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Abstract

A graph G of order n is said to be borderenergetic if its energy is equal to the
energy of complete graph Kn. In this paper, we review some results concerning the
ordinary borderenergetic, (signless) Laplacian and Seidel borderenergetic graphs.

1 Introduction

We first recall some definitions that will be kept throughout. Let G = (V,E) be a simple

graph with n = |V (G)| vertices and m = |E(G)| edges, and A(G) denotes its adjacency

matrix. The eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn of A(G) compose the eigenvalues of the graph

G. If G has exactly s distinct eigenvalues λ1, λ2, . . . , λs with multiplicities, respectively,

t1, t2 . . . , ts then we write spec(G) = {[λ1]t1 , [λ2]t2 , . . . , [λs]ts}. The nullity η(G) of the

graph G is the multiplicity of the eigenvalue zero in its adjacency spectrum. A graph is

said to be integral if all eigenvalues of its adjacency matrix consist entirely of integers.

The Laplacian and signless Laplacian matrix of graph G are respectively, L(G) =

D(G) − A(G) and Q(G) = D(G) + A(G), where D(G) = (dij) is the diagonal matrix

whose entries are the degree of vertices, namely dii = deg(vi) and dij = 0 for i 6= j.
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The first Zagreb index M1(G) is equal to the sum of squares of the degrees of the

vertices. Two Zagreb indices M1(G) =
∑

uv∈E(du + dv) and M2(G) =
∑

uv∈E dudv are

vertex-degree-based graph invariants that have been introduced in the 1970s, see [32,34].

The maximum degree and the minimum degree of G are denoted by ∆ and δ, respec-

tively. The girth of graph G is the length of a shortest cycle of G. A complete bipartite

graph with a bipartition of sizes n1 and n2 is denoted by Kn1,n2 . The line graph of G,

denoted by L(G), is a graph such that the vertex set of L(G) is the edge set of G and

two vertices u and v of L(G) are adjacent if the edges corresponding to u and v share a

common end vertex.

The energy of the graph was introduced by Ivan Gutman [23] E(G) =
∑n

i=1 |λi|,

where λi’s are eigenvalues of G. If µ1 ≥ µ2 ≥ · · · ≥ µn = 0 and q1 ≥ q2 ≥ · · · ≥ qn are

the Laplacian and the signless Laplacian eigenvalues of G then two quantities EL(G) =∑n
i=1

∣∣µi − d̄∣∣ and EQ(G) =
∑n

i=1

∣∣qi − d̄∣∣, where d̄ is the average degree of G, are called

the Laplacian and the signless Laplacian energy of G, respectively.

In 1966, Van Lint and Seidel [58] introduced a symmetric (0, 1,−1)-adjacency matrix

for a graph G called the Seidel matrix of G of S(G) = J − I − 2A(G), where J is the

matrix with entries 1 in every position. In [35], Haemers defined the Seidel energy of G

as ES(G) =
∑n

i=1 |ρi|, where ρi’s are the Seidel eigenvalues of G.

The upper bound E(G) ≤
√

2mn, was established by McClelland in [48]. In the

mentioned paper, an approximate formula for energy of graphs was proposed:

E(G) ≈ a
√

2mn, a ≈ 0.9, (1)

which was eventually demonstrated to be highly accurate in the case of molecular graphs

[26,33]. An additional corroboration of this formula was the analogous lower

E(G) ≈
√

16

27

√
2mn,

that holds for certain molecular graphs, in particular, for hexagonal systems [24]. Accord-

ing to formula (1), the energy of a graph would be a monotonically increasing function

with respect to the number of edges. If this formula could be applied to all graphs, then

among graphs with n vertices, the complete graph Kn would have the greatest energy,

equal to E(Kn) = 2n − 2. Counter examples for this naive conjecture were soon dis-

covered [7]. Somewhat later [59], the first systematic construction of graphs with the

property E(G) > E(Kn) were reported.
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Graphs of order n with the property E(G) > 2n− 2 are called named hyperenergetic

[27]. Numerous classes of hyperenergetic graphs have been recognized; for details see

the survey [30], and the recent paper [17]. The search for hyperenergetic graphs became

purposeless after Nikiforov proved in [50] that for almost all n-vertex graphs

E(G) =

(
4

3π
+ o(n)

)
n

3
2 ,

implying that almost all graphs are hyperenergetic. The question that remained open was

if there exist graphs of order n, other than Kn, satisfying the equality E(G) = 2n − 2.

This class of graphs are called the borderenergetic graphs. The aim of continuing this

paper is to deal with this graph invariant.

2 Ordinary borderenergetic graphs

The first borderenergetic graph was discovered by Hou et al. in [39], but in that time it did

not attract much attention. The earliest example of E(G) = E(Kn) is a graph of order 9,

that was reported in [39], see Figure 1. This borderenergetic graph is the line graph of the

complete bipartite graph K3,3 and its spectrum is spec(G) = {[4]1, [1]4, [−2]4}. Therefore,

E(L(K3,3)) = 16 = 2(9)− 2 = E(K9).

L(K3,3)

Figure 1. The first borderenergetic graph, discovered in year 2001.

In the winter of 2014 when Professor Gutman visited Linan, China, He posed the

problem to construct borderenergetic graphs to one of the author X. Li. Then, Li together

with Gong and Xu was immediately devoted to work on this interesting problem, and they

produced a joint paper with Gutman. So, Gong et al. [22] is the first paper to give the

official name for borderenergetic graph, there they studied the graphs with the same

energy as the complete graph Kn. A graph G on n vertices is said to be borderenergetic if

its energy equals the energy of the complete graph Kn, namely if E(G) = E(Kn) = 2n−2.
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After that, more papers on the borderenergetic graphs and similar concepts, such as L-

borderenergetic graphs, Q-borderenergetic graphs, etc. have been published. In 2017

Li was invited to write a survey paper on borderenergetic graphs by a Chinese journal

Journal of Anhui University, see [11]. Since it is in Chinese, an English survey paper

should be more popular for the readers working along with this subject. Our this survey

paper is an updated version of [11].

In [22], it was shown that there exist borderenergetic graphs on order n for each

integer n ≥ 7. The number of borderenergetic graphs were determined for n = 7, 8, 9

in [22], n = 10, 11 in [45,51] and n = 12 in [19]. A family of non-regular and non-integral

borderenergetic threshold graphs was discovered in [40]. In [12], the authors obtained

three asymptotically tight bounds on the number of edges of borderenergetic graphs.

