On the Extremal Mostar Indices of Hexagonal Chains
 Sumin Huang ${ }^{a}$, Shuchao Li a, Minjie Zhang ${ }^{b, *}$
 ${ }^{a}$ Faculty of Mathematics and Statistics, Central China Normal University, Wuhan 430079, PR China
 lscmath@mail.ccnu.edu.cn
 ${ }^{b}$ School of Mathematics and Statistics, Hubei University of Arts and Science,
 Xiangyang 441053, PR China
 zhangmj1982@qq.com

(Received December 3, 2019)

Abstract

For a given graph G, the Mostar index $M o(G)$ is a bond-additive topological index as a measure of peripherality in G. Došlić et al. (2018) posed an open problem: Find extremal benzenoid chains, catacondensed benzenoids and general benzenoid graphs with respect to the Mostar index [7]. In this paper, we partially solve above problem, i.e., sharp upper and lower bounds on the Mostar indices among hexagonal chains with a given number of hexagons are determined, respectively. All the corresponding extremal hexagonal chains are characterized.

1. Introduction

In this paper, all the graphs we considered are connected, simple and undirected. All the notations and terminologies not defined here we refer the reader to Bondy and Murty [2].

Let $G=\left(V_{G}, E_{G}\right)$ be a graph with the vertex set V_{G} and the edge set E_{G}. For a vertex $v \in V_{G}$, we denote the degree of v by $d_{G}(v)$ (or d_{v} if no ambiguity is possible). If $d_{G}(v)=1$, then v is called a pendant vertex of G. For a set U, denote by $|U|$ its cardinality. For a vertex subset S of V_{G}, denote by $G[S]$ the subgraph of G induced by

[^0]S. As usual, P_{n} denotes the path with n vertices. The distance, $d_{G}(u, v)$ (or $d(u, v)$ for short) between two vertices u, v of G is the length of a shortest $u-v$ path in G.

For each edge $e=u v \in E_{G}$, let

$$
\begin{aligned}
& N_{G}^{u}(e)=\{x \in V(G) \mid d(x, u)<d(x, v)\}, \\
& N_{G}^{v}(e)=\{x \in V(G) \mid d(x, u)>d(x, v)\}, \\
& N_{G}^{0}(e)=\{x \in V(G) \mid d(x, u)=d(x, v)\} .
\end{aligned}
$$

and let $n_{G}^{u}(e)=\left|N_{G}^{u}(e)\right|, \quad n_{G}^{v}(e)=\left|N_{G}^{v}(e)\right|, \quad n_{G}^{0}(e)=\left|N_{G}^{0}(e)\right|$. For convenience, put $n_{u}:=n_{G}^{u}(e), n_{v}:=n_{G}^{v}(e)$ and $n_{0}:=n_{G}^{0}(e)$, respectively, if no ambiguity is possible. Clearly, one has $V_{G}=N_{G}^{u}(e) \cup N_{G}^{v}(e) \cup N_{G}^{0}(e)$. If in addition G is bipartite, then we get $N_{G}^{0}(e)=\emptyset$ and $n_{0}=0$. Otherwise, if there exists $x \in N_{G}^{0}(e)$, then a shortest u - x path, a shortest $v-x$ path and the edge e implies an odd cycle, which is a contradiction with G is bipartite.

Specially, a graph G is distance-balanced if $n_{u}=n_{v}$ for each edge $u v \in E_{G}$. Jerebic, Klavžar and Rall [10] investigated the basic properties of distance-balanced graphs. The symmetry conditions were studied in [12]. For more details of distance-balanced graphs, one may be referred to $[1,9,13]$ and the references cited therein. But there exists many graphs which are not distance-balanced. Hence, how far is a graph from being distancebalanced has received much attention. In 2018, Došlić et al. [7] proposed a new structural invariant of graphs, called the Mostar index, which is defined as

$$
\begin{equation*}
M o(G)=\sum_{e=u v \in E(G)} \phi_{G}(e), \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{G}(e)=\left|n_{u}-n_{v}\right| \tag{1.2}
\end{equation*}
$$

is called the contribution of the edge $e(=u v)$ for $M o(G)$.
Clearly, a graph G is distance-balanced if and only if $M o(G)=0$. The Mostar index produces a global measure of peripherality of G by calculating the sum of peripherality contributions over all edges in G. Very recently, studying the extremal values of the Mostar index among graphs have attracted researchers' attention. In 2018, Došlić et al. [7] determined the extremal values of the Mostar index among trees and unicyclic graphs, respectively. In 2019, Tepeh [14] characterized the bicyclic graphs with extremal Mostar index.

In the end of [7], the authors stated several conjectures and listed some open problems. One of them is considered the Mostar index among benzenoid chains, catacondensed benzenoids and general benzenoid graphs as follows.

Problem 1.1 ([7]). Find extremal benzenoid chains, catacondensed benzenoids and general benzenoid graphs with respect to the Mostar index.

Note that hexagonal chains are the graph representations of an important subclass of benzenoid molecules, namely the so-called unbranched catacondensed benzenoids. In this paper, we characterize the structure of hexagonal chains with the extremal Mostar index, which is a part of Problem 1.1.

A hexagonal chain G_{n} with n hexagons is a graph consisting of n regular hexagons $C_{1}, C_{2}, \ldots, C_{n}$ arranged in sequence, which satisfies the following:
(i) Any two hexagons have at most one common edge,
(ii) For each $1 \leq i<j \leq n, C_{i}$ and C_{j} have a common edge if and only if $j=i+1$,
(ii) Each vertex belongs to at most two hexagons.

In recent years, there is a lot of work on hexagonal chains. Gutman [8] studied the extremal hexagonal chains with respect to some topological invariants, including the Hosaya index, the Merrifield-Simmons index and the spectral radius. Zhang [17] determine the ordering of single-corner hexagonal chains with respect to the Merrifield-Simmons index. Zhang and Zhang [18] consider the numbers of k-matchings and k-independent sets of hexagonal chains. Khadikar, et al. [11] calculate the Padmakar-Ivan index of some hexagonal chains. Deng [4] give an algorithm for computing the anti-forcing number of hexagonal chains and determine the bounds of the anti-forcing number of hexagonal chains. For more results on hexagonal chains one may be referred to $[3,5,6,15,16]$ and the references cited therein.

In this paper, we determine sharp upper and lower bounds of the Mostar index among hexagonal chains with a given number of hexagons, respectively. The extremal hexagonal chains are also characterized. We give some necessary notations and useful lemmas about hexagonal chains in the next section. In Sections 3 and 4, we determine the sharp upper and lower bounds of the Mostar index among hexagonal chains with a given number of hexagons, respectively. The extremal hexagonal chains are also characterized. Thus, we partially solved Problem 1.1.

2. Notations and preliminaries

Let \mathcal{G}_{n} be the set of all the hexagonal chains with n hexagons. For $G_{n} \in \mathcal{G}_{n}$, it is easy to check it has $(4 n+2)$ vertices and $(5 n+1)$ edges. Furthermore, $d_{G_{n}}(v) \in\{2,3\}$ for each vertex $v \in V_{G_{n}}$. For convenience, let $V_{3}\left(G_{n}\right)$ (or V_{3} for short) be the set of all the vertices with degree 3 in a hexagonal chain G_{n}.

By considering the structure of $G_{n}\left[V_{3}\right]$, we introduce two significant hexagonal chains. A linear chain, denote L_{n}, is a hexagonal chain with n hexagons satisfying $L_{n}\left[V_{3}\right] \cong$ $(n-1) K_{2}$. A helicene chain, denote by H_{n}, is a hexagonal chain with n hexagons satisfying that $H_{n}\left[V_{3}\right]$ is isomorphic to an $(2 n-2)$-order comb, which is a graph obtained by attaching a new pendant vertex to each vertex of P_{n-1}. The hexagonal chains L_{n} and H_{n} are depicted in Fig. 1, where $L_{n}\left[V_{3}\right]$ and $H_{n}\left[V_{3}\right]$ are indicated by thick edges.

Fig. 1. The linear chain L_{n} and the helicene chain H_{n}.
Any hexagonal chain G_{n} in \mathcal{G}_{n} can be obtained by connecting two hexagonal chains $B_{1} \in \mathcal{G}_{n_{1}}$ and $B_{2} \in \mathcal{G}_{n_{2}}$ by a single hexagon X, where $n=n_{1}+n_{2}+1$. Assume $E_{B_{1}} \cap E_{X}=$ $\{a b\}$ and $E_{B_{2}} \cap E_{X}=\{x y\}$. If $d_{X}(a, x)=1, d_{X}(b, y)=3$, then we denote $G_{n}=B_{1} \cdot \alpha \cdot B_{2}$. Similarly, if $d_{X}(a, x)=d_{X}(b, y)=2$ and $d_{X}(a, x)=3, d_{X}(b, y)=1$, then we denote $G_{n}=B_{1} \cdot \beta \cdot B_{2}$ and $G_{n}=B_{1} \cdot \gamma \cdot B_{2}$, respectively.(see in Fig. 2.) For convenience, we also use α-type, β-type, γ-type to denote the single hexagon X. In particular, $L_{n}=L_{n-2} \cdot \beta \cdot C$ and $H_{n}=H_{n-2} \cdot \alpha \cdot C$, where C is a single hexagon.

$B_{1} \cdot \alpha \cdot B_{2}$

$B_{1} \cdot \beta \cdot B_{2}$

Fig. 2. The three types connecting B_{1} and B_{2}.

Let $G_{n} \in \mathcal{G}_{n}$ and $e=u v$ and $f=a b$ be two edges in $E_{G_{n}}$. We say e and f are in parallel relation, or e is in parallel relation with f if and only if $d(u, a)=d(v, b)$ and $d(u, b)=d(v, a)$. Especially, we say each edge is in parallel relation with itself. Denote by $s_{G_{n}}(e)$ (or $s(e)$ for short) the number of edges in parallel relation with e in G_{n}. We have the following.

