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Abstract

A graph is said to be orderenergetic if its energy is equal to its order. It is
shown that there are infinitely many connected orderenergetic graphs. Some basic
properties of these graphs are established. Several open problems and conjectures
are pointed out.

1 Introduction

Let G = (V,E) be a simple graph with vertex set V(G) and edge set E(G). Let the

order |V(G)| and size |E(G)| of G be denoted by n and m, respectively. By λ1, λ2, . . . , λn

are denoted the eigenvalues of the (0, 1)-adjacency matrix of G. Then the energy of G

is [14]

E = E(G) =
n∑

i=1

|λi| .

Graphs satisfying the condition E(G) < n were named hypoenergetic [10], and their

properties were studied in due detail [7, 8, 10, 14, 15]. In the present paper we focus our
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attention to graphs for which E(G) = n, i.e., graphs whose energy and order are equal,

and call them orderenergetic graphs .

As usual, by Pn, Cn, and Kn1,...,nk
we denote the path and cycle of order n, and the

complete k-partite graph of order n1 + · · ·+ nk.

The complete bipartite graph with a+ b vertices is denoted by Ka,b. If a = b, we say

that Ka,b is balanced. Since the order of Ka,a is 2a, and since [4]

Spec(Ka,a) = {a, 0, 0, · · · , 0,−a}

implying E(Ka,a) = 2a, it immediately follows that all balanced complete bipartite graphs

are orderenergetic. It is therefore of interest to find other connected orderenergetic graphs.

In [15], it was conjectured that there are exactly four connected orderenergetic graphs

with maximal vertex degree at most 3 (Conjecture 3.7 in [15]). These four graphs are

K1,1, K2,2, K3,3, and the 6-vertex tree depicted in Fig. 1. This conjecture was eventually

confirmed by Li and Ma [13].

Figure 1: An orderenergetic graph of order 6.

Lemma 1. [3] There are no connected orderenergetic graphs of odd order.

By means of a computer-aided search, for connected graphs of even order up to 10,

we established the following:

(i) If n = 2, the only connected orderenergetic graph is K1,1
∼= P2.

(ii) If n = 4, the only connected orderenergetic graph is K2,2
∼= C4.

(iii) If n = 6, there are two connected orderenergetic graphs: K3,3 and the tree depicted
in Fig. 1.

(iv) If n = 8, there are four connected orderenergetic graphs: K4,4 and the graphs de-
picted in Fig. 2.

(v) If n = 10, the only connected orderenergetic graph is K5,5.
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Figure 2: Orderenergetic graphs of order 8.

2 Constructing connected orderenergetic graphs

Lemma 2. [4] The characteristic polynomial of the complete multipartite graph Kn1,...,nk

is

φ(Kn1,...,nk
, x) = xn−k

(
1−

k∑
i=1

ni

x+ ni

)
k∏

j=1

(x+ nj) .

Lemma 3. For every positive integer p, the graph Kp,p,6p is orderenergetic.

Proof. By Lemma 2, φ(Kp,p,6p, x) = x8p−3 (x−4p)(x+p)(x+ 3p) . Therefore E(Kp,p,6p) =

8p.

Remark 4. Based on a computer-aided search, it seems that Kp,p,6p are the only orderen-

ergetic complete multipartite graphs with at least 3 parts.

Let G and H be two graphs of order nG and nH , respectively. Let g, g′ ∈ V(G) and

h, h′ ∈ V(H). The direct product of G and H, denoted by G × H, is a graph of order

nG · nH , whose vertex set is V(G) × V(H), and whose vertices (g, h) and (g′, h′) are

adjacent if and only if gg′ ∈ E(G) and hh′ ∈ E(H) [12]. Thus,

V(G×H) = {(g, h) | g ∈ V(G) and h ∈ V(H)},

E(G×H) = {(g, h)(g′, h′) | gg′ ∈ E(G) and hh′ ∈ E(H)}.

The direct product G × H is connected if and only if either G or H (or both) is

non-bipartite. In addition, G × H is non-bipartite if and only if both G and H are

non-bipartite [12].

If the eigenvalues of G are λi , i = 1, 2, . . . , nG and the eigenvalues of H are µj , j =

1, 2, . . . , nH , then the spectrum ofG×H consists of the products λi·µj , i = 1, 2, . . . , nG, j =

1, 2, . . . , nH [4]. This immediately implies [17]

E(G×H) = E(G) · E(H) .

Lemma 5. If G and H are orderenergetic graphs, then also G×H is orderenergetic.
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Since we are interested in constructing connected orderenergetic graphs, we need to

apply Lemma 5 to non-bipartite species. At this point one should observe that Kp,p,6p as

well as the left–hand side and the right–hand side graphs in Fig. 2 are non-bipartite.

Theorem 1. There are infinitely many connected orderenergetic graphs, different from

balanced complete bipartite graphs.