In [15], the authors proved that a borderenergetic graph is not bipartite when G

is a sparse graph. Moreover, for a borderenergetic bipartite graph, they presented a

lower bound for the largest eigenvalue and an upper bound for the middle eigenvalue,

respectively.

In [56], the authors proposed a procedure for the construction of borderenergetic

graphs and investigated three sequences of borderenergetic graphs. Li et al. in [46]

studied the existence of borderenergetic chemical graphs (a graph is chemical if it has a

maximum degree at most 4) and showed that there is no borderenergetic graph with max-

imum degree at most 3. They proved five necessary conditions for borderenergetic graphs

with maximum degree 4, and as a result, they showed that there is no borderenergetic

graph with maximum degree 4 and order n ≥ 22. They also considered a problem con-

cerning borderenergetic graphs with large minimum degrees. In continuing, they showed

that there is no borderenergetic graph of order n with minimum degree n − 2 and then

they constructed two families of borderenergetic graphs with minimum degree n− 3 and

n − 4, respectively, the former is for all integers n ≥ 7 while the latter is for all even

numbers n ≥ 8. We refer the readers to [11,31] for more information.

Recently Deng et al. in [8] investigated the girth of a borderenergetic graph G in the

case that G is a dense graph, and inferred that the girth is 3.

As shown in [3], the energy of an integral graph is necessarily an even integer. Since

before the exploring of borderenergetic graphs, all discovered graphs with integer energy

were integral and there was a conjecture as follows.
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Conjecture 2.1. If E(G) is an integer, then the graph G is integral.

Clearly this conjecture is wrong and the borderenergetic graphs Gi (i = 1, 2, 3) of

order 8, depicted in Figure 2, provide the counterexamples. The spectra of these graphs

are

spec(G1) =
{

[3 +
√

6]1, [1]1, [3−
√

6]1, [−1]3, [−2]2
}
,

spec(G2) =
{

[(5 +
√

17)/2]1, [1]2, [(5−
√

17)/2]1, [−1]1, [−2]3
}
,

spec(G3) =
{

[(7 +
√

33)/2]1, [(7−
√

33)/2]1, [−1]5, [−2]1
}
.

G1 G2 G3

Figure 2. The three distinct non-integral borderenergetic graphs of smallest order
8 with E(Gi) = 14 (i = 1, 2, 3).

Here, we review some basic theorem, concerning the ordinary the borderenergetic

graphs.

Theorem 2.2. We have the following statements:

1) [22] There is no borderenergetic graph of order n ≤ 6.

2) [22] For any n ≥ 7, there exist borderenergetic graph of order n.

3) [22] There exists a unique borderenergetic graph of order 7. This graph is depicted

in Figure 3.

4) [22] There are exactly 6 borderenergetic graphs of order 8, five of which have δ =

4 = n− 4. These graphs are depicted in Appendix (Figure 9).

5) [22] There are exactly 17 borderenergetic graphs of order 9. Only four among them

are integral and exactly one graph is with δ = 6 = n− 3. These graphs are depicted

in Appendix (Figure 10).
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6) [45, 51] There are exactly 49 borderenergetic graphs of order 10, among which 37

are non-co-spectral.

7) [51] There are exactly 158 borderenergetic graphs of order 11, of which 157 are

connected.

8) [19] There are exactly 572 connected borderenergetic graphs of order 12. In Appendix

(Table 3) the distributions of 12-vertex borderenergetic graphs together with the

number of edges are shown.

9) [22] For each integer n (n ≥ 13), there exists a non-complete borderenergetic graph

of order n.

Figure 3. The smallest non-complete borderenergetic graph.

Two graphs G and G′ with the same energy are called equienergetic, see [2, 5]. Evi-

dently, two co-spectral graphs or borderenergetic graphs of the same order are equiener-

getic but generally there are numerous families of mutually non-co-spectral graphs that

are equienergetic [44]. In Theorem 2.2 the large families of mutually equienergetic graphs

is reported.

In follow, we investigate non-complete borderenergetic graphs by means of tensor

product, line graph, strongly regular graphs, the union of graphs, and complements,

respectively.

The tensor product of two graphs G1 and G2 is the graph G1 ⊗ G2 with vertex set

V (G1)×V (G2), in which two vertices (u1, u2) and (v1, v2) are adjacent if and only if both

u1v1 ∈ E(G1) and u2v2 ∈ E(G2). The number of vertices G denote by |V (G)|.

Theorem 2.3. [22] Let G be a borderenergetic graph. Suppose that G is obtained from

the tensor product of two integral graphs H1 and H2. Then both |V (H1)| and |V (H2)| are

odd numbers.
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Theorem 2.4. [22] The line graph of a Petersen graph is a connected non-complete

borderenergetic graph.

Consider a regular graph G which is neither complete nor empty. Then G is said to be

a strongly regular graph with parameters (n, k, a, c) if it is k-regular with order n, every

pair of adjacent vertices has a common neighbors, and every pair of distinct non-adjacent

vertices has c common neighbors. As known [21] the eigenvalues of a strongly regular graph

with parameters (n, k, a, c) are k with multiplicity 1, θ = [(a−c)+
√

∆]/2 with multiplicity

mθ and τ = [(a− c)−
√

∆]/2 with multiplicity mτ , where ∆ = (a− c)2 + 4(k− c)and mθ,

mτ satisfy the equations

mθ +mτ = n− 1,

θmθ + τmτ = −k.

Usually, a strongly regular graph with mθ = mτ is called a conference graph.

Theorem 2.5. [22] Let G be a conference graph. If G is integral and non-complete

borderenergetic, then G has parameters (9, 4, 1, 2).

The union of two vertex disjoint graphs G and H is denoted by G ∪H. The union of

k vertex-disjoint copies of a graph H is sometimes denoted by kH. The join G+H is the

graph obtained from G ∪ H by connecting all vertices from V (G) with all vertices from

V (H). The complement of a graph G, denoted by G, has the same vertices as G where

two vertices in G are adjacent if and only if they are not adjacent in G.

A class of non-complete connected (n − 3)-regular borderenergetic graphs has been

found by Gong et al. in [22].