Lemma 2.1. Let G_{n} be a hexagonal chain with n hexagons and $x y$ be an edge of G_{n}. Then,
(i) $u v$ is in parallel relation with $x y$ in G_{n} with $d(u, x)<d(v, x)$ if and only if $x \in$ $N_{G_{n}}^{u}(u v), y \in N_{G_{n}}^{v}(u v)$.
(ii) $s(x y)=\left|\left\{e=u v \in E_{G} \mid x \in N_{G}^{u}(e), y \in N_{G}^{v}(e)\right\}\right|$.

Proof. (i) Firstly, we show the necessity. Since $u v$ is in parallel relation with $x y$ in G_{n}, one has $d(u, x)=d(v, y), d(u, y)=d(v, x)$. Note that $d(u, x)<d(v, x)$. So $x \in N_{G_{n}}^{u}(u v)$ and $d(v, y)=d(u, x)<d(v, x)=d(u, y)$, which implies $y \in N_{G_{n}}^{v}(u v)$, as desired.

Secondly, we show the sufficiency. Let $u v$ be an edge in $E_{G_{n}}$ with $x \in N_{G}^{u}(u v), y \in$ $N_{G}^{v}(u v)$, which implies $d(u, x)<d(v, x)$ and $d(u, y)>d(v, y)$. Together with $u v$ and $x y$ are edges of G_{n}, we get $d(u, x)=d(v, x)-1$ and $d(v, y)=d(u, y)-1$. Thus,

$$
d(u, x)=d(v, x)-1 \leq d(v, y)+d(y, x)-1=d(v, y)=d(u, y)-1<d(u, y)
$$

Note that $x y$ is an edge of G_{n} and recall that $d(u, x)=d(v, x)-1, d(v, y)=d(u, y)-1$, we get

$$
d(u, x)=d(u, y)-1=d(v, y), \quad d(u, y)=d(u, x)+1=d(v, x) .
$$

That is, $u v$ is in parallel relation with $x y$ with $d(u, x)<d(v, x)$.
This completes the proof of (i).
(ii) Note that $s(x y)$ is the number of edges in parallel relation with $x y$ in G_{n}. By (i), (ii) is obvious.

Lemma 2.2. Let $G_{n} \in \mathcal{G}_{n}$ and uv, xy be two edges in parallel relation in G_{n}. If $d(u, x)<$ $d(v, x)$, then $N_{G_{n}}^{u}(u v)=N_{G_{n}}^{x}(x y)$ and $N_{G_{n}}^{v}(u v)=N_{G_{n}}^{y}(x y)$.

Proof. One may check that all edges in parallel relation with $x y$ constitute an edge cut, say $E_{x y}$, of G. Assume G_{x}, G_{y} are the two components of $G-E_{x y}$ with $x \in V_{G_{x}}$ and $y \in V_{G_{y}}$. Clearly, $V_{G_{n}}=V_{G_{x}} \cup V_{G_{y}}$. Note that $d(u, x)<d(v, x)$. For each vertex
$a \in V_{G_{x}}$, it is easy to check that $d(a, x)<d(a, y)$ and $d(a, u)<d(a, v)$. Similarly, $d(b, x)>d(b, y), d(b, u)>d(b, v)$ for each vertex $b \in V_{G_{y}}$. Thus,

$$
N_{G}^{u}(u v)=N_{G}^{x}(x y)=V_{G_{a}}, \quad N_{G}^{v}(u v)=N_{G}^{y}(x y)=V_{G_{b}},
$$

which completes the proof.

Fig. 3. $L_{k} \cdot \alpha \cdot B$.

Let $G_{n} \in \mathcal{G}_{n}$ and $C_{1}, C_{2}, \ldots, C_{n}$ be the hexagons contained in G_{n} with $E_{C_{i}} \cap E_{C_{i+1}}=$ $\left\{e_{i}\right\}$ for $1 \leq i \leq n-1$. Clearly, there exists an edge $e_{0} \neq e_{1}$ in $E_{C_{1}}$ such that e_{0} is in parallel relation with e_{1} in G_{n}. For convenience, we call e_{0} an end edge of G_{n} and have the following.

Lemma 2.3. Let G_{n} be a hexagonal chain with n hexagons and $e_{0}=x y$ be an end edge of G_{n}. Then
(i) If $G_{n} \cong L_{n}$, then $s_{L_{n}}(x y)=n+1$ and $n_{L_{n}}^{x}(x y)=n_{L_{n}}^{y}(x y)$.
(ii) If $G_{n} \cong L_{k} \cdot \alpha \cdot B$, where B is a hexagon chain with $n-k-1(\geq 1)$ hexagons, then $s_{G_{n}}(x y)=k+2$ and $n_{G_{n}}^{x}(x y)-n_{G_{n}}^{y}(x y)=4(n-k-1)$. The graph $L_{k} \cdot \alpha \cdot B$ is depicted in Fig. 3.

Proof. (i) By the structure of L_{n}, it is easy to check $e_{1}, e_{2}, \ldots, e_{n-1}$ are in parallel relation with $x y$ in L_{n}. In addition, there exists an edge $e_{n} \neq e_{n-1}$ in $E_{C_{n}}$ such that e_{n} is in parallel relation with them in L_{n}. So

$$
s_{L_{n}}(x y)=\left|\left\{e_{0}=x y, e_{1}, e_{2}, \ldots, e_{n}\right\}\right|=n+1
$$

We may assume $e_{n}=x_{n} y_{n}$ with $d\left(x, x_{n}\right)<d\left(x, y_{n}\right)$. Let $P\left(x, x_{n}\right)$ (resp. $\left.P\left(y, y_{n}\right)\right)$ be the shortest path between x and x_{n} (resp. y and y_{n}). One may check that $N_{L_{n}}^{x}(x y)=$ $\left|V_{P\left(x, x_{n}\right)}\right|=2 n+1, N_{L_{n}}^{y}(x y)=\left|V_{P\left(y, y_{n}\right)}\right|=2 n+1$, which implies $n_{L_{n}}^{x}(x y)=n_{L_{n}}^{y}(x y)$. (i) holds.
(ii) Note that L_{k} and B are connected by α-type. For each edge $e \in E_{B}$, it is easy to check that e is not in parallel relation with $x y$. By a similar proof as (i), we get $s_{G_{n}}(x y)=k+2$.

Denote by C the cycle connecting L_{k} and B in G_{n}. By the structure of $L_{k} \cdot \alpha \cdot B$, there exists just two vertices, say a and b, in $V_{C} \backslash\left(V_{L_{k}} \cup V_{B}\right)$. One has $N_{G}^{x}(x y)=N_{L_{k}}^{x}(x y) \cup V_{B}$ and $N_{G}^{y}(x y)=N_{L_{k}}^{y}(x y) \cup\{a, b\}$. By (i) we get $n_{L_{n}}^{x}(x y)=n_{L_{n}}^{y}(x y)$. Thus,

$$
n_{G}^{x}(x y)-n_{G}^{y}(x y)=n_{L_{k}}^{x}(x y)+\left|V_{B}\right|-n_{L_{k}}^{y}(x y)-2=\left|V_{B}\right|-2=4(n-k-1) .
$$

This completes the proof of (ii).

3. Maximum Mostar index among \mathcal{G}_{n}

In this section, we determine that the helicene chain H_{n} is the unique graph with maximum Mostar index among \mathcal{G}_{n}. In order to obtain our main result, the following lemma is necessary.

G^{2}

Fig. 4. The graphs G^{1}, G^{2}, G^{3} and G^{4}.
Lemma 3.1. Let $B_{1} \in \mathcal{G}_{n_{1}}, B_{2} \in \mathcal{G}_{n_{2}}$ with $n_{1} \geq 1, n_{2} \geq 1$ and $n_{1}+n_{2}+1=n$. Suppose that G^{1}, G^{2}, G^{3}, respectively, are hexagonal chains by connecting B_{1} and B_{2} by the α-type, β-type and γ-type hexagon X, where $E_{B_{1}} \cap E_{X}=\{a b\}, E_{B_{2}} \cap E_{X}=\{x y\}$. G^{4} is a hexagonal chain obtained by reversing the edge $x y$ in G^{1}. The hexagonal chains G^{1}, G^{2}, G^{3} and G^{4} are depicted in Fig. 4. If $n_{B_{1}}^{a}(a b) \geq n_{B_{1}}^{b}(a b)$ and $n_{B_{2}}^{x}(x y) \geq n_{B_{2}}^{y}(x y)$, then
(i) $M o\left(G^{1}\right)>M o\left(G^{2}\right)$.
(ii) $\operatorname{Mo}\left(G^{1}\right) \geq \operatorname{Mo}\left(G^{3}\right)$ with equality if and only if $G^{1} \cong G^{3}$.
(iii) $\operatorname{Mo}\left(G^{1}\right) \geq \operatorname{Mo}\left(G^{4}\right)$ with equality if and only if $G^{1} \cong G^{4}$.