Proof. First construction: If G1 is a connected non-bipartite orderenergetic graph, then

G = G1×G1 is also connected non-bipartite orderenergetic, as well as G×G1, etc. This

construction can be continued infinitely many times.

Second construction: If G1 and G2 are two connected non-bipartite orderenergetic

graphs, then G = G1 × G2 is also connected non-bipartite orderenergetic, as well as

G×G1 and G×G2, etc. This construction can be continued infinitely many times.

Third construction: If G1 is a connected non-bipartite orderenergetic graph, and G2

is a connected bipartite orderenergetic graph, then G = G1 × G2 is connected bipartite

orderenergetic, as well as G1×G, etc. This construction can be continued infinitely many

times. For G2 we may use any balanced complete bipartite graph.

The graph Kp,p,6p is non-bipartite, of order 8p. At this moment we know of only two

more non-bipartite orderenergetic graphs, both of order 8 (see Fig. 2). Bearing this in

mind, we have:

Corollary 6. There are connected orderenergetic graphs of order 8p , p = 1, 2, . . ., dif-

ferent from balanced complete bipartite graphs.

3 Structural properties of orderenergetic graphs

In [1] a proof was presented of the von Neumann’s trace inequality [11, p.458]. Based on

it, in what follows we characterize the orderenergetic graphs having a {1, 2}-factor.

A {1, 2}-factor of a graph G is a spanning subgraph of G whose each component is

P2 or a cycle. In mathematical chemistry, {1, 2}-factors are usually referred to as Sachs

graphs [5, 6, 9].

Theorem 2. Let G be graph of order n. If G has a {1, 2}-factor, then E(G) ≥ n. Equality

holds if and only if G is the disjoint union of balanced complete bipartite graphs.

In order to prove Theorem 2, we need some preparations.
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Lemma 7. [2] Let G be a graph and H1, . . . , Hk be its k vertex–disjoint induced subgraphs.

Then

E(G) ≥
k∑

i=1

E(Hi) .

Lemma 8. [1, Theorem 9.] Let G be a graph of order n. If G has a {1, 2}-factor, then

E(G) ≥ n.

A matching M in a graph G is a set of pairwise non-adjacent edges of G. A maximum

matching is a matching that contains the largest possible number of edges. If a matching

covers all vertices of G, then it is called a perfect matching. The matching number of G,

denoted by µ(G), is the number of edges in a maximum matching.

Lemma 9. [18] Let G be a bipartite graph. Then E(G) ≥ 2µ(G). Equality holds if and

only if G is the disjoint union of balanced complete bipartite graphs and isolated vertices.

Lemma 10. [1, Lemma 33.] If n ≥ 10, then E(Cn) ≥ n+ 2.

Lemma 11. If n is an odd integer, then E(Cn) > n.

Proof. If n ≥ 10, then by Lemma 10, E(Cn) > n. By direct computation, one gets

E(C3) = 4, E(C5) = 6.472, E(C7) = 8.988 and E(C9) = 11.517, which completes the

proof.

Proof of Theorem 2. It suffices to prove the theorem for connected graphs. Let a {1, 2}-

factor of G consists of cycles C(1), . . . , C(k) and t copies of P2. One may assume that

every odd cycle in the {1, 2}-factor is an induced odd cycle, because if we have an odd

cycle with a chord, then there is a chord which partitions the vertices of odd cycle into

an odd induced cycle and some paths of order 2. Now, by Lemma 7, we find that,

E(G) ≥
k∑

i=1

E(C(i)) + t E(P2) =
k∑

i=1

E(C(i)) + 2t .

If at least one of the C(i) is an odd cycle, then by Lemma 7, E(G) > n. So, let all C(i) be

even. It follows that G has a perfect matching.

Now, by induction on the number of vertices, we prove that if E(G) = n, then G is

the disjoint union of balanced complete bipartite graphs.

For n = 2, the assertion holds. Let n ≥ 4 and M = {u1v1, . . . , un
2
vn

2
} be a perfect

matching of G. Suppose that H = G \ {u1, v1}. Obviously, H has a perfect matching

and so by Lemma 7, E(G) ≥ E(H) + 2. If E(H) > n− 2, then E(G) > n, a contradiction.
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Thus assume that E(H) = n− 2. By the induction hypothesis, every component of H is

a balanced complete bipartite graph. Let H1, . . . , Hr be the components of H.

If r ≥ 3, then the induced subgraph on (
⋃r

i=2V(Hi)) ∪ {u1, v1} is a connected graph

and so by the induction hypothesis it is a complete bipartite graph, a contradiction.

Let r = 1 and upvp ∈ E(H1), u1up ∈ E(G). Now, for every i, 2 ≤ i ≤ p, i 6= p, the

induced subgraph on {u1, up, ui, v1, vp, vi} is a connected graph having a perfect matching.

By the induction hypothesis, this subgraph is K3,3 and so G is a balanced complete

bipartite graph.