Theorem 2.6. [22] Let p, q and r be non-negative integers, and let p + q = 2. Then

pC4 ∪ qC6 ∪ rC3 is borderenergetic.

Corollary 2.7. [22] For each integer n (n ≥ 7), there exists a connected non-complete

borderenergetic graph of order n.

We now show how to construct connected non-complete (n − 1 − k)-regular (k > 2)

borderenergetic graphs by using some k-regular graphs of small order.

Theorem 2.8. [12] Let G be a k-regular integral graph of order n with t non-negative

eigenvalues. If E(G) = 2(n − t + k), then E(G) = 2(n − 1), where G is complement of

graph G.
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Theorem 2.9. [12] Let k be an even integer. Let G = pG1 ∪ qKk+1 be a disconnected k-

regular graph consisting of p copies of G1 and q copies of Kk+1, where G1 is a connected k-

regular integral graph with k+2 vertices, having t1 non-negative eigenvalues, and satisfying

E(G1) = 2k + 4 − 2t1 + 2k
p

, p|2k, p ≥ 1, q ≥ 1. Then G is a connected non-complete

borderenergetic graph.

Corollary 2.10. [12]

1) For integer n (n > 12) satisfying 5|(n− 12), there exists a connected non-complete

(n− 5)-regular borderenergetic graph of order n.

2) For integer n (n > 16) satisfying 7|(n− 16), there exists a connected non-complete

(n− 7)-regular borderenergetic graph of order n.

Theorem 2.11. [56] Let G = G(0) is any r-regular borderenergetic graph of order n.

Then

1) For p 6= 0, G+Kp is borderenergetic if and only if p = n− r.

2) Consider an infinite sequence of graph G = {G(0), G(1), . . . , G(k), . . .} such that each

G(k) = Gk−1 +Kn−r is of order n+ k(n− r), where k ≥ 1. For each r ≥ 1, G(k) is

non-co-spectral and borderenergetic graph with Kn+k(n−r).

2.1 Borderenergetic graphs with maximum or minimum degrees

Many results on graph energy are closely related to their maximum or minimum degrees.

For instance, Nikiforov [50] obtained the following result: Let G be a graph of order n with

at least n edges and no isolated vertices. If G is C4-free and ∆(G) ≤ 3, then E(G) > n.

In [43], Li et al. proved that there are exactly 4 connected graphs with ∆(G) ≤ 3 whose

energies are equal to the number of vertices.

Here, consider the borderenergetic graphs with maximum degree ∆ ≤ 4. This kind of

graphs are also addressed as chemical graphs.

Theorem 2.12. [46]

1) There is no non-complete borderenergetic graph with ∆ = 2 or 3.

2) Let G be a non-complete borderenergetic graph of order n with ∆ = 4. Then G must

have the following properties:
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i) |E(G)| = 2n or 2n− 1;

ii) |G| ≤ 21;

iii) G is non-bipartite;

iv) η(G) = 0.

3) Let G be a 4-regular non-complete borderenergetic graph of order n and H be a

maximal bipartite subgraph of G. Then |E(G)| − |E(H)| ≥ 3.

Corollary 2.13. [31] If m = 2n, then all borderenergetic graphs with ∆ = 4 are 4-

regular. If m = 2n − 1, then the borderenergetic graphs with ∆ = 4 are either 4-regular

with one edge deleted (namely, with n − 2 vertices of degree 4 and two vertices of degree

3) or 4-regular with an additional vertex of degree 2 (namely, with n− 1 vertices of degree

4 and one vertex of degree 2).

Corollary 2.14. [31] The number of borderenergetic graphs with ∆ = 4 is finite.

In what follows, we consider borderenergetic graphs with large minimum degree.

Theorem 2.15. [46] No borderenergetic graph has minimum degree n− 2. Besides, for

each integer n ≥ 7, there exists a connected non-complete borderenergetic graph of order

n with minimum degree n−3 and for each even integer n ≥ 8, there exists a non-complete

borderenergetic graph of order n with minimum degree n− 4.

2.2 Borderenergetic bipartite graphs

By use a computer search, all borderenergetic graphs with order 7 ≤ n ≤ 11 have been

found [22, 45, 51] and it can be seen that all such graphs are not bipartite. Here, some

properties of bipartite borderenergetic graphs are surveyed.

Theorem 2.16. [15] Let G be a borderenergetic graph and suppose m < 2(n−1)2
2

. Then

G is not bipartite.

Theorem 2.17. [15] Let G be a borderenergetic graph. If G is bipartite, then the num-

bers of positive eigenvalues and negative eigenvalues of A(G) are not less than (n−1)2
m

,

respectively.

Corollary 2.18. [15] Let G be a connected borderenergetic graph. If G is a k-cyclic

graph with k ≤ n− 3, then G is not bipartite.
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Theorem 2.19. [15] Let G be a borderenergetic bipartite graph with η(G) = 0. Then

1) λ1 ≥
√

2(n−1)2−mn+2m
n

,

2) λn
2
≤
√

4(n−1)2−4m
n(n−2) .

Theorem 2.20. [31] A bipartite borderenergetic graph of order n must possess at least

dme edges where

m =
1

8

(
n2 + 6n− 8−

√
n4 − 20n3 + 84n2 − 128n+ 64

)
.

Recall that for large values of n, the number of edges is asymptotically equal to

16
n

(n− 1)2.

Theorem 2.21. [8] Let G be a 2-connected non-complete borderenergetic graph. If it

satisfies

1

n

n∑
i=1

d2i (G) ≥ 1

2n2
(4
√

2
√
n6 − 11n5 + 44n4 − 84n3 + 83n2 − 41n+ 8 (2)

+ n4 − 9n3 + 33n2 − 41n+ 16),

then the girth of the borderenergetic graph G is 3.

A natural corollary from Theorem 2.21 is that such a 2-connected non-complete bor-

derenergetic graph satisfying the condition inequality (2) is not bipartite.

Now, consider the girth of a borderenergetic graph G of order n when the order n of

G is large enough

Theorem 2.22. [8] Let G be a 2-connected non-complete borderenergetic graph of order

n. If the order n of G is large enough and G satisfies

d2i (G) ≥ O(2
√

2n), (1 ≤ i ≤ n),

then the girth of the borderenergetic graph G is 3.

