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Abstract

Let G be a finite simple undirected graph with n vertices and m edges. The
energy of a graph G, denoted by E(G), is defined as the sum of the absolute values
of all eigenvalues of G. In this paper we give some new upper bounds for E(G) in
terms of n,m, the largest and the smallest eigenvalue, and the standard deviation
of the squared eigenvalues of G. Moreover, we present an upper bound for the
spectral radius of G in terms of n,m and E(G). New upper bound for the energy
of the reciprocal graphs is also obtained. A number of our results rely on the use of
well-known inequalities which have not been applied in this area before.

1 Introduction

Let G = (V,E) be a simple undirected graph with vertex set V = V (G) = {v1, v2, . . . ,

vn} and edge set E(G), |E(G)| = m. The adjacency matrix A = A(G) of the graph G

is an n × n matrix [aij] such that, aij = 1 if vi is adjacent to vj, and 0 otherwise. The

eigenvalues λ1, λ2, . . . , λn of the graph G are the eigenvalues of its adjacency matrix A.

The set of eigenvalues of the graph including their multiplicities is the spectrum of the

graph. Since A is a symmetric matrix with zero trace, these eigenvalues are real and their

sum is equal to zero. Thus

λ1 + λ2 + . . .+ λn = 0. (1)
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We also have

trace(A2) =
n∑
i=1

λ2i = 2m. (2)

The mean of the eigenvalues of G is trivially defined as λ = λ1+λ2+...+λn
n

= 0. The standard

deviation of the eigenvalues of the graph G denoted by σ = σ(G) is

σ =

√
(λ1 − λ)2 + (λ2 − λ)2 + . . .+ (λn − λ)2

n
=

√
2m

n
. (3)

The energy of G, denoted by E(G), was first defined by I. Gutman as the sum of the

absolute values of its eigenvalues. Hence,

E(G) =
n∑
i=1

|λi|. (4)

This concept arose in theoretical chemistry, since it can be used to approximate the

total π-electron energy of a molecule. For details see [4–7,18]. The first upper bound for

E(G) was obtained in 1971 by McClelland [18] who proved:

E(G) ≤
√
2mn. (5)

Since then, numerous other bounds for E(G) were discovered, see [2, 8, 13, 17]. In [15]

Koolen and Moulton improved the bound (5) as follows: If 2m > n and G is a graph with

n vertices and m edges, then

E(G) ≤ 2m

n
+

√√√√(n− 1)

(
2m−

(
2m

n

)2
)
. (6)

Moreover, equality holds if and only if G is either n
2
K2, Kn or a non-complete con-

nected strongly regular graph with two non-trivial eigenvalues both with absolute value√(
2m−( 2m

n )
2
)

n−1 . In [22] Zhou showed that if G is a graph with n vertices, m edges and

degree sequence d1, d2, . . . , dn, then

E(G) ≤
√∑n

i=1 d
2
i

n
+

√
(n− 1)

(
2m−

∑n
i=1 d

2
i

n

)
. (7)

Equality holds if and only if G is either n
2
K2, a complete bipartite graph, a non-complete

connected strongly regular graph with two non-trivial eigenvalues both with absolute

value

√(
2m−( 2m

n )
2
)

n−1 , nK1.
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A graph G is reciprocal if the reciprocal of each of its eigenvalues is also an eigenvalue

of G. In [12] Indulal and Vijaykumur showed that if G is a reciprocal graph with n vertices

and m edges, then

E(G) ≤
√
n(2m+ n)

2
. (8)

This bound is the best possible for G = tK2 and tP4.

The spectral radius of G, denoted by ρ(G), is the largest eigenvalue of the adjacency

matrix of G. In [10] Hong showed that if G is simple connected graph with n vertices and

m edges then

ρ(G) ≤
√
2m− n+ 1, (9)

with equality if and only if G is isomorphic to the starK1,n−1 or to the complete graphKn.

More results concerning the upper bound for the spectral radius can be found in [3,11,21].

In this paper we give new upper bounds for the energy and spectral radius of graphs.