Proof. Clearly, $\left|V_{B_{1}}\right|=4 n_{1}+2$, $\left|V_{B_{2}}\right|=4 n_{2}+2$. Since $n_{B_{1}}^{a}(a b) \geq n_{B_{1}}^{b}(a b)$, one has $B_{1} \cong L_{n_{1}}$ or may be denoted as $L_{k_{1}} \cdot \alpha \cdot B$ with $B \in \mathcal{G}_{n_{1}-k_{1}-1}$. Furthermore, $a b$ is an end edge of B_{1} with $a b \in V_{L_{n_{1}}}$ or $V_{L_{k_{1}}}$. By Lemma 2.3, we get $s_{B_{1}}(a b)=k_{1}+2$ and $n_{B_{1}}^{a}(a b)-n_{B_{1}}^{b}(a b)=4\left(n_{1}-k_{1}-1\right) \geq 0$. (Especially, if $B_{1} \cong L_{n_{1}}$, then denote $n_{1}:=k_{1}+1$ for convenience. By Lemma 2.3 (i) we also get $s_{B_{1}}(a b)=n_{1}+1=k_{1}+2$ and $\left.n_{B_{1}}^{a}(a b)-n_{B_{1}}^{b}(a b)=0=4\left(n_{1}-k_{1}-1\right)\right)$. Note that $n_{B_{2}}^{x}(x y) \geq n_{B_{2}}^{y}(x y)$. Similarly, $B_{1} \cong L_{n_{2}}$ or may be denoted as $L_{k_{2}} \cdot \alpha \cdot B^{\prime}$ with $B^{\prime} \in \mathcal{G}_{n_{2}-k_{2}-1}$. Furthermore, $x y$ is an end edge of B_{2} with $x y \in V_{L_{n_{2}}}$ or $V_{L_{k_{2}}}$. Thus, we also get $s_{B_{2}}(x y)=k_{2}+2$ and $n_{B_{2}}^{x}(x y)-n_{B_{2}}^{y}(x y)=4\left(n_{2}-k_{2}-1\right) \geq 0$.
(i) By (1.1) we get

$$
\begin{aligned}
\operatorname{Mo}\left(G^{1}\right)-M o\left(G^{2}\right)= & \sum_{e \in E_{G^{1}}} \phi_{G^{1}}(e)-\sum_{e \in E_{G^{2}}} \phi_{G^{2}}(e) \\
= & \sum_{e \in E_{B_{1}}}\left(\phi_{G^{1}}(e)-\phi_{G^{2}}(e)\right)+\sum_{e \in E_{B_{2}}}\left(\phi_{G^{1}}(e)-\phi_{G^{2}}(e)\right) \\
& +\left(\phi_{G^{1}}(a x)+\phi_{G^{1}}(b c)+\phi_{G^{1}}(c z)+\phi_{G^{1}}(y z)\right) \\
& -\left(\phi_{G^{2}}(a z)+\phi_{G^{2}}(z x)+\phi_{G^{2}}(b c)+\phi_{G^{2}}(c y)\right) .
\end{aligned}
$$

For convenience, denote $\Lambda_{1}=\sum_{e \in E_{B_{1}}}\left(\phi_{G^{1}}(e)-\phi_{G^{2}}(e)\right), \Lambda_{2}=\sum_{e \in E_{B_{2}}}\left(\phi_{G^{1}}(e)-\phi_{G^{2}}(e)\right)$ and
$\Lambda_{3}=\left(\phi_{G^{1}}(a x)+\phi_{G^{1}}(b c)+\phi_{G^{1}}(c z)+\phi_{G^{1}}(y z)\right)-\left(\phi_{G^{2}}(a z)+\phi_{G^{2}}(z x)+\phi_{G^{2}}(b c)+\phi_{G^{2}}(c y)\right)$.
Thus,

$$
\begin{equation*}
M o\left(G^{1}\right)-M o\left(G^{2}\right)=\Lambda_{1}+\Lambda_{2}+\Lambda_{3} \tag{3.1}
\end{equation*}
$$

Firstly, let us determine Λ_{1}. Note that B_{1} is bipartite. For each edge $e=u v \in E_{B_{1}}$, we may let $V_{B_{1}}=N_{B_{1}}^{u}(e) \cup N_{B_{1}}^{v}(e)$. If $a, b \in N_{B_{1}}^{u}(e)$, then

$$
N_{G^{1}}^{u}(e)=N_{G^{2}}^{u}(e)=N_{B_{1}}^{u}(e) \cup V_{B_{2}} \cup\{c, z\}, \quad N_{G^{1}}^{v}(e)=N_{G^{2}}^{v}(e)=N_{B_{1}}^{v}(e),
$$

which implies $n_{G^{1}}^{u}(e)=n_{G^{2}}^{u}(e)$ and $n_{G^{1}}^{v}(e)=n_{G^{2}}^{v}(e)$. By (1.2), one has

$$
\phi_{G^{1}}(e)-\phi_{G^{2}}(e)=\left|n_{G^{1}}^{u}(e)-n_{G^{1}}^{v}(e)\right|-\left|n_{G^{2}}^{u}(e)-n_{G^{2}}^{v}(e)\right|=0 .
$$

If $a, b \in N_{B_{1}}^{v}(e)$, by a similar discussion as above, one can also get $\phi_{G^{1}}(e)-\phi_{G^{2}}(e)=0$. In order to determine Λ_{1}, it suffices to consider the case $a \in N_{B_{1}}^{u}(e), b \in N_{B_{1}}^{v}(e)$. By Lemma
2.1 (i), $u v$ is in parallel relation with $a b$ in B_{1} and $d(a, u)<d(b, u)$. By Lemma 2.2, we get $N_{B^{1}}^{u}(u v)=N_{B^{1}}^{a}(a b)$ and $N_{B^{1}}^{v}(u v)=N_{B^{1}}^{b}(a b)$. Thus,

$$
\begin{align*}
& N_{G^{1}}^{u}(e)=N_{B_{1}}^{u}(u v) \cup V_{B_{2}}=N_{B_{1}}^{a}(a b) \cup V_{B_{2}}, \\
& N_{G^{1}}^{v}(e)=N_{B_{1}}^{v}(u v) \cup\{c, z\}=N_{B_{1}}^{b}(a b) \cup\{c, z\} . \tag{3.2}
\end{align*}
$$

Similarly, we also get $x y$ is in parallel relation with $a b$ in G^{2} and then

$$
\begin{equation*}
N_{G^{2}}^{u}(e)=N_{B_{1}}^{a}(a b) \cup N_{B_{2}}^{x}(x y) \cup\{z\}, \quad N_{G^{2}}^{v}(e)=N_{B_{1}}^{b}(a b) \cup N_{B_{2}}^{y}(x y) \cup\{c\} . \tag{3.3}
\end{equation*}
$$

Recall that $n_{B_{1}}^{a}(a b)-n_{B_{1}}^{b}(a b)=4\left(n_{1}-k_{1}-1\right) \geq 0, n_{B_{2}}^{x}(x y)-n_{B_{2}}^{y}(x y)=4\left(n_{2}-k_{2}-1\right) \geq$ 0 . Combining (1.2) with (3.2), (3.3), one has

$$
\begin{aligned}
\phi_{G^{1}}(e)-\phi_{G^{2}}(e)= & \left|n_{G^{1}}^{u}(e)-n_{G^{1}}^{v}(e)\right|-\left|n_{G^{2}}^{u}(e)-n_{G^{2}}^{v}(e)\right| \\
= & \left|n_{B_{1}}^{a}(a b)+\left|V_{B_{2}}\right|-n_{B_{1}}^{b}(a b)-2\right| \\
& -\left|n_{B_{1}}^{a}(a b)+n_{B_{2}}^{x}(x y)+1-n_{B_{1}}^{b}(a b)-n_{B_{2}}^{y}(x y)-1\right| \\
= & \left(n_{B_{1}}^{a}(a b)-n_{B_{1}}^{b}(a b)\right)+\left(\left|V_{B_{2}}\right|-2\right) \\
& -\left(n_{B_{1}}^{a}(a b)-n_{B_{1}}^{b}(a b)\right)-\left(n_{B_{2}}^{x}(x y)-n_{B_{2}}^{y}(x y)\right) \\
= & \left(\left|V_{B_{2}}\right|-2\right)-\left(n_{B_{2}}^{x}(x y)-n_{B_{2}}^{y}(x y)\right) \\
= & 4 n_{2}-4\left(n_{2}-k_{2}-1\right) \\
= & 4\left(k_{2}+1\right) .
\end{aligned}
$$

By Lemma 2.1, $s_{B_{1}}(a b)=\left|\left\{e=u v \in E_{B_{1}} \mid a \in N_{B_{1}}^{u}(e), b \in N_{B_{1}}^{v}(e)\right\}\right|$. Hence,

$$
\begin{align*}
\Lambda_{1}= & \sum_{e=u v \in E_{B_{1}}}\left(\phi_{G^{1}}(e)-\phi_{G^{2}}(e)\right) \\
= & \sum_{\substack{e=u v \in E_{B_{1}} \\
a, b \in N_{B_{1}}^{u}(e)}}\left(\phi_{G^{1}}(e)-\phi_{G^{2}}(e)\right)+\sum_{\substack{e=u v \in E_{B_{1}} \\
a, b \in N_{B_{1}}^{v}(e)}}\left(\phi_{G^{1}}(e)-\phi_{G^{2}}(e)\right) \\
& +\sum_{\substack{e=u v \in E_{B_{1}} \\
a \in N_{B_{1}}^{u}(e), b \in N_{B_{1}}^{v}(e)}}\left(\phi_{G^{1}}(e)-\phi_{G^{2}}(e)\right) \\
= & 4\left(k_{2}+1\right)\left|\left\{e=u v \in E_{B_{1}} \mid a \in N_{B_{1}}^{u}(e), b \in N_{B_{1}}^{v}(e)\right\}\right| \\
= & 4\left(k_{2}+1\right) s_{B_{1}}(a b) \\
= & 4\left(k_{2}+1\right)\left(k_{1}+2\right)>0 . \tag{3.4}
\end{align*}
$$