Suppose finally that r = 2. Assume that upvp ∈ E(H1) and u`v` ∈ E(H2) and N(up)∩

{u1, v1} 6= ∅, N(u`)∩{u1, v1} 6= ∅. Since the induced subgraph on {u1, up, u`, v1, vp, v`} is

connected and contains a perfect matching, by the induction hypothesis it is isomorphic

to K3,3, a contradiction.

The proof is thus complete. �

Corollary 12. A graph having a {1, 2}-factor is orderenergetic if and only if it is the

disjoint union of balanced complete bipartite graphs.

A graph G is said to be non-singular if all its eigenvalues are different from zero.

Otherwise, G is singular.

Theorem 3. The only non-singular connected orderenergetic graph is K1,1
∼= P2.

Proof. For a graph G with n vertices, m edges and adjacency matrix A(G), the following

lower bound for energy holds [14,16]:

E(G) ≥
√

2m+ n(n− 1)| detA(G)|2/n .

If G is non-singular, then | detA(G)| ≥ 1, and for such graphs

E(G) ≥
√

2m+ n(n− 1) .

If, in addition, G is orderenergetic, then it must be

n ≥
√

2m+ n(n− 1)

from which it follows
2m

n
≤ 1 .

Since 2m/n is the average vertex degree, in case of connected graphs the latter condition

is possible only if 2m/n = 1 and then only for G ∼= P2.
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The algebraic multiplicity of the number zero in the spectrum of a graph is referred

to as its nullity, and is denoted by η.

Theorem 4. There is no connected orderenergetic graph with η = 1.

Proof. Let G be a connected orderenergetic graph of order n with nullity 1. By Lemma

1, n is even. Let the characteristic polynomial of G be φ(G, x) =
∑n

i=0 ci x
n−i. Since

η = 1, it must be cn = 0 and cn−1 6= 0. Then by the Sachs theorem [5, 6, 9], G contains

a {1, 2}-subgraph of order n− 1, say H. Since H has odd order, it contains at least one

odd cycle C. By Lemma 11 and noting that E(C3) = 4, E(C5) = 6.472, E(C7) = 8.988

and E(C9) = 11.517, we have E(C) > |V(C)|+ 0.2.

Let V(G)\V(H) = {w}. If the vertex w is adjacent to an odd cycle of G, then G has

a {1, 2}-factor and so by Theorem 2, G ∼= Kn
2
,n
2
, implying η(G) = n− 2, a contradiction.

One can assume that H has no even cycles, because the vertex set of every even cycle

can be partitioned into disjoint copies of P2.

Assume now that w is not adjacent to an odd cycle, and that it is adjacent to a vertex

u1, where u1v1 is a component of H. Consider the induced subgraph on {w, u1, v1}, and

call it L. Obviously, E(L) > |V(L)| − 0.2. By Lemma 7,

E(G) ≥ E(L) + E(C) + E
(
G \ [V(C) ∪V(L)]

)
.

Since G \ (V(C) ∪V(L)) has a {1, 2}-factor, by Theorem 2, we conclude that

E(G) > |V(L)|+ |V(C)|+ |V
(
G \ [V(C) ∪V(L)]

)
| = n ,

a contradiction.

Remark 13. As the proofs of Theorems 3 and 4 show, each connected graph with nullity

at most 1 is non-hypoenergetic.

4 Problems and conjectures

In [13] it was proven that among connected graphs whose vertex degrees are at most 3,

there is a finite number (four) of orderenergetic species.

Conjecture 14. Let ∆ ≥ 4. The number of connected orderenergetic graphs, whose

vertex degrees are at most ∆, is finite.
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Problem 15. Verify Conjecture 14 for ∆ = 4. Find all corresponding graphs. This

would be of particular value for chemical applications.

Problem 16. Verify Conjecture 14 for ∆ = 5, ∆ = 6, etc. Find all corresponding graphs.

Our computational studies indicate that there are very few orderenergetic trees.

Problem 17. Find a method for constructing orderenergetic trees.

Conjecture 18. There is a finite number of orderenergetic trees.

In the proof of Theorem 1 we outlined methods for constructing connected orderen-

ergetic graphs using the direct product of two graphs.

Problem 19. Find a method for constructing connected orderenergetic graphs, not using

the direct product.

With regard to Corollary 6, we have:

Problem 20. Find connected orderenergetic graphs (different from balanced complete

bipartite graphs) of order 8p+ 2 for some p. Same for 8p+ 4 and 8p+ 6.

In Fig. 2 is depicted a bicyclic orderenergetic graph.

Problem 21. Are there connected unicyclic orderenergetic graphs, other than K2,2 ?

Conjecture 22. For a given non-negative integer k, there are finitely many connected

orderenergetic graphs with nullity k.

Conjecture 23. For a given non-negative integer k, there are finitely many connected

hypoenergetic graphs with nullity k.

In Theorems 2, 3, and 4 we established structural and spectral properties that or-

derenergetic graphs must (or must not) possess.

Problem 24. Find more such properties.
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