2.3 Borderenergetic threshold graphs

Threshold graphs were first introduced by Chvátal and Hammer [6]. The spectral prop-

erties of threshold graphs were studied in [4, 41, 42]. A graph G is threshold (or degree

maximal graph) if and only if it can be obtained from a single vertex by iterating the
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operations of adding a new vertex that is either connected to no other vertex (an isolated

vertex) or connected to every other vertex (a cone vertex). The sequence of these oper-

ations is called the building sequence of the respective threshold graph. In view of this,

we may represent a threshold graph on n vertices using a binary sequence b = b1b2 · · · bn.

Here bi is 0 if the vertex vi was added as an isolated vertex, and bi is 1 if vi was added

as a cone vertex. In our representation, b1 is always zero. We write 0s (resp. 1s) if there

are s repeated 0’s (resp. 1’s) in the building sequence. For example, we write 0212013 for

00110111.

Recently, Jacobs et al. in [42] considered the eigenvalues and energies of threshold

graphs. They showed that if 4|n and n ≥ 8, then there is an n-vertex threshold graph

equienergetic with the complete graph Kn. In addition, if 9|n, then there are two n-vertex

threshold graphs equienergetic to Kn and these are non-co-spectral.

Theorem 2.23. [42] For m ≥ 1, the following threshold graphs of order n are borderen-

ergetic:

1) 012m+102m14m+2, n = 8m+ 4,

2) 012m02m−114m, n = 8m,

3) 014m02m−113m, n = 9m,

4) 01m02m−116m, n = 9m.

Theorem 2.24. [40]

1) For each n ≥ 3 and p ≥ 1, there exist n− 1 pairwise non-co-spectral borderenergetic

threshold graphs on pn2 vertices.

2) Let p ≥ 2. Then the threshold graph G = 01p0p−112p is borderenergetic.

Corollary 2.25. [42] For each n ≥ 3, there exist n− 1 threshold graphs on n2 vertices,

pairwise non-co-spectral and borderenergetic.

In [40], the authors listed all borderenergetic threshold graphs of order 8 ≤ n ≤ 23

and all borderenergetic threshold graphs of the form 0p1q0s1t of order n vertices, n =

p+ q + s+ t ≤ 100.

Theorem 2.26. [40] There are no borderenergetic threshold graphs 0p1q0t and 0p1q (p >

1).
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2.4 Bounds on the size of borderenergetic graphs

It is a well-known fact that the number of vertices and the number of edges are two

main structural aspects of a graph that have an effect on the values of energy (for details

see [25, 28,29] and the references quoted therein). This fact can be stated as follows.

Empirical rule 2.1. •

1) If two graphs have an equal number of vertices and equal number of edges, then their

energies do not differ significantly.

2) If two graphs of the same order are equienergetic, then the number of their edges do

not differ significantly.

The fact is that Rule 2.1 was tested and verified on numerous examples of molecular

graphs [26, 33, 48]. The molecular graphs contain a relatively small number of edges,

usually m ≤ 3
2
n. From the study of borderenergetic graphs, it becomes evident that in

the case of graphs with a larger number of edges, Rule 2.1 could be seriously breaked,

especially it’s part (2).

In continuing this section, three asymptotically tight bounds on the edge number of

borderenergetic graphs are given. We first state the definition of the r-degree of a vertex

and a previously known bound for graph energy, valid for general graphs. For an integer

r ≥ 0, the r-degree dr(vi) of a vertex vi ∈ G is defined as the number of walks of length

r starting at vi. Clearly, one has d0(vi) = 1, d1(vi) = di and

dr+1(vi) =
∑

w∈N(vi)

dr(w),

where N(vi) is the set of all neighbors of the vertex vi.

Theorem 2.27. [12] Let G be a borderenergetic graph. Then

m ≥

1

2

∑
vi∈V (G) d

2
r+1(vi)∑

vi∈V (G) d
2
r(vi)

+
1

2(n− 1)

(
2(n− 1)−

√∑
vi∈V (G) d

2
r+1(vi)∑

vi∈V (G) d
2
r(vi)

)2
 . (3)

If G is (n− 3)-regular, then the bound in inequality (3) is asymptotically tight.

For simplicity, in the following, we replace the notation d2(vi) and d3(vi) by ti and σi

for vi ∈ V (G), respectively.
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Corollary 2.28. [12] Let G be a borderenergetic graph of order n. Then

m ≥


2(n− 1)−

√√√√ 1

n

n∑
i=1

d2i

2/
2(n− 1) +

1

2n

n∑
i=1

d2i

 . (4)

If G is (n− 3)-regular, then the bound in inequality (4) is asymptotically tight.

Corollary 2.29. [12] Let G be a borderenergetic graph. Then

m ≥


1

2

n∑
i=1

t2i

/
n∑
i=1

d2i +
1

2(n− 1)

2(n− 1)−

√√√√ n∑
i=1

t2i

/
n∑
i=1

d2i

2
 . (5)

If G is (n− 3)-regular, then the bound in inequality (5) is asymptotically tight

Corollary 2.30. [12] Let G be a borderenergetic graph. Then

m ≥


1

2

n∑
i=1

σ2
i

/
n∑
i=1

t2i +
1

2(n− 1)

2(n− 1)−

√√√√ n∑
i=1

σ2
i

/
n∑
i=1

t2i

2
 . (6)

If G is (n− 3)-regular, then the bound in inequality (6) is asymptotically tight.

Theorem 2.31. [31] A borderenergetic graph of order n must possess at least 2n − 2

edges.

3 Laplacian borderenergetic graphs

An analogous concept as borderenergetic graphs, called Laplacian borderenergetic graphs

was proposed in [54]. That is, a graph G of order n is Laplacian borderenergetic or

L-borderenergetic for short, if EL(G) = EL(Kn) = 2n− 2.

In [9], Deng et al. showed a kind of L-borderenergetic threshold graphs. They contin-

ued to characterize this kind of graphs and obtained some interesting properties on their

structures [14]. Also, they presented some asymptotically bounds on the order and size of

L-borderenergetic graphs. Furthermore, they showed that all trees, cycles, the complete

bipartite graphs, and many 2-connected graphs are not L-borderenergetic. They proved

that in [10] there is no a 2-connected L-borderenergetic graphs of order n ≥ 5 with maxi-

mum degree 3, which improves the result in [14]. Also, by surveying the L-borderenergetic

graphs with maximum degree 4, they presented two asymptotically tight bounds on their

sizes. In [13], they mainly surveyed a class join of graphs and checked that whether
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they are L-borderenergetic or not. In [15], Laplacian borderenergetic bipartite graphs is

observed and some asymptotically tight bounds on their first Zagreb indices are shown.