Secondly, by an argument analogous as above, one has

$$
\begin{equation*}
\Lambda_{2}=\sum_{e \in E_{B_{2}}}\left(\phi_{G^{1}}(e)-\phi_{G^{2}}(e)\right)>0 \tag{3.5}
\end{equation*}
$$

Finally, we consider Λ_{3}. Without loss of generality, we assume that $n_{1} \leq n_{2}$, which implies $\left|V_{B_{1}}\right| \leq\left|V_{B_{2}}\right|$. It is easy to check that

$$
\phi_{G^{1}}(b c)=\left|n_{B_{2}}^{x}(x y)+\left|V_{B_{1}}\right|-n_{B_{2}}^{y}(x y)-2\right|, \phi_{G^{1}}(y z)=\left|n_{B_{1}}^{a}(a b)+\left|V_{B_{2}}\right|-n_{B_{1}}^{b}(a b)-2\right|
$$

and

$$
\phi_{G^{1}}(a x)=\phi_{G^{1}}(c z)=\phi_{G^{2}}(a z)=\phi_{G^{2}}(z x)=\phi_{G^{2}}(b c)=\phi_{G^{2}}(c y)=\left|V_{B_{2}}\right|-\left|V_{B_{1}}\right|
$$

Recall that $n_{B_{1}}^{a}(a b)-n_{B_{1}}^{b}(a b)=4\left(n_{1}-k_{1}-1\right) \geq 0, n_{B_{2}}^{x}(x y)-n_{B_{2}}^{y}(x y)=4\left(n_{2}-k_{2}-1\right) \geq 0$. Combining (1.2) with (3.2), (3.3), one has

$$
\begin{align*}
\Lambda_{3}= & \left(\phi_{G^{1}}(a x)+\phi_{G^{1}}(b c)+\phi_{G^{1}}(c z)+\phi_{G^{1}}(y z)\right) \\
& -\left(\phi_{G^{2}}(a z)+\phi_{G^{2}}(z x)+\phi_{G^{2}}(b c)+\phi_{G^{2}}(c y)\right) \\
= & \left|n_{B_{2}}^{x}(x y)+\left|V_{B_{1}}\right|-n_{B_{2}}^{y}(x y)-2\right|+\left|n_{B_{1}}^{a}(a b)+\left|V_{B_{2}}\right|-n_{B_{1}}^{b}(a b)-2\right| \\
& -2\left(\left|V_{B_{2}}\right|-\left|V_{B_{1}}\right|\right) \\
= & \left(n_{B_{2}}^{x}(x y)-n_{B_{2}}^{y}(x y)\right)+\left(\left|V_{B_{1}}\right|-2\right)+\left(n_{B_{1}}^{a}(a b)-n_{B_{1}}^{b}(a b)\right)+\left(\left|V_{B_{2}}\right|-2\right) \\
& -2\left(\left|V_{B_{2}}\right|-\left|V_{B_{1}}\right|\right) \\
= & \left(n_{B_{1}}^{a}(a b)-n_{B_{1}}^{b}(a b)\right)+\left(n_{B_{2}}^{x}(x y)-n_{B_{2}}^{y}(x y)\right)+3\left|V_{B_{1}}\right|-\left|V_{B_{2}}\right|-4 \\
= & 4\left(n_{1}-k_{1}-1\right)+4\left(n_{2}-k_{2}-1\right)+3\left(4 n_{1}+2\right)-\left(4 n_{2}+2\right)-4 \\
= & 16 n_{1}-4 k_{1}-4 k_{2}-8 . \tag{3.6}
\end{align*}
$$

Thus, Combining (3.1) with (3.4)-(3.6), one has

$$
\begin{aligned}
\operatorname{Mo}\left(G^{1}\right)-\operatorname{Mo}\left(G^{2}\right) & =\Lambda_{1}+\Lambda_{2}+\Lambda_{3} \\
& >4\left(k_{2}+1\right)\left(k_{1}+2\right)+16 n_{1}-4 k_{1}-4 k_{2}-8=16 n_{1}+4 k_{1} k_{2}+4 k_{2} \\
& >0
\end{aligned}
$$

which implies $\operatorname{Mo}\left(G^{1}\right)>M o\left(G^{2}\right)$, (i) holds.
(ii) By (1.1), similar with the proof of (i) we get

$$
\begin{equation*}
M o\left(G^{1}\right)-M o\left(G^{3}\right)=\sum_{e \in E_{G^{1}}} \phi_{G^{1}}(e)-\sum_{e \in E_{G^{3}}} \phi_{G^{2}}(e)=\Lambda_{4}+\Lambda_{5}+\Lambda_{6}, \tag{3.7}
\end{equation*}
$$

where $\Lambda_{4}=\sum_{e \in E_{B_{1}}}\left(\phi_{G^{1}}(e)-\phi_{G^{3}}(e)\right), \Lambda_{5}=\sum_{e \in E_{B_{2}}}\left(\phi_{G^{1}}(e)-\phi_{G^{3}}(e)\right)$ and $\Lambda_{6}=\left(\phi_{G^{1}}(a x)+\phi_{G^{1}}(b c)+\phi_{G^{1}}(c z)+\phi_{G^{1}}(y z)\right)-\left(\phi_{G^{3}}(a c)+\phi_{G^{3}}(b y)+\phi_{G^{3}}(c z)+\phi_{G^{3}}(z x)\right)$.

Firstly, let us determine Λ_{4}. For each edge $e=u v \in E_{B_{1}}$, by an argument analogous to the proof of (i), one has $\phi_{G^{1}}(e)-\phi_{G^{3}}(e)=0$ if a, b are both in $N_{B_{1}}^{u}(e)$ or in $N_{B_{1}}^{v}(e)$. In order to determine Λ_{4}, we only need to consider that $a \in N_{B_{1}}^{u}(e)$ and $b \in N_{B_{1}}^{v}(e)$. In this case, it is easy to check that (3.2) holds and

$$
\begin{equation*}
N_{G^{3}}^{u}(e)=N_{B_{1}}^{a}(e) \cup\{c, z\}, \quad N_{G^{3}}^{v}(e)=N_{B_{1}}^{b}(e) \cup V_{B_{2}} . \tag{3.8}
\end{equation*}
$$

Recall that $n_{B_{1}}^{a}(a b)-n_{B_{1}}^{b}(a b) \geq 0$. Together with (1.2), (3.2) and (3.8), one has

$$
\begin{align*}
\phi_{G^{1}}(e)-\phi_{G^{3}}(e)= & \left|n_{G^{1}}^{u}(e)-n_{G^{1}}^{v}(e)\right|-\left|n_{G^{3}}^{u}(e)-n_{G^{3}}^{v}(e)\right| \\
= & \left|n_{B_{1}}^{a}(a b)+\left|V_{B_{2}}\right|-n_{B_{1}}^{b}(a b)-2\right|-\left|n_{B_{1}}^{a}(a b)+2-n_{B_{1}}^{b}(a b)-\left|V_{B_{2}}\right|\right| \\
\geq & \left(n_{B_{1}}^{a}(a b)-n_{B_{1}}^{b}(a b)\right)+\left(\left|V_{B_{2}}\right|-2\right) \\
& -\left(n_{B_{1}}^{a}(a b)-n_{B_{1}}^{b}(a b)\right)-\left(\left|V_{B_{2}}\right|-2\right) \tag{3.9}\\
= & 0 .
\end{align*}
$$

Note that $n_{B_{1}}^{a}(a b)-n_{B_{1}}^{b}(a b) \geq 0$ and $\left|V_{B_{2}}\right|-2=4 n_{2}>0$. The equation in (3.9) holds if and only if

$$
\left|\left(n_{B_{1}}^{a}(a b)-n_{B_{1}}^{b}(a b)\right)-\left(\left|V_{B_{2}}\right|-2\right)\right|=\left(n_{B_{1}}^{a}(a b)-n_{B_{1}}^{b}(a b)\right)+\left(\left|V_{B_{2}}\right|-2\right),
$$

which implies $n_{B_{1}}^{a}(a b)=n_{B_{1}}^{b}(a b)$. So $\phi_{G^{1}}(e)-\phi_{G^{3}}(e) \geq 0$ with equality if and only if $n_{B_{1}}^{a}(a b)=n_{B_{1}}^{b}(a b)$.

Hence,

$$
\begin{align*}
\Lambda_{4}= & \sum_{e=u v \in E_{B_{1}}}\left(\phi_{G^{1}}(e)-\phi_{G^{3}}(e)\right) \\
= & \sum_{\substack{e=u v \in E_{B_{1}} \\
a, b \in N_{B_{1}}^{u}(e)}}\left(\phi_{G^{1}}(e)-\phi_{G^{3}}(e)\right)+\sum_{\substack{e=u v \in E_{B_{1}} \\
a, b \in N_{B_{1}}^{u}(e)}}\left(\phi_{G^{1}}(e)-\phi_{G^{3}}(e)\right) \\
& +\sum_{\substack{e=u v \in E_{B_{1}} \\
a \in N_{B_{1}}^{u}(e), b \in N_{B_{1}}^{v}}}\left(\phi_{G^{1}}(e)-\phi_{G^{3}}(e)\right) \\
\geq & 0 . \tag{3.10}
\end{align*}
$$

The equality in (3.10) holds if and only if $n_{B_{1}}^{a}(a b)=n_{B_{1}}^{b}(a b)$.
Secondly, by an argument analogous as above, one has

$$
\begin{equation*}
\Lambda_{5}=\sum_{e \in E_{B_{2}}}\left(\phi_{G^{1}}(e)-\phi_{G^{3}}(e)\right) \geq 0 \tag{3.11}
\end{equation*}
$$

with equality if and only if $n_{B_{2}}^{x}(x y)=n_{B_{2}}^{y}(x y)$.
Finally, let us consider Λ_{6}. It is easy to check that

$$
\phi_{G^{1}}(a x)=\phi_{G^{1}}(c z)=\phi_{G^{3}}(b y)=\phi_{G^{3}}(c z)=\left|\left|V_{B_{2}}\right|-\left|V_{B_{1}}\right|\right| .
$$

