$\lambda_1(G) \ge \frac{2m}{n},$$

and the equality holds if and only if G is regular.

Theorem 2. [2, 10] A graph has exactly one positive eigenvalue if and only if its nonisolated vertices form a complete multipartite graph.

Remark 1. Let G be a graph with n vertices and m edges. Assume that $\lambda_1, \ldots, \lambda_n$ are all eigenvalues of G. It is well known that $\lambda_1 + \cdots + \lambda_n = 0$ and $\lambda_1^2 + \cdots + \lambda_n^2 = 2m$. These equalities show that if G has at least one edge, then G has at least one positive eigenvalue. Now assume that G has at least one edge and $p \ge 1$ be the number of positive eigenvalues of G. Suppose that $\lambda_1, \ldots, \lambda_p$ be the positive eigenvalues of G and $\lambda_{p+1}, \ldots, \lambda_n$ be the non-positive eigenvalues of G. Since $\lambda_1 + \cdots + \lambda_n = 0$, we find that $\mathcal{E}(G) = \lambda_1 + \cdots + \lambda_p - \lambda_{p+1} - \cdots - \lambda_n = 2\lambda_1 + \cdots + 2\lambda_p$.

Now we state a very short prove for the following result that has been proved in [7] with long proof.

Theorem 3. [7] Let G be a connected graph with minimum degree $\delta(G)$. Then

$$\mathcal{E}(G) > 2\delta(G),$$

and the equality holds if and only if $G = K_1$ or G is a regular complete multipartite graph.

Proof. Let n and m be the number of vertices and the number of edges of G, respectively. If m = 0, then there is nothing to prove. So let $m \ge 1$. Thus G has at least one positive eigenvalue. Let p be the number of positive eigenvalues of G and $\lambda_1 \ge \cdots \ge \lambda_p$ be the positive eigenvalues of G. Since $\sum_{v \in V(G)} deg(v) = 2m$, $2m \ge n\delta(G)$ and the equality holds if and only if G is regular. Using Remark 1 and Theorem 1 we find that

$$\mathcal{E}(G) = 2\lambda_1 + \dots + 2\lambda_p \ge 2\lambda_1 \ge \frac{4m}{n} \ge 2\delta(G).$$
(1)

Thus $\mathcal{E}(G) \ge 2\delta(G)$ and the equality holds if and only if p = 1 and G is regular. Since G is connected, by Theorem 2, the equality holds if and only if G is a complete multipartite graph. In other words, $G = K_{q,\ldots,q}$ for some positive integer q. The proof is complete.

References

- [1] A. E. Brouwer, W. H. Haemers, Spectra of Graphs, Springer, New York, 2012.
- [2] D. M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs Theory and Application, Academic Press, New York, 1979.
- [3] I. Gutman, The energy of a graph: Old and new results, in: A. Betten, A. Kohner, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer, Berlin, 2001, 196–211.
- [4] I. Gutman, On graphs whose energy exceeds the number of vertices, *Lin. Algebra Appl.* 429 (2008) 2670-2677.
- [5] I. Gutman, Oboudi-type bounds for graph energy, Math. Interdisc. Res. 4 (2019) 151–155.
- [6] I. Gutman, X. Li, J. Zhang, Graph energy, in: M. Dehmer, F. Emmert–Streib (Eds.), Analysis of Complex Networks. From Biology to Linguistics, Wiley–VCH, Weinheim, 2009, pp. 145–174.
- [7] X. Ma, A low bound on graph energy in terms of minimum degree, MATCH Commun. Math. Comput. Chem. 81 (2019) 393–404.
- [8] M. R. Oboudi, Energy and Seidel energy of graphs, MATCH Commun. Math. Comput. Chem. 75 (2016) 291–303.
- [9] M. R. Oboudi, A new lower bound for the energy of graphs, *Lin. Algebra Appl.* 580 (2019) 384–395.
- [10] J. H. Smith, Symmetry and multiple eigenvalues of graphs, Glas. Mat. Jugosl. 12(32) (1977) 3–8.