In Theorem 2.1 we improve the bound
√
2mn. Unfortunately we are not able to compare

this bound to the Koolen and Moulton bound (6). A new upper bound for the energy of

graphs in terms of the largest and the smallest eigenvalue of G and the determinant of its

adjacency matrix A is obtained in Theorem 2.5.

In this research we also address the energy of the reciprocal graphs. In Theorem 2.6

we give an upper bound for their energy in terms of n and ρ. We observe that our bound

is better than (8) if ρ2 + 1
ρ2
< 4m

n
.

The last result in this paper presents an upper bound for the spectral radius of G in

terms of n,m and E(G), Theorem 2.7. This result also helps to estimate the energy of G

in terms of n,m and ρ(G).

2 Results

The first result in this paper presents an improvement for the upper bound on the energy

of a graph given in (5) E(G) ≤
√
2mn. Our bound for E(G) uses the number of vertices,

the number of edges, the largest and the smallest eigenvalue and the standard deviation

of the eigenvalues of the matrix A2. Similar parameters have been used in [1,9,19] which

however focus on lower bounds for the energy of graphs.

Theorem 2.1 Let G be a graph with n vertices and m edges and let λ1, λ2, . . . , λn be

the eigenvalues of the adjacency matrix A of the graph G. If ρ = max1≤i≤n |λi|, µ =
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min1≤i≤n |λi|, and σ is the standard deviation of the eigenvalues of A2, then

E(G) ≤
√
2mn− µnσ2

4(ρ4 + (2m
n
)2)
. (10)

Proof. First, we will prove that for each i ∈ {1, . . . , n}
λ2i
2m

+
1

n
≥
(
2 +

(nλ2i − 2m)2

2(n2λ4i + 4m2)

)
|λi|√
2mn

. (11)

Setting a =
λ2i
2m

and b = 1
n
, we obtain the equivalent inequality√

a

b
+

√
b

a
+

ab

a2 + b2
≥ 5

2
. (12)

Denoting x =
√

a
b
in (12) we get√

a

b
+

√
b

a
+

ab

a2 + b2
≥ 5

2
⇔ x+

1

x
+

1

x2 + 1
x2

− 5

2
≥ 0⇔ (x− 1)4(2x2 + 3x+ 2)

2x(x4 + 1)
≥ 0.

Since x ≥ 0 it is clear that (x−1)4(2x2+3x+2)
2x(x4+1)

≥ 0. Therefore the inequality (11) is valid.

Now, using (11) we deduce

1

2m

n∑
i=1

λ2i +
n∑
i=1

1

n
≥ 2√

2mn

n∑
i=1

|λi|+
n∑
i=1

(nλ2i − 2m)2

2(n2λ4i + 4m2)

|λi|√
2mn

. (13)

Since
∑n

i=1 λ
2
i = 2m, the inequality in (13) becomes

2 ≥ 2E(G)√
2mn

+
1√
2mn

n∑
i=1

(nλ2i − 2m)2

2(n2λ4i + 4m2)
|λi|.

Hence

E(G) ≤
√
2mn− 1

4

n∑
i=1

(nλ2i − 2m)2

n2λ4i + 4m2
|λi|. (14)

Using ρ ≥ |λi| ≥ µ we obtain
n∑
i=1

(nλ2i − 2m)2

n2λ4i + 4m2
|λi| ≥

µ

ρ4 +
(
2m
n

)2 n∑
i=1

(
λ2i −

2m

n

)2

. (15)

Observe that λ21, λ22, . . . , λ2n are the eigenvalues of A2 , and they satisfy λ21+...+λ
2
n

n
= 2m

n
.

Thus, the standard deviation σ of the spectrum of A2 is equal to

√∑n
i=1(λ2i− 2m

n )
2

n
. Based

on this observation and using (14) and (15) we obtain

E(G) ≤
√
2mn− µnσ1

2

4(ρ4 + (2m
n
)2)
.