Note that $n_{B_{2}}^{x}(x y)-n_{B_{2}}^{y}(x y) \geq 0$. One has

$$
\begin{align*}
\phi_{G^{1}}(b c)-\phi_{G^{3}}(a c)= & \left|n_{B_{2}}^{x}(x y)+\left|V_{B_{1}}\right|-n_{B_{2}}^{y}(x y)-2\right|-\left|n_{B_{2}}^{y}(x y)+\left|V_{B_{1}}\right|-n_{B_{2}}^{x}(x y)-2\right| \\
= & \left(n_{B_{2}}^{x}(x y)-n_{B_{2}}^{y}(x y)\right)+\left(\left|V_{B_{1}}\right|-2\right) \\
& -\left|\left(\left|V_{B_{1}}\right|-2\right)-\left(n_{B_{2}}^{x}(x y)-n_{B_{2}}^{y}(x y)\right)\right| \\
\geq & \left(n_{B_{2}}^{x}(x y)-n_{B_{2}}^{y}(x y)\right)+\left(\left|V_{B_{1}}\right|-2\right) \\
& -\left(\left|V_{B_{1}}\right|-2\right)-\left(n_{B_{2}}^{x}(x y)-n_{B_{2}}^{y}(x y)\right) \tag{3.12}\\
= & 0 .
\end{align*}
$$

Similar with (3.9), the equality in (3.12) holds if and only if $n_{B_{2}}^{x}(x y)=n_{B_{2}}^{y}(x y)$. Note that $n_{B_{1}}^{a}(a b)-n_{B_{1}}^{b}(a b) \geq 0$, we also get

$$
\begin{align*}
\phi_{G^{1}}(y z)-\phi_{G^{3}}(x z)= & \left|n_{B_{1}}^{a}(a b)+\left|V_{B_{2}}\right|-n_{B_{1}}^{b}(a b)-2\right|-\left|n_{B_{1}}^{b}(a b)+\left|V_{B_{2}}\right|-n_{B_{1}}^{a}(a b)-2\right| \\
= & \left(n_{B_{1}}^{a}(a b)-n_{B_{1}}^{b}(a b)\right)+\left(\left|V_{B_{2}}\right|-2\right) \\
& -\left|\left(\left|V_{B_{2}}\right|-2\right)-\left(n_{B_{1}}^{a}(a b)-n_{B_{1}}^{b}(a b)\right)\right| \\
\geq & \left(n_{B_{1}}^{a}(a b)-n_{B_{1}}^{b}(a b)\right)+\left(\left|V_{B_{2}}\right|-2\right) \\
& -\left(\left|V_{B_{2}}\right|-2\right)-\left(n_{B_{1}}^{a}(a b)-n_{B_{1}}^{b}(a b)\right) \tag{3.13}\\
= & 0 .
\end{align*}
$$

The equality in (3.13) holds if and only if $n_{B_{1}}^{a}(a b)=n_{B_{1}}^{b}(a b)$.
Hence,

$$
\begin{align*}
\Lambda_{6}= & \left(\phi_{G^{1}}(a x)+\phi_{G^{1}}(b c)+\phi_{G^{1}}(c z)+\phi_{G^{1}}(y z)\right) \\
& -\left(\phi_{G^{3}}(a c)+\phi_{G^{3}}(b y)+\phi_{G^{3}}(c z)+\phi_{G^{3}}(z x)\right) \geq 0 \tag{3.14}
\end{align*}
$$

with equality if and only if $n_{B_{1}}^{a}(a b)=n_{B_{1}}^{b}(a b)$ and $n_{B_{2}}^{x}(x y)=n_{B_{2}}^{y}(x y)$.
Together with (3.7) and (3.10)-(3.14), we get $\operatorname{Mo}\left(G^{1}\right)-M o\left(G^{3}\right)=\Lambda_{4}+\Lambda_{5}+\Lambda_{6} \geq 0$ with equality if and only if $n_{B_{1}}^{a}(a b)=n_{B_{1}}^{b}(a b)$ and $n_{B_{2}}^{x}(x y)=n_{B_{2}}^{y}(x y)$. That is, $M o\left(G^{1}\right) \geq$ $\operatorname{Mo}\left(G^{3}\right)$ with equality if and only if $n_{B_{1}}^{a}(a b)=n_{B_{1}}^{b}(a b)$ and $n_{B_{2}}^{x}(x y)=n_{B_{2}}^{y}(x y)$. Consider the structure of B_{1} and B_{2}, one has $n_{B_{1}}^{a}(a b)=n_{B_{1}}^{b}(a b)$ if and only if $B_{1}=L_{n_{1}}$ and $a b$ is
an end edge of $B_{1} ; n_{B_{2}}^{x}(x y)=n_{B_{2}}^{y}(x y)$ if and only if $B_{2}=L_{n_{2}}$ and $x y$ is an end edge of B_{2}. Together with the structures of G^{1} and G^{3}, one has $\operatorname{Mo}\left(G^{1}\right) \geq M o\left(G^{3}\right)$ with equality if and only if $G^{1} \cong G^{3}$. This completes the proof of (ii).
(iii) By (1.1), similar with the proof of (i) we get

$$
M o\left(G^{1}\right)-M o\left(G^{4}\right)=\sum_{e \in E_{G^{1}}} \phi_{G^{1}}(e)-\sum_{e \in E_{G^{4}}} \phi_{G^{4}}(e)=\Lambda_{7}+\Lambda_{8}+\Lambda_{9}
$$

where $\Lambda_{7}=\sum_{e \in E_{B_{1}}}\left(\phi_{G^{1}}(e)-\phi_{G^{4}}(e)\right), \Lambda_{8}=\sum_{e \in E_{B_{2}}}\left(\phi_{G^{1}}(e)-\phi_{G^{4}}(e)\right)$ and $\Lambda_{9}=\left(\phi_{G^{1}}(a x)+\phi_{G^{1}}(b c)+\phi_{G^{1}}(c z)+\phi_{G^{1}}(y z)\right)-\left(\phi_{G^{4}}(a y)+\phi_{G^{4}}(b c)+\phi_{G^{4}}(c z)+\phi_{G^{4}}(x z)\right)$.

Firstly, let us determine Λ_{7}. For each edge $e=u v \in E_{B_{1}}$, by an argument analogous to the proof of (i), one has $\phi_{G^{1}}(e)-\phi_{G^{4}}(e)=0$ if a, b are both in $N_{B_{1}}^{u}(e)$ or in $N_{B_{1}}^{v}(e)$. In order to determine Λ_{7}, we only need to consider that $a \in N_{B_{1}}^{u}(e)$ and $b \in N_{B_{1}}^{v}(e)$. Clearly,

$$
N_{G^{1}}^{u}(e)=N_{G^{4}}^{u}(e)=N_{B_{1}}^{u}(e) \cup V_{B_{2}}, \quad N_{G^{1}}^{v}(e)=N_{G^{4}}^{v}(e)=N_{B_{1}}^{v}(e) \cup\{c, z\}
$$

which implies $\phi_{G^{1}}(e)-\phi_{G^{4}}(e)=0$. Hence, $\Lambda_{7}=\sum_{e=u v \in E_{B_{1}}}\left(\phi_{G^{1}}(e)-\phi_{G^{4}}(e)\right)=0$.
Secondly, let us determine Λ_{8}. For each edge $e=u v \in E_{B_{2}}$, by an argument analogous to the proof of (i), one has $\phi_{G^{1}}(e)-\phi_{G^{4}}(e)=0$ if x, y are both in $N_{B_{2}}^{u}(e)$ or in $N_{B_{2}}^{v}(e)$. In order to determine Λ_{8}, it suffies to consider the case $x \in N_{B_{2}}^{u}(e)$ and $y \in N_{B_{2}}^{v}(e)$. In this case, $x y$ and $u v$ are in parallel relation in B_{2}. Thus,

$$
N_{G^{1}}^{u}(e)=N_{B_{2}}^{x}(x y) \cup V_{B_{1}}, \quad N_{G^{1}}^{v}(e)=N_{B_{2}}^{y}(x y) \cup\{c, z\}
$$

and

$$
N_{G^{4}}^{u}(e)=N_{B_{2}}^{x}(x y) \cup\{c, z\}, \quad N_{G^{4}}^{v}(e)=N_{B_{2}}^{y}(x y) \cup V_{B_{1}} .
$$

Thus,

$$
\begin{align*}
\phi_{G^{1}}(e)-\phi_{G^{4}}(e)= & \left|n_{B_{2}}^{x}(x y)+\left|V_{B_{1}}\right|-n_{B_{2}}^{y}(x y)-2\right|-\left|n_{B_{2}}^{x}(x y)+2-n_{B_{2}}^{y}(x y)-\left|V_{B_{1}}\right|\right| \\
= & \left(n_{B_{2}}^{x}(x y)-n_{B_{2}}^{y}(x y)\right)+\left(\left|V_{B_{1}}\right|-2\right) \\
& -\left|\left(n_{B_{2}}^{x}(x y)-n_{B_{2}}^{y}(x y)\right)-\left(\left|V_{B_{1}}\right|-2\right)\right| \\
\geq & \left(n_{B_{2}}^{x}(x y)-n_{B_{2}}^{y}(x y)\right)+\left(\left|V_{B_{1}}\right|-2\right) \\
& -\left(n_{B_{2}}^{x}(x y)-n_{B_{2}}^{y}(x y)\right)-\left(\left|V_{B_{1}}\right|-2\right) \tag{3.15}\\
= & 0 .
\end{align*}
$$

Similar with (3.9), the equality in (3.15) holds if and only if $n_{B_{2}}^{x}(x y)=n_{B_{2}}^{y}(x y)$. Hence, $\Lambda_{8}=\sum_{e=u v \in E_{B_{2}}}\left(\phi_{G^{1}}(e)-\phi_{G^{4}}(e)\right) \geq 0$ with equality if and only if $n_{B_{2}}^{x}(x y)=n_{B_{2}}^{y}(x y)$.