Lu et al. in [47] presented all non-complete L-borderenergetic graphs of order 4 ≤

n ≤ 7 and they constructed one connected non-complete L-borderenergetic graph on n

vertices for each integer n ≥ 4, which extends the result in [54] and completely confirms

the existence of non-complete L-borderenergetic graphs. Particularly, they proved that

there are at least n
2

+ 4 non-complete L-borderenergetic graphs of order n for any even

integer n ≥ 6. Tao et al. in [52] considered the extremal number of edges of non-complete

L-borderenergetic graph, then use a computer search to find out all the L-borderenergetic

graphs on no more than 10 vertices. By applying computer search, Elumalai et al. in

[18] corrected the number of L-borderenergetic graphs of order 9 and 10, which was

reported in [52]. In [36,37] they constructed sequences of Laplacian borderenergetic non-

complete graphs by means of graph operations, and all the non-complete and pairwise non-

isomorphic L-borderenergetic. Recently, Vaidya et al. in [57] investigated a sequence of L-

borderenergetic graphs and also devised a procedure to find sequence of L-borderenergetic

graphs from the known L-borderenergetic graph.

In this section, we review theorem about L-borderenergetic graphs.

Theorem 3.1. [9] For any integer n ≥ 4, there is an L-borderenergetic graph.

In [52], L-Bordereneregetic graphs was reported that there are exactly 65 non- iso-

morphic non-complete connected L-borderenergetic graphs upto 9 vertices. In [9], at the

same period of time, it was reported that there exits exactly 75 such connected graphs,

respectively. In [52], the number of connected L-borderenergetic graphs on 10 vertices

have been presented. For n = 10, the number of connected L-borderenergetic graphs is

reported 120, but the correct number is 232, see [18]. Also in [37], the authors introduced

all non-isomorphic non-complete Laplacian borderenergetic disconnected graphs up to 9

vertices. The correct numbers for non-complete and non-isomorphic L-borderenergetic

graphs of order at most 10 are reported in Table 1.

Table 1. The numbers of non-complete and non-isomorphic L-borderenergetic
graphs of order at most 10.

n 4 5 6 7 8 9 10
# Connected 2 1 11 5 33 23 232

# Disconnected 2 2 5 5 27 26 ?
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Theorem 3.2. [9] Let G be an L-borderenergetic graph. Suppose that G is obtained from

the tensor product of two L-integral graphs G1 and G2, where G1 and G2 are k1-regular

and k2-regular, respectively. Then both |V (G1)| and |V (G2)| are odd.

Theorem 3.3. [37] Let G be a graph on n vertices. Then G ∼= Ka ∪ Kb is

L-borderenergetic if only if b = a + 2, where a ≤ b, n = a + b and a, b are positive

integers.

Corollary 3.4. [37] Let G be a graph on n vertices. Then the graph G ∼= Ka ∪Kb ∪K1

is L-borderenergetic if only if b = a+ 2, where a ≤ b and n = a+ b+ 1.

Theorem 3.5. [37] Let G1 and G2 be two (n,m)-Laplacian borderenergetic graphs. Then

G1 +G2 is L-borderenergetic graph if only if G1 and G2 are complete L-borderenergetic.

Theorem 3.6. [57] Let G be a L-borderenergetic graph of order n with average vertex

degree d. Then for p 6= 0, G+Kp is L-borderenergetic if p = n− d.

A graph G is self-complementary (sc), if it is isomorphic to its complement.

Theorem 3.7. [37] Let G be regular sc-graph on n ≥ 9 vertices. Then G is L-

borderenergetic, if G is strongly regular graph with parameters (9, 4, 1, 2).

Theorem 3.8. [37] Let G be a non-complete strongly regular graph (n, k, s, t) with three

distinct eigenvalues k, s and t, where mt = ms (r ≥ 2) and n ≥ 5. If G is an integral

L-borderenergetic connected graph, then G has parameters (16, 5, 0, 2).

For each integer n ≥ 3, we define the graph G in Kn−1 �Kn to be the following join

G = (Kn−1 ∪Kn−2) +K1 of order 2n− 2, see Figure 4.

Figure 4. Graph K4 �K5.

Theorem 3.9. [54] For each n ≥ 3, G = Kn−1 �Kn is L-borderenergetic and non-co-

L-spectral graph with K2n−2.
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For each integer n ≥ 3, we define the graph G = Kn ·Kn of order 2n; obtained from

two copies of the complete graph by adding n edges between one vertex of a copy of Kn

and n vertices of the other copy, see Figure 5.

Figure 5. Graph K3 ·K3.

Theorem 3.10. [54] For each n ≥ 3, G = Kn ·Kn is L-borderenergetic and non-co-L-

spectra graph with K2n.

Let Mp be a set of p independent edges in a complete graph Kn, where 0 ≤ b ≤ bn/2c.

Let Eq be a set of q edges possessing a common vertex in a complete graph Kn, where

0 ≤ q ≤ n− 1.

Theorem 3.11. [14] For any even integer n, the graph Kn−Mn
2
−1 is L-borderenergetic.

Theorem 3.12. [47] Let Gn = {Gn(a, b)|a, b ≥ 0, 2a+ b+ 1 = n} , where n ≥ 4. If n is

odd, then Gn(1, n−3) = (K2 ∪ (n− 3)K1)+K1 is the only L-borderenergetic graph in Gn.

If n is even, then Gn(1, n−3) = (K2 ∪ (n− 3)K1)+K1 and Gn(n−2
2
, 1) =

(
n−2
2
K2 ∪K1

)
+

K1 are the only L-borderenergetic graphs in Gn.

Theorem 3.13. [47] Let Hn =
{
Hn(a, b)|a, b ≥ 0, a+ b = n

2

}
, where n ≥ 4 is even. Then

all graphs but Hn(n
2
, b) in Hn are non-complete L-borderenergetic graphs.

Corollary 3.14. [47] For an even integer n ≥ 6, there exists at least n
2

+ 4 connected

non-complete L-borderenergetic graphs which are Hn(a, b), for b = 1, 2, . . . , n
2

and Jn,i, for

i = 1, 2, 3, 4.