Let us note that the standard deviation of the eigenvalues of A2 is zero if and only if

λi = ±λj for each i, j ∈ {1, . . . , n}. In this case our bound matches the original bound
√
2mn. In the special case when the spectrum of G consists of integer eigenvalues, (in

which case G is called an integral graph), we modify the bound
√
2mn as follows.
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Proposition 2.2 Let G be a graph with n vertices and m edges and suppose that all

eigenvalues of G, λ1, λ2, . . . , λn, are non-zero integers. If ρ = max1≤i≤n |λi| and µ =

min1≤i≤n |λi|, then
E(G) ≤ (2m)

ρ
ρ+µ · n

µ
ρ+µ . (16)

Proof. We use the inequality between the quadratic and the arithmetic mean for the

positive integers |λ1|, . . . , |λn|. Therefore

2m

E(G)
=

λ21 + . . .+ λ2n
|λ1|+ . . .+ |λn|

≥ |λ1|+ . . .+ |λn|
n

. (17)

Since |λ1|, |λ2|, . . . , |λn| are positive integers, we get |λ1|+...+|λn|
n

≥ 1. Obviously, ρ
µ
≥ 1.

From (17) it follows(
2m

E(G)

) ρ
µ

≥
(
|λ1|+ . . .+ |λn|

n

) ρ
µ

≥ |λ1|+ . . .+ |λn|
n

=
E(G)

n
. (18)

The required bound (16) follows directly from (18). Note that if n > 2m, then

(2m)
ρ

ρ+µ · n
µ
ρ+µ <

√
2mn. Moreover, if |λ1| = . . . = |λn|, then (2m)

ρ
ρ+µ · n

µ
ρ+µ =

√
2mn.

It is not hard to see that if λi and µi are eigenvalues of the graphsG andH, respectively,

such that |λi| ≤ |µi|, then E(G) ≤ E(H). In the next result we extend this trivial

comparison by using Karamata’s inequality [14].

Theorem 2.3 Let G and H be two graphs with eigenvalues |λ1| ≥ |λ2| ≥ . . . ≥ |λn| and
|µ1| ≥ |µ2| ≥ . . . ≥ |µn|, respectively. If |λ1| ≤ |µ1|, |λ1λ2| ≤ |µ1µ2|,. . . , |λ1 · . . . · λn| ≤
|µ1 · . . . · µn|, then

E(G) ≤ E(H).

Proof. Let |λi| = exi and |µi| = eyi . Then

x1 ≥ x2 ≥ . . . ≥ xn; y1 ≥ y2 ≥ . . . ≥ yn.

Moreover, for each i ∈ {1, . . . , n} it holds y1+. . .+yi ≥ x1+. . .+xi, that is, (y1, y2, . . . , yn)

majorizes (x1, x2, . . . , xn). Applying Karamata’s inequality for the non-decreasing convex

function f(x) = ex we deduce

E(G) =
n∑
i=1

exi =
n∑
i=1

f(xi) ≤
n∑
i=1

f(yi) =
n∑
i=1

eyi = E(H).

P. Schweitzer in a 1914 paper [20] proved the following inequality:
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Proposition 2.4 For 0 < m < M , and xi ∈ [m,M ] for i ∈ {1, . . . , n},(
1

n

n∑
i=1

xi

)(
1

n

n∑
i=1

1

xi

)
≤ (m+M)2

4mM
. (19)

Our next two results are based on Schweitzer’s inequality. In order to be able to use

Schweitzer’s inequality, we will only consider graphs whose spectrum does not contain

zero. In the following theorem, we give an upper bound for the energy of G in terms of

the absolute value of the largest eigenvalue, the smallest eigenvalue, and the determinant

of A.

Theorem 2.5 Let G be a graph with n vertices, A be its adjacency matrix, and let

λ1, λ2, . . . , λn be the eigenvalues of A. If ρ = max1≤i≤n |λi| and µ = min1≤i≤n |λi| > 0,

then

E(G) ≤ n(ρ+ µ)2

4ρµ
· | det(A)|

1
n .