Finally, let us consider Λ_{9}. It is easy to check that

$$
\phi_{G^{1}}(a x)=\phi_{G^{1}}(c z)=\phi_{G^{4}}(a y)=\phi_{G^{4}}(c z)=\| V_{B_{1}}\left|-\left|V_{B_{2}}\right|\right| .
$$

Note that $n_{B_{2}}^{x}(x y) \geq n_{B_{2}}^{y}(x y)$. By an argument analogous as the determination of Λ_{6}, one has

$$
\begin{align*}
\Lambda_{9}= & \left(\phi_{G^{1}}(a x)+\phi_{G^{1}}(b c)+\phi_{G^{1}}(c z)+\phi_{G^{1}}(y z)\right) \\
& -\left(\phi_{G^{4}}(a y)+\phi_{G^{4}}(b c)+\phi_{G^{4}}(c z)+\phi_{G^{4}}(x z)\right) \\
= & \left(\phi_{G^{1}}(b c)-\phi_{G^{4}}(b c)\right)+\left(\phi_{G^{1}}(y z)-\phi_{G^{4}}(x z)\right) \\
= & \left|n_{B_{2}}^{x}(x y)+\left|V_{B_{1}}\right|-n_{B_{2}}^{y}(x y)-2\right|-\left|n_{B_{2}}^{y}(x y)+\left|V_{B_{1}}\right|-n_{B_{2}}^{x}(x y)-2\right| \\
& +\left|n_{B_{1}}^{a}(a b)+\left|V_{B_{2}}\right|-n_{B_{1}}^{b}(a b)-2\right|-\left|n_{B_{1}}^{a}(a b)+\left|V_{B_{2}}\right|-n_{B_{1}}^{b}(a b)-2\right| \\
\geq & \left(n_{B_{2}}^{x}(x y)-n_{B_{2}}^{y}(x y)\right)+\left(\left|V_{B_{1}}\right|-2\right) \\
& -\left(n_{B_{2}}^{x}(x y)-n_{B_{2}}^{y}(x y)\right)-\left(\left|V_{B_{1}}\right|-2\right) \tag{3.16}\\
= & 0 .
\end{align*}
$$

The equality in (3.16) holds if and only if $n_{B_{2}}^{x}(x y)=n_{B_{2}}^{y}(x y)$.
Thus, $M o\left(G^{1}\right)-M o\left(G^{4}\right)=\Lambda_{7}+\Lambda_{8}+\Lambda_{9} \geq 0$ with equality if and only if $n_{B_{2}}^{x}(x y)=$ $n_{B_{2}}^{y}(x y)$. That is, $M o\left(G^{1}\right) \geq M o\left(G^{4}\right)$ with equality if and only if $n_{B_{2}}^{x}(x y)=n_{B_{2}}^{y}(x y)$. Consider the structure of B_{2}, one has $n_{B_{2}}^{x}(x y)=n_{B_{2}}^{y}(x y)$ if and only if $B_{2}=L_{n_{2}}$ and $x y$ is an end edge of B_{2}. Together with the structures of G^{1} and G^{4}, one has $\operatorname{Mo}\left(G^{1}\right) \geq \operatorname{Mo}\left(G^{4}\right)$ with equality if and only if $G^{1} \cong G^{4}$. This completes the proof.

Now, let us determine the value of $\operatorname{Mo}\left(H_{n}\right)$.
Lemma 3.2. $\operatorname{Mo}\left(H_{n}\right)=16 n^{2}-20 n+6+2(-1)^{n}$, where H_{n} is a helicene chain with n hexagons, which is depicted in Fig. 1.

Proof. Note that H_{n} is a helicene chain with n hexagons, $H_{n}\left[V_{3}\right]$ is isomorphic to a comb. We may assume $C_{1}, C_{2}, \ldots, C_{n}$ are the n hexagons of H_{n} with $E_{C_{i}} \cap E_{C_{i+1}}=\left\{x_{i} y_{i}\right\}$ and $y_{i} y_{i+1} \in E_{H_{n}}$ for $1 \leq i \leq n-1$. Obviously, $\left\{x_{1} y_{1}, x_{2} y_{2}, \cdots, x_{n-1} y_{n-1}\right\} \subset E_{H_{n}\left[V_{3}\right]}$. For convenience, let $E^{1}=\left\{x_{1} y_{1}, x_{2} y_{2}, \cdots, x_{n-1} y_{n-1}\right\}$ and $E^{2}=\left\{y_{1} y_{2}, y_{2} y_{3}, \cdots, y_{n-2} y_{n-1}\right\}$. Clearly, $\left|E^{1}\right|=n-1,\left|E^{2}\right|=n-2$ and $E_{H_{n}\left[V_{3}\right]}=E^{1} \cup E^{2}$.

By direct computation, we may obtain $\phi_{H_{n}}\left(x_{i} y_{i}\right)=4 n-8$ for $1 \leq i \leq n-1$ and $\phi_{H_{n}}\left(y_{i} y_{i+1}\right)=4(n-2 i-1)$ for $i=1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor$. By the symmetry of H_{n}, we get $\phi_{H_{n}}\left(y_{i} y_{i+1}\right)=\phi_{H_{n}}\left(y_{n-2-i} y_{n-1-i}\right)$ for $i=\left\lfloor\frac{n}{2}\right\rfloor+1, \ldots, n-2$.

For convenience, denote $\widetilde{E^{1}}$ be the set of edges of H_{n} who is in parallel relation with one of the edges in E^{1}. Lemma 2.2 implies that the edges in parallel relation have equal contribution for $M o\left(H_{n}\right)$. That is, $\phi_{H_{n}}(e)=4 n-8$ for $e \in \widetilde{E^{1}}$. Note that there exists just three edges in parallel relation with $x_{i} y_{i}$ in H_{n} for $1 \leq i \leq n-1$ and $x_{i} y_{i}, x_{j} y_{j}$ are not in parallel relation in H_{n} for $i \neq j$. One has $\left|\widetilde{E^{1}}\right|=3\left|E^{1}\right|=3(n-1)$. So

$$
\sum_{e \in \widetilde{E^{1}}} \phi_{G}(e)=3(n-1)(4 n-8)=12 n^{2}-36 n+24
$$

Similarly, denote $\widetilde{E^{2}}$ be the set of edges of H_{n} who is in parallel relation with one of the edges in E^{2}. Note that there exists just two edges in parallel relation with $y_{i} y_{i+1}$ in H_{n} for $1 \leq i \leq n-2$ and $y_{i} y_{i+1}, y_{j} y_{j+1}$ are not in parallel relation in H_{n} for $i \neq j$. We get $\left|\widetilde{E^{2}}\right|=2\left|E^{2}\right|=2(n-2)$. Furthermore, one has
$\sum_{e \in \widetilde{E^{2}}} \phi_{G}(e)=2(4(n-3)+4(n-5)+\cdots+8+0+8+\cdots+4(n-3))=4 n^{2}-16 n+12$, when n is odd, while
$\sum_{e \in \widetilde{E^{2}}} \phi_{G}(e)=2(4(n-3)+4(n-5)+\cdots+8+2+8+\cdots+4(n-3))=4 n^{2}-16 n+16$,
when n is even. That is, $\sum_{e \in \widetilde{E^{2}}} \phi_{G}(e)=4 n^{2}-16 n+14+2 \cdot(-1)^{n}$.
Note that H_{n} is a helicene chain with n hexagons, $E_{H_{n}}=5 n+1$. Combining with $\left|\widetilde{E^{1}}\right|=3(n-1)$ and $\left|\widetilde{E^{2}}\right|=2(n-2)$, one has there exists eight edges in $E_{H_{n}} \backslash\left(\widetilde{E^{1}} \cup \widetilde{E^{2}}\right)$. It is easy to check that $E_{H_{n}} \backslash\left(\widetilde{E^{1}} \cup \widetilde{E^{2}}\right)$ contains four edges in C_{1} and four edges in C_{n} which are not in parallel relation with $x_{1} y_{1}$ and $x_{n-1} y_{n-1}$, respectively. By direct computation, the contribution of each for $\operatorname{Mo}\left(H_{n}\right)$ is $4 n-4$.

By (1.1), we have

$$
\begin{aligned}
M o\left(H_{n}\right) & =\sum_{e \in \widetilde{E^{1}}} \phi_{G}(e)+\sum_{e \in \widetilde{E^{2}}} \phi_{G}(e)+\sum_{e \in E_{H_{n}} \backslash\left(\widetilde{E^{1}} \cup \widetilde{E^{2}}\right)} \phi_{G}(e) \\
& =12 n^{2}-36 n+24+4 n^{2}-16 n+14+2 \cdot(-1)^{n}+8(4 n-4) \\
& =16 n^{2}-20 n+6+2(-1)^{n} .
\end{aligned}
$$

This completes the proof.