Theorem 3.15. [37] Suppose that p ≥ 4 is even and G = Kp,q + p e is obtained from

Kp,q by adding p independent edges. Then G is L-borderenergetic.

Theorem 3.16. [37] Suppose that r ≥ 3 and 0 ≤ p ≤ r − 2. Then G = Kr,r + (r − 1) e

(see Figure 6) is L-borderenergetic.
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Figure 6. The graph G = (K4,4 − pe) + 3e for 0 ≤ p ≤ 2.

The Kan(k)-graph is obtained from Kn by removing k edges which have a common

vertex. The Kbn(k)-graph is obtained from Kn by removing k independent edges. The

KEn(k)-graph is one obtained from Kn by deleting the edges of k independent paths P3.

Theorem 3.17. [37] The Kan(k)-graph is Laplacian borderenergetic, where n = 4. In

addition, for even number n (n ≥ 4) all Kbn(k)-graph, are L-borderenergetic, where k =

n−2
2
. Also, KEn(k)-graph is Laplacian borderenergetic, where n = 6.

Let Sn + e be the graph with n+ 1 edges obtained from a star Sn by connecting two

pendant edges which have a vertex in common. Obviously, Sn + e is a unicyclic threshold

graph.

Theorem 3.18. [9, 13] The graph K1 + (K2 ∪ pK1)(∼= Sn + e) is L-borderenergetic.

Theorem 3.19. [37] For each integer p ≥ 2, the threshold graphs 0p120p−1 are L- bor-

derenergetic.

Theorem 3.20. [37] Let G be graph on n ≥ 4 vertices. Then the threshold graph

0p+1110q110p is L-borderenergetic, where 0 ≤ p ≤
⌊
n−4
2

⌋
and q = n− 2p− 3.

When a graph is bipartite, the Laplacian and signless Laplacian spectrum are the

same. In next theorem, some asymptotically tight bounds of the first Zagreb index of a

L- borderenergetic bipartite graph, in terms of the order and size are given.

Theorem 3.21. [15] Let G be a L-borderenergetic bipartite graph. Then

1) M1(G) ≤ (2(n−1)−2m
n
)2

2
+ 6m2

n2 + 4m2

n
− 2m.

2) M1(G) ≥ (2(n−1)−4m
n
)2

n−2 + 8m2

n2 + 4m2

n
−2m. Also, if G is

(√
4k21 − 2k1 + 4

)
-regular and

m = k1n+k2, where k1 > 0 and k2 ≥ 0, then the lower bound above is asymptotically

tight.

In Appindex (Table 4), some classes of L-borderenergetic graph are given in [37,47,54].
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3.1 Bounds on the order and size of L-borderenergetic graphs

In this sections, two bounds for the size of L-borderenergetic graphs with maximum degree

4 are given. Also, a lower bound for the order of borderenergetic graphs is given.

Theorem 3.22. [10] If G is an L-borderenergetic graph with ∆ = 4, then

m ≤ 1

16
M1(G) +

5n

4
− (n− 3)2

4(n− 1)
− 1. (7)

When G is 4-regular, the bound in inequality (7) is asymptotically tight.

Theorem 3.23. [10] If G is an L-borderenergetic graph with ∆ = 4, then

m ≤ 1

16
M1(G) +

5n

4
− (n− 1)2

4n
. (8)

When G is 4-regular, the bound in inequality (8) is asymptotically tight.

Theorem 3.24. [14] If G is an L-borderenergetic graph of order n and size m, then

m ≤ 1

2(2d̄− 1)

[
M1(G) + (n− 1)d̄2 − (2n− 2− d̄)2

n− 1

]
. (9)

When G is 4-regular, the bound in inequality (9) is asymptotically tight.

Corollary 3.25. [14] If G is an L-borderenergetic k-regular graph of order n and size

m, then

m ≤ 1

2(2k − 1)

[
(2n− 1)k2 − (2n− 2− k)2

n− 1

]
. (10)

Due to regularity, the bound in inequality (10) is also fit for borderenergetic graphs.

Theorem 3.26. [14] If G is an L-borderenergetic graph of order n, then

n ≥ 2d̄− δ + 1.

Corollary 3.27. [14] If G is an L-borderenergetic graph of order n and size m with

δ = 1, then n ≥ 2
√
m.

3.2 Non-L-borderenergetic graphs

Here, we show that all trees, cycles, the complete bipartite graphs, and many 2-connected

graphs are not L-borderenergetic.
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Theorem 3.28. [14] The complete bipartite graph Ka,b (1 ≤ a ≤ b), is not L- borderen-

ergetic.

Theorem 3.29. [14, 37] There is no Laplacian borderenergetic tree with n ≥ 3 vertices.

Theorem 3.30. [14] If G is a 2-connected graph with ∆ = 3 and t(G) ≥ 7, then G is

not L-borderenergetic, where t(G) the number of vertices of degree 3 in G.

In [10], the authors obtained a better result, namely Theorem 3.31, which improves

Theorem 3.30.

Theorem 3.31. [10] If G is a 2-connected graph of order n ≥ 5 with ∆ = 3, then G is

not L-borderenergetic.

Theorem 3.30 only considers 2-connected graphs with maximum degree 3 and t(G) ≥ 7.

But, the other cases, such as the 2-connected graphs with 1 ≤ t ≤ 6 and the graphs with

∆ ≤ 4, need to be further studied.

4 Signless Laplacian borderenergetic graphs

Tao et al. in [53] generalized the concept of borderenegetic graphs for the signless Lapla-

cian matrices of graphs. That is, a graph G of order n is signless Laplacian borderenergetic

or Q-borderenergetic for short, if EQ(G) = EQ(Kn) = 2n − 2. In [37], it was shown that

there exits Q-borderenergetic graphs on small order n with 4 ≤ n ≤ 9. At the same period

of time, Tao et al. in [53] obtained some bounds on the order and size of Q-borderenergetic

graphs and by using a computer search they explore all Q-borderenergetic connected

graphs on no more than 10 vertices. In [13, 53] two infinite family of these graphs were

constructed.

Here, we present some basic theorem used to study Q-borderenergetic graphs.

Theorem 4.1. [16] If G is a connected Q-borderenergetic graph, then G is not a tree.