Proof. Substituting xi = |λi| in (19) we obtain

(|λ1|+ . . .+ |λn|)
(

1

|λ1|
+ . . .+

1

|λn|

)
≤ n2(ρ+ µ)2

4ρµ
. (20)

Now, applying the inequality between the arithmetic and the geometric mean to the

positive numbers 1
|λ1| , . . . ,

1
|λn| we obtain

1

|λ1|
+ . . .+

1

|λn|
≥ n

|λ1 · . . . · λn|
1
n

=
n

| det(A)| 1n
. (21)

The inequalities (20) and (21) yield

E(G) · n

| det(A)| 1n
≤ n2(ρ+ µ)2

4ρµ
, (22)

that is,

E(G) ≤ n(ρ+ µ)2

4ρµ
· | det(A)|

1
n .

The next result addresses the upper bound for the energy of the reciprocal graphs.

Thanks to Schweitzer’s inequality we are in a position to estimate E(G) in terms of the

number of vertices and the spectral radius of G.

Theorem 2.6 Let G be a reciprocal graph with n vertices and let λ1, λ2, . . . , λn be the

eigenvalues of G. If ρ = max1≤i≤n |λi|, then

E(G) ≤
n(ρ+ 1

ρ
)

2
. (23)
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Proof. Since G is a reciprocal graph, 1
ρ
= min1≤i≤n |λi|. Moreover, the energy of G

satisfies

E(G) = |λ1|+ |λ2|+ . . .+ |λn| =
1

|λ1|
+

1

|λ2|
+ . . .+

1

|λn|
.

Substituting these identities into (20) yields the desired bound.

It is easy to check that if ρ2 + 1
ρ2
< 4m

n
, then our bound (23) is better than the bound

(8).

In our final result we present an upper bound for the spectral radius of G in terms of

n,m and E(G).

Theorem 2.7 Let G be a graph with n vertices, m edges, and energy E(G). The spectral

radius of G satisfies the inequality

ρ(G) ≤ E(G)

n
+
n− 1

n

√
2mn− E(G)2

n− 1
. (24)

Proof. Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of G. Then ρ(G) = λ1. For any real

number x it holds

λ1 ≤ x+
√

(|λ1| − x)2 + . . .+ (|λn| − x)2 = f(x).

Since equality λ1 = f(x) can be achieved when |λ2| = |λ3| = . . . = |λn| = x, we need

to find the smallest value for f(x). The identities λ21 + . . . + λ2n = 2m and E(G) =

|λ1|+ . . .+ |λn| yield
f(x) = x+

√
nx2 − 2E(G)x+ 2m.

Since f grows and tends to infinity, the minimum occurs when f
′
= 0. Calculating the

derivative of f(x) we have

f
′
(x) = 1 +

nx− E(G)√
nx2 − 2E(G)x+ 2m

. (25)

Solving the equation in (25) we get x =
E(G)(n−1)±

√
2mn(n−1)−E(G)2(n−1)
n(n−1) . The largest pos-

sible λ1 and greatest lower bound for f(x) is then

f

(
E(G)(n− 1)−

√
2mn(n− 1)− E(G)2(n− 1)

n(n− 1)

)
=
E(G)

n
+
n− 1

n

√
2mn− E(G)2

n− 1
,

which occurs when |λ2| = . . . = |λn| =
E(G)(n−1)−

√
2mn(n−1)−E(G)2(n−1)
n(n−1) and

-341-



ρ(G) = λ1 =
E(G)

n
+
n− 1

n

√
2mn− E(G)2

n− 1
.

In order to illustrate Theorem 2.7 we consider the complete graph Kn. It is well-known

that m = n(n−1)
2

and E(Kn) = 2n− 2. Applying the formula in (24) we obtain

λ1 ≤
2n− 2

n
+
n− 1

n

√
(n− 1)n2 − 4(n− 1)2

n− 1
= n− 1.

This observation is in agreement with the fact that the spectrum of the complete graph

Kn is {(n− 1)1, (−1)n−1}.
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