$C^{1} \cdot \gamma \cdot L_{t} \cdot \alpha \cdot C^{2}$

$C^{1} \cdot \alpha \cdot L_{t} \cdot \gamma \cdot C^{2}$

Fig. 5. $C^{1} \cdot \gamma \cdot L_{t} \cdot \alpha \cdot C^{2}$ and $C^{1} \cdot \alpha \cdot L_{t} \cdot \gamma \cdot C^{2}$.
Now, let us give our main result in this section.
Theorem 3.3. If G_{n} is a hexagonal chain in \mathcal{G}_{n}, then $M o\left(G_{n}\right) \leq 16 n^{2}-20 n+6+2(-1)^{n}$ with equality if and only if $G_{n} \cong H_{n}$.

Proof. Choose a hexagonal chain G_{n} in \mathcal{G}_{n} such that $\operatorname{Mo}\left(G_{n}\right)$ is as large as possible. We proceed by showing the following claims.

Claim 1. If C^{1}, C^{2} are single hexagons and $t \geq 0$, then G_{n} contains neither $C^{1} \cdot \gamma \cdot L_{t} \cdot \alpha \cdot C^{2}$ nor $C^{1} \cdot \alpha \cdot L_{t} \cdot \gamma \cdot C^{2}$ as its subgraph, which are depicted in Fig. 5.

Proof of Claim 1. By the symmetry, we only need to show G_{n} does not contain $C^{1} \cdot \gamma$. $L_{t} \cdot \alpha \cdot C^{2}$ as its subgraph. Otherwise, suppose that $C^{1} \cdot \gamma \cdot L_{t} \cdot \alpha \cdot C^{2}$ is a subgraph of G_{n} satisfying that $a b$ (resp. $x y$) is the common edge of C^{1} and γ (resp. γ and L_{t}) with $b y \in E_{G_{n}}$. We may denote G_{n} as $G_{p} \cdot \theta \cdot C^{1} \cdot \gamma \cdot L_{t} \cdot \alpha \cdot C^{2} \cdot \theta \cdot G_{q}$, where $\theta \in\{\alpha, \beta, \gamma\}$ and $G_{p} \in \mathcal{G}_{p}, G_{q} \in \mathcal{G}_{q}$ (Maybe $p=0$ or $q=0$ and maybe θ does not exist). Let $B_{1}=G_{p} \cdot \theta \cdot C^{1}$ and $B_{2}=L_{t} \cdot \alpha \cdot C^{2} \cdot \theta \cdot G_{q}$. Thus, $G_{n}=B_{1} \cdot \gamma \cdot B_{2}$.

Note that $B_{2}=L_{t} \cdot \alpha \cdot C^{2} \cdot \theta \cdot G_{q}$. It is easy to check $n_{B_{2}}^{x}(x y)>n_{B_{2}}^{y}(x y)$. If $n_{B_{1}}^{a}(a b) \geq$ $n_{B_{1}}^{b}(a b)$, then by Lemma 3.1 (ii), $B_{1} \cdot \alpha \cdot B_{2}$ is a hexagonal chain in \mathcal{G}_{n} such that $\operatorname{Mo}\left(B_{1}\right.$. $\left.\alpha \cdot B_{2}\right)>\operatorname{Mo}\left(G_{n}\right)$, which implies a contradiction with the choice of G_{n}. Similarly, if $n_{B_{1}}^{a}(a b)<n_{B_{1}}^{b}(a b)$, then there exists a hexagonal chain G_{n}^{\prime} such that $\operatorname{Mo}\left(G_{n}^{\prime}\right)>\operatorname{Mo}\left(G_{n}\right)$ by Lemma 3.1 (iii), which is also a contradiction with the choice of G_{n}.

This completes the proof of Claim 1.
Claim 2. G_{n} does not contain L_{3} as a subgraph.
Proof of Claim 2. We suppose, to the contrary, $L_{3}=C_{q-1} C_{q} C_{q+1}$ is a subgraph of G_{n}, where C_{i} is a single hexagon for $i=q-1, q, q+1$. We may say $L_{3}=C_{q-1} \cdot \beta \cdot C_{q+1}$. Similar with Claim 1, we may denote $G_{n}=B^{1} \cdot \beta \cdot B^{2}$, where C_{q-1} is contained in B^{1} and C_{q+1} is contained in B^{2}, respectively.

Suppose that $a^{\prime} b^{\prime}$ (resp. $x^{\prime} y^{\prime}$) is the common edges of B^{1} and β (resp. B^{2} and β). If $n_{B^{1}}^{a^{\prime}}\left(a^{\prime} b^{\prime}\right) \geq n_{B^{1}}^{b^{\prime}}\left(a^{\prime} b^{\prime}\right)$ and $n_{B^{2}}^{x^{\prime}}\left(x^{\prime} y^{\prime}\right) \geq n_{B^{2}}^{y^{\prime}}\left(x^{\prime} y^{\prime}\right)$, then by Lemma 3.1 (i), $B^{1} \cdot \alpha \cdot B^{2}$ is a hexagonal chain in \mathcal{G}_{n} with $\operatorname{Mo}\left(B^{1} \cdot \alpha \cdot B^{2}\right)>M o\left(G_{n}\right)$, which implies a contradiction to the choice of G_{n}. By the symmetry, the remaining case we need to consider is $n_{B^{1}}^{a^{\prime}}\left(a^{\prime} b^{\prime}\right)<$ $n_{B^{1}}^{b^{\prime}}\left(a^{\prime} b^{\prime}\right)$ and $n_{B^{2}}^{x^{\prime}}\left(x^{\prime} y^{\prime}\right) \geq n_{B^{2}}^{y^{\prime}}\left(x^{\prime} y^{\prime}\right)$. In this case, one can easily check that G_{n} contains $C^{1} \cdot \gamma \cdot L_{t} \cdot \alpha \cdot C^{2}$ as its subgraph, a contradiction with Claim 1.

This completes the proof of Claim 2.
Based on Claims 1 and 2, we get $G_{n} \cong H_{n}$. Together with Lemma 3.2, our result holds.

4. Minimum Mostar index among \mathcal{G}_{n}

In this section, we determine that the linear chain L_{n} is the unique graph with minimum Mostar index among \mathcal{G}_{n}. In order to do so, the following lemmas are necessary.

Lemma 4.1. Let $B_{1}=L_{n_{1}}, B_{2} \in \mathcal{G}_{n_{2}}$ with $n_{1} \geq 1, n_{2} \geq 1, n_{1}+n_{2}+1=n$ and ab is an end edge of B_{1}. Suppose that G^{2} and G^{3} are hexagonal chains in \mathcal{G}_{n} by connecting B_{1} and B_{2} with β-type and γ-type hexagon X, respectively, where $E_{B_{1}} \cap E_{X}=\{a b\}, E_{B_{2}} \cap E_{X}=$ $\{x y\}$. Graphs G^{2} and G^{3} can be seen in Fig. 4. Then $\operatorname{Mo}\left(G^{2}\right) \leq M o\left(G^{3}\right)$ with equality if and only if $B_{2}=L_{k} \cdot \alpha \cdot B$ and $n_{1}-n_{2} \geq k+1$, where $B \in \mathcal{G}_{n_{2}-k-1}$.

Proof. Clearly, $\left|V_{B_{1}}\right|=4 n_{1}+2,\left|V_{B_{2}}\right|=4 n_{2}+2$. Note that $B_{1}=L_{n_{1}}$ and $a b$ is an end edge of B_{1}. By Lemma 2.3(i), one has $s_{B_{1}}(a b)=n_{1}+1$ and $n_{B_{1}}^{a}(a b)=n_{B_{1}}^{b}(a b)$. If $n_{B_{2}}^{x}(x y)<$ $n_{B_{2}}^{y}(x y)$, then by Lemma 3.1 (i) we get $\operatorname{Mo}\left(G^{2}\right)<M o\left(G^{3}\right)$, our result holds. Now, we assume $n_{B_{2}}^{x}(x y) \geq n_{B_{2}}^{y}(x y)$ in the following. Clearly, B_{2} may be denoted as $L_{k} \cdot \alpha \cdot B$ with $B \in \mathcal{G}_{n_{2}-k-1}$ and $n_{2} \geq k+1$. Furthermore, $x y$ is an end edge of B_{2} with $x y \in E_{L_{k}}$. By Lemma 2.3 (ii) we get $s_{B_{2}}(x y)=k+2$ and $n_{B_{2}}^{x}(x y)-n_{B_{2}}^{y}(x y)=4\left(n_{2}-k-1\right) \geq 0$. By (1.1) we get

$$
\begin{equation*}
M o\left(G^{2}\right)-M o\left(G^{3}\right)=\sum_{e \in E_{G^{2}}} \phi_{G^{2}}(e)-\sum_{e \in E_{G^{3}}} \phi_{G^{3}}(e)=\Gamma_{1}+\Gamma_{2}+\Gamma_{3}, \tag{4.1}
\end{equation*}
$$

where $\Gamma_{1}=\sum_{e \in E_{B_{1}}}\left(\phi_{G^{2}}(e)-\phi_{G^{3}}(e)\right), \Gamma_{2}=\sum_{e \in E_{B_{2}}}\left(\phi_{G^{2}}(e)-\phi_{G^{3}}(e)\right)$ and $\Gamma_{3}=\left(\phi_{G^{2}}(a z)+\phi_{G^{2}}(z x)+\phi_{G^{2}}(b c)+\phi_{G^{2}}(c y)\right)-\left(\phi_{G^{3}}(a c)+\phi_{G^{3}}(c z)+\phi_{G^{3}}(z x)+\phi_{G^{3}}(b y)\right)$.