Theorem 4.2. •

1) [37]There is no non-complete Q-borderenergetic graph of order, n ≤ 5 and 7.

2) [37] There are exactly two non-complete Q-borderenergetic graphs of order 6.

3) [37]There exist exactly 14 non-complete Q-borderenergetic graphs of order 8.
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4) [37] There exist exactly 16 non-complete Q-borderenergetic graphs of order 9.

5) [53] There are totally 39 non-complete Q-borderenergetic connected graphs of order

n ≤ 10.

If G is a regular graph of degree k, noting that D = kI, Q = kI+A, and L = kI−A, it

follows that E(G) = EL(G) = EQ(G), also note that the graph pC4 ∪ qC6 ∪ rC3 is regular

of degree n− 3, from [22] we can easily get the following theorem.

Theorem 4.3. [53] Let p, qand r are non-negative integers with p + q = 2, then

pC4 ∪ qC6 ∪ rC3 is Q-borderenergetic.

Theorem 4.4. Suppose that G = K1 + (Kt ∪ pKt−1). For each integer p ≥ 1,

1) [13] If t = 2 or t > 3, then G is not Q-borderenergetic.

2) [53] If t = 3, then G is L-borderenergetic and Q-borderenergetic.

Note that graph K1 + (K3∪pK2) can be seen as constructed by connecting one vertex

of K4 with both ends of each of p copies of K2. If we do the same thing on two or three

vertices of K4, which has the form as graph H1 and H2 in Figure 7, respectively, we obtain

another families of Q-borderenergetic graphs.

H2H1

p p p p

p

Figure 7. Two families of Q-borderenergetic graphs.

Theorem 4.5. [53]

1) For each integer p ≥ 1, let H1 be a graph constructed by connecting two vertices

of K4 with both ends of each of p copies of K2, respectively. Then H1 is a Q-

borderenergetic graph of order 4p+ 4.

2) For each integer p ≥ 1, let H2 be a graph constructed by connecting three vertices

of K4 with both ends of each of p copies of K2, respectively. Then H2 is a Q-

borderenergetic graph of order 6p+ 4.
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Theorem 4.6. [53] If G is a Q-borderenergetic graph of order n with m edges, then

m >
1

4

(
n− n2 +

√
n2(n− 1)2 + 8nM1(G)n

)
.

Theorem 4.7. [53] If G is a Q-borderenergetic graph of order n with m edges, then

1

2

(
(2m + 2−∆)−

√
(2m + 2−∆)2 − 8m

)
< n <

1

2

(
(2m + 2−∆) +

√
(2m + 2−∆)2 − 8m

)
.

In [16] Deng et al. presented some upper bounds on the order of a Q-borderenergetic

graph in items of its size, graph energy, degrees and the first Zagreb index.

Theorem 4.8. [16] Let G be a Q-borderenergetic graph with order n and size m. Then

n ≤ (E(G) +
n∑
i=1

|di − d|)/2 + 1.

If the graph G is connected, then the equality holds if and only if G is regular.

Theorem 4.9. [16] Let G be a Q-borderenergetic graph with order n and size m. Then

n ≤ (E(G) +
√
nM1(G)− 4m2)/2 + 1.

If the graph G is connected, then the equality holds if and only if G is regular.

By using Theorem 4.1, we have

Theorem 4.10. [16] Let G be a connected Q-borderenergetic graph with the maximum

degree 4 and n ≥ 31. Then

n ≤
√

3

2
(m− 1)(m− 6) + 4.

Specially, Deng et al. [16] studied the order of a regular Q-borderenergetic graph and

obtained an upper bound on the order of the graph.

Theorem 4.11. [16] Let G be a k-regular Q-borderenergetic graph with order n and

2 ≤ k ≤ 4. Then

n ≤ 2(k2 − k + 1)

2k2 − (k − 1)3/2k − 3k + 2
,

with equality if and only if G ∼= K3.

Note that if G is a graph with maximum degree ∆ ≤ 4, then G is called a chemical

graph. Next results are the cases of k = 3 and k = 4 for Theorem 4.11.
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Corollary 4.12. [16] There is no 3-regular non-complete Q-borderenergetic graph.

When k = 4, from Theorem 4.11, one can see n ≤ 21.

Corollary 4.13. [16] If G is a 4-regular Q-borderenergetic graph, then n ≤ 21.

In fact, by using a computer, we can find all the k-regular Q-borderenergetic graphs

with order 8 ≤ n ≤ 11 (see Table 2), and these graphs are shown in Figure 8.

Table 2. The k-regular Q-borderenergetic graphs with order 8 ≤ n ≤ 11, 4 ≤ k ≤ 8.

n 8 9 9 10 10 10 11
k 5 4 4 7 6 6 8
G G1 G2 G3 G4 G5 G6 G7

Figure 8. The regular Q-borderenergetic graphs Gi, 1 ≤ i ≤ 7.

5 Seidel borderenergetic graphs

Hakimi-Nezhaad et al. [38] proposed the concept of a Seidel borderenergetic graph, which

means ES(G) = ES(Kn) = 2n− 2 and they obtained several classes of Seidel borderener-

getic graphs.
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In this section, a characterization of Seidel borderenergetic graphs with at most three

Seidel eigenvalues is given.

Theorem 5.1. [38] Let G be a graph on n vertices with two distinct Seidel eigenvalues.

Then G is Seidel borderenergetic if and only if G ∼= Kn or Kn or Ki ∪Kj or Ki,j, where

i+j=n.

Corollary 5.2. [38] Let G be a graph on n vertices with two distinct Seidel eigenvalues.

Then graph G− {v} is Seidel borderenergetic if and only if G− {v} ∼= Kn−1 or Kn−1 or

Ki ∪Kj or Ki,j, where i+ j = n− 1.

Theorem 5.3. [38] Let G be connected r-regular graph on n ≥ 3 vertices with three

distinct eigenvalues. Then G is Seidel borderenergetic if and only if G ∼= Kn
2
,n
2
, where n

is even.

Corollary 5.4. [38] If G is a r-regular graph with exactly distinct three Seidel eigenvalues,

then G is not Seidel borderenergetic.

All non-isomorphic Seidel borderenergetic graphs of order n, where 2 ≤ n ≤ 10 to-

gether their Seidel eigenvalues are reported in Appendix (Table 5). These computations

are done by the aid of nauty package developed by McKay (McKay 2006) [49] and the

The GNU MPFR library [20].