Firstly, let us determine Γ_{1}. For each edge $e=u v \in E_{B_{1}}$, by an argument analogous to the proof of Lemma3.1 (i), one has $\phi_{G^{2}}(e)-\phi_{G^{3}}(e)=0$ if a, b are both in $N_{B_{1}}^{u}(e)$ or
in $N_{B_{1}}^{v}(e)$. So in order to determine Γ_{1}, we only need to consider that $a \in N_{B_{1}}^{u}(e)$ and $b \in N_{B_{1}}^{v}(e)$. By Lemma 2.1(i), $u v$ is in parallel relation with $a b$ in B_{1} with $d(u, a)<d(v, a)$. By Lemma 2.2, one has $N_{B_{1}}^{u}(u v)=N_{B_{1}}^{a}(a b)$ and $N_{B_{1}}^{v}(u v)=N_{B_{1}}^{b}(a b)$. Similarly, we get $N_{G^{2}}^{x}(x y)=N_{G^{2}}^{a}(a b)$ and $N_{G^{2}}^{y}(x y)=N_{G^{2}}^{b}(a b)$. Considering the structure of G^{2} and G^{3}, one has

$$
N_{G^{2}}^{u}(e)=N_{B_{1}}^{a}(a b) \cup N_{B_{2}}^{x}(x y) \cup\{z\}, \quad N_{G^{2}}^{v}(e)=N_{B_{1}}^{b}(a b) \cup N_{B_{2}}^{y}(x y) \cup\{c\}
$$

and

$$
N_{G^{3}}^{u}(e)=N_{B_{1}}^{a}(a b) \cup\{c, z\}, \quad N_{G^{3}}^{v}(e)=N_{B_{1}}^{b}(a b) \cup V_{B_{2}} .
$$

Recall that $n_{B_{1}}^{a}(a b)=n_{B_{1}}^{b}(a b)$ and $n_{B_{2}}^{x}(x y)-n_{B_{2}}^{y}(x y)=4\left(n_{2}-k-1\right) \geq 0$. Together with (1.2), one has

$$
\begin{aligned}
\phi_{G^{2}}(e)-\phi_{G^{3}}(e)= & \left|n_{G^{2}}^{u}(e)-n_{G^{2}}^{v}(e)\right|-\left|n_{G^{3}}^{u}(e)-n_{G^{3}}^{v}(e)\right| \\
= & \left|n_{B_{1}}^{a}(a b)+n_{B_{2}}^{x}(x y)+1-n_{B_{1}}^{b}(a b)-n_{B_{2}}^{y}(x y)-1\right| \\
& -\left|n_{B_{1}}^{a}(a b)+2-n_{B_{1}}^{b}(a b)-\left|V_{B_{2}}\right|\right| \\
= & \left(n_{B_{2}}^{x}(x y)-n_{B_{2}}^{y}(x y)\right)-\left(\left|V_{B_{2}}\right|-2\right) \\
= & 4\left(n_{2}-k-1\right)-4 n_{2} \\
= & -4(k+1) .
\end{aligned}
$$

Since $a b$ is an end edge of B_{1}, by Lemma 2.1 one has

$$
s_{B_{1}}(a b)=\left|\left\{e=u v \in E_{B_{1}} \mid a \in N_{B_{1}}^{u}(e), b \in N_{B_{1}}^{v}(e)\right\}\right| .
$$

Note that $s_{B_{1}}(a b)=n_{1}+1$. Thus,

$$
\begin{aligned}
\Gamma_{1}= & \sum_{\substack{e=u v \in E_{B_{1}}}}\left(\phi_{G^{2}}(e)-\phi_{G^{3}}(e)\right) \\
= & \sum_{\substack{e=u v \in E_{B_{1}} \\
a, b \in N_{B_{1}}^{u}(e)}}\left(\phi_{G^{2}}(e)-\phi_{G^{3}}(e)\right)+\sum_{\substack{e=u v \in E_{B_{1}} \\
a, b \in N_{B_{1}}^{u}(e)}}\left(\phi_{G^{2}}(e)-\phi_{G^{3}}(e)\right) \\
& +\sum_{\substack{e=u v \in E_{B_{1}} \\
a \in N_{B_{1}}^{u}(e), b \in N_{B_{1}}^{u}}}\left(\phi_{G^{2}}(e)-\phi_{G^{3}}(e)\right) \\
= & -4(k+1)\left|\left\{e=u v \in E_{B_{1}} \mid a \in N_{B_{1}}^{u}(a b), b \in N_{B_{1}}^{v}(a b)\right\}\right| \\
= & -4(k+1) s_{B_{1}}(a b)
\end{aligned}
$$

$$
\begin{equation*}
=-4(k+1)\left(n_{1}+1\right) \tag{4.2}
\end{equation*}
$$

Secondly, let us determine Γ_{2}. For each edge $e=u v \in E_{B_{2}}$, by an argument analogous to the proof of Lemma $3.1(\mathrm{i})$, one has $\phi_{G^{2}}(e)-\phi_{G^{3}}(e)=0$ if x, y are both in $N_{B_{2}}^{u}(e)$ or in $N_{B_{2}}^{v}(e)$. So in order to determine Γ_{2}, we only need to consider that $x \in N_{B_{2}}^{u}(e)$ and $y \in N_{B_{2}}^{v}(e)$. By Lemma 2.1 (i), $u v$ is in parallel relation with $x y$ in B_{2}. By Lemma 2.2, $N_{B_{2}}^{u}(u v)=N_{B_{2}}^{x}(x y)$ and $N_{B_{2}}^{v}(u v)=N_{B_{2}}^{y}(x y)$. Thus,

$$
N_{G^{2}}^{u}(e)=N_{B_{1}}^{a}(a b) \cup N_{B_{2}}^{x}(x y) \cup\{z\}, \quad N_{G^{2}}^{v}(e)=N_{B_{1}}^{v}(a b) \cup N_{B_{2}}^{y}(x y) \cup\{c\} .
$$

and

$$
N_{G^{3}}^{u}(e)=N_{B_{2}}^{x}(x y) \cup\{c, z\}, \quad N_{G^{3}}^{v}(e)=N_{B_{2}}^{y}(x y) \cup V_{B_{1}} .
$$

Recall that $n_{B_{1}}^{a}(a b)=n_{B_{1}}^{b}(a b)$ and $n_{B_{2}}^{x}(x y)-n_{B_{2}}^{y}(x y)=4\left(n_{2}-k-1\right) \geq 0$. Together with (1.2), one has

$$
\begin{aligned}
\phi_{G^{2}}(e)-\phi_{G^{3}}(e)= & \left|n_{G^{2}}^{u}(e)-n_{G^{2}}^{v}(e)\right|-\left|n_{G^{3}}^{u}(e)-n_{G^{3}}^{v}(e)\right| \\
= & \left|n_{B_{1}}^{a}(a b)+n_{B_{2}}^{x}(x y)+1-n_{B_{1}}^{b}(a b)-n_{B_{2}}^{y}(x y)-1\right| \\
& -\left|n_{B_{2}}^{x}(x y)+2-n_{B_{2}}^{y}(x y)-\left|V_{B_{1}}\right|\right| \\
= & \left(n_{B_{2}}^{x}(x y)-n_{B_{2}}^{y}(x y)\right)-\left|4 n_{1}-\left(n_{B_{2}}^{x}(x y)-n_{B_{2}}^{y}(x y)\right)\right| \\
= & 4\left(n_{2}-k-1\right)-\left|4 n_{1}-4\left(n_{2}-k-1\right)\right| .
\end{aligned}
$$

Hence, by an argument analogous as the determination of Γ_{1},

$$
\begin{align*}
\Gamma_{2} & =\sum_{\substack{e=u v \in E_{B_{2}}}}\left(\phi_{G^{2}}(e)-\phi_{G^{3}}(e)\right) \\
& =\sum_{\substack{e=u v \in E_{B_{2}} \\
x \in N_{B_{2}}^{U}(e), y \in N_{B_{2}}^{s}(e)}} 4\left(n_{2}-k-1\right)-\left|4 n_{1}-4\left(n_{2}-k-1\right)\right| \\
& =s_{B_{2}}(x y)\left[4\left(n_{2}-k-1\right)-\left|4 n_{1}-4\left(n_{2}-k-1\right)\right|\right] \\
& =(k+2)\left[4\left(n_{2}-k-1\right)-\left|4 n_{1}-4\left(n_{2}-k-1\right)\right|\right] \tag{4.3}
\end{align*}
$$

Finally, we consider Γ_{3}. It is easy to check that

$$
\begin{aligned}
& =\left|n_{B_{2}}^{x}(x y)-n_{B_{2}}^{y}(x y)-4 n_{1}\right|=\left|4\left(n_{2}-k-1\right)-4 n_{1}\right|, \\
\phi_{G^{3}}(z x) & =\left|n_{B_{1}}^{a}(a b)+2-n_{B_{1}}^{b}(a b)-\left|V_{B_{2}}\right|\right|=\left|V_{B_{2}}\right|-2=4 n_{2} .
\end{aligned}
$$

Thus,

$$
\begin{align*}
\Gamma_{3}= & \left(\phi_{G^{2}}(a z)+\phi_{G^{2}}(z x)+\phi_{G^{2}}(b c)+\phi_{G^{2}}(c y)\right) \\
& -\left(\phi_{G^{3}}(a c)+\phi_{G^{3}}(c z)+\phi_{G^{3}}(z x)+\phi_{G^{3}}(b y)\right) \\
= & 8\left|n_{1}-n_{2}\right|-4\left|n_{2}-n_{1}-k-1\right|-4 n_{2} . \tag{4.4}
\end{align*}
$$

We proceed by considering the following two cases:
Case 1. $n_{1} \geq n_{2}$. In this case, note that $k \geq 0$, one has $n_{1} \geq n_{2}>n_{2}-k-1$. By (4.1)-(4.4) one has

$$
\begin{aligned}
\operatorname{Mo}\left(G^{2}\right)-\operatorname{Mo}\left(G^{3}\right)= & \Gamma_{1}+\Gamma_{2}+\Gamma_{3} \\
= & -4(k