A Seidel switching of graph G can be constructed as follows. Let V (G) = U1∪U2 be a

partition of vertices of G and G′ be a graph obtained from G by removing all edges between

U1 and U2 and adding all edges between them not presented in G. We say that G′ is a

Seidel switching of G with respect to U1 and in this case G′ and G are Seidel co-spectral,

see [35]. Two graphs G and G′ are called switching equivalent, if G′ is constructed by a

sequence of Seidel switching from G.

Finally, Haemers in [35] conjectured that the Seidel energy of any graph of order n

is at least 2n − 2 and, up to Seidel equivalence, the equality holds for Kn. Akbari et al.

in [1] proved this conjecture and so we conclude the following result.

Theorem 5.5. Let G be graph of order n. Then G is Seidel borderenergetic if and only

if G ∼= Kn or Kn or Ki ∪Kj or Ki,j, where i+ j = n.
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suggestions.
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[33] I. Gutman, T. Soldatović, (n,m)-Type approximations for total π-electron energy

of benzenoid hydrocarbons, MATCH. Commun. Math. Comput. Chem. 44 (2001)

169–182.
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Appendix

Figure 9. The six non-complete borderenergetic graphs of order 8. These have
different number of edges (between 19 and 25).

Figure 10. The seventeen non-complete borderenergetic graphs of order 9. These
have different number of edges (between 22 and 34).
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Table 3. The distribution of twelve-vertex borderenergetic graphs by the number
of edges.

# Edges # Graphs # Edges # Graphs
25 2 41 20
26 5 42 26
27 1 43 12
28 8 44 14
29 7 45 14
30 42 46 7
31 20 47 4
32 62 48 7
33 58 50 2
34 50 51 1
35 44 52 4
36 43 54 1
37 37 55 2
38 27 56 1
39 25 57 1
40 24 58 1
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Table 4. Some classes of L-borderenergetic graphs.

Graph
K1 + (pK2 ∪K1,2) p ≥ 0
K1 + (pK2 ∪K1 ∪K1,2) p ≥ 0
(pK2 ∪K1) + (pK2 ∪K1) p ≥ 1
(pK2 ∪K1 ∪K1,2) + (pK2 ∪K1 ∪K1,2) p ≥ 1
K1 + (pK2 ∪K1) p ≥ 1
K1 ∪ (pK2 +K1) p ≥ 1
(pK1 ∪ (K1 + (p+ 1)K1)) + (pK1 ∪ (K1 + (p+ 1)K1)) p ≥ 1, n = 4p+ 4
(p+ 1)K2 + (p+ 1)K2 p ≥ 1, n = 4p+ 4
(K2 ∪ (2p+ 1)K1) + (2r + 1)K1 p ≥ 1, n = 4p+ 4
((2p+ 1)K1) + (2p+ 2)K1 +K1 p ≥ 1, n = 4p+ 4
(pK1 ∪ (K1 + (p+ 1)K1)) + (p+ 1)K2 p ≥ 1, n = 4p+ 4
(pK1 ∪ (K1 + (p+ 1)K1)) + (pK2 ∪ 2K1) p ≥ 1, n = 4p+ 4
((p+ 1)K2) + (pK2 ∪ 2K1) p ≥ 1, n = 4p+ 4
((p+ 1)K2) + ((2p+ 1)K1 +K1) p ≥ 1, n = 4p+ 4
(pK2 ∪ 2K1) + ((2p+ 1)K1 +K1) p ≥ 1, n = 4p+ 4
((2p+ 1)K1) + ((2p+ 1− q)K1) ∪ (K1 + (q + 1)K1) p ≥ 1, n = 4p+ 4, 0 ≤ q ≤ p
K1 + (Kq + pKq−1) p ≥ 1, q ≥ 2
((2pK1 + 2pK1) + 2pK1) p ≥ 1, n = 6p+ 1
K1 + (Kp−1 ∪Kp,p) p ≥ 2
K1 + (K1 ∪ ((p

2
− 1)K1 + (p

2
− 1)K1)) p ≥ 6

K1 + ((p
2
− 1)K2 ∪K1) p ≥ 6

(K2 ∪ (p
2
− 2)K1) + (K1 + (p

2
− 1)K1) p ≥ 6

(K2 ∪ (p
2
− 2)K1) + ((K1 + (p

2
− 2)K1) ∪K1) p ≥ 6

pK1 ∪ (K1 + (qK1 ∪K1,p ∪K2) 1 ≤ p ≤
⌈
n−4
2

⌉
, q = n− 2p− 4

Table 5. Seidel borderenergetic graphs of order 2 ≤ n ≤ 10 and their Seidel Spec-
tra.

n Graphs S-Spectra
2 K2, K̄2 {[1]1, [−1]1}

3
K3, K1 ∪K2

K̄3, K1,2

{[2]1, [−1]2}
{[1]2, [−2]1}

4
K4, K2 ∪K2, K3 ∪K1

K̄4, K2,2, K1,3

{[3]1, [−1]3}
{[1]3, [−3]1}

5
K5, K3 ∪K2, K4 ∪K1

K̄5, K3,2, K1,4

{[4]1, [−1]4}
{[1]4, [−4]1}

6
K6, K3 ∪K3, K2 ∪K4, K3 ∪K5

K̄6, K3,3, K4,2, K5,1

{[5]1, [−1]5}
{[1]5, [−5]1}

7
K7, K4 ∪K3, K5 ∪K2, K6 ∪K1

K̄7, K4,3, K5,2, K6,1

{[6]1, [−1]6}
{[1]6, [−6]1}

8
K8, K4 ∪K4, K5 ∪K3, K6 ∪K2, K7 ∪K1

K̄8, K4,4, K5,3, K6,2, K7,1

{[7]1, [−1]7}
{[1]7, [−7]1}

9
K9, K5 ∪K4, K6 ∪K3, K7 ∪K2, K8 ∪K1

K̄9, K5,4, K6,3, K7,2, K8,1

{[8]1, [−1]8}
{[1]8, [−8]1}

10
K10, K5 ∪K5, K6 ∪K4, K7 ∪K3, K8 ∪K2, K9 ∪K1

K̄10, K5,5, K6,4, K7,3, K8,2, K9,1

{[9]1, [−1]9}
{[1]9, [−9]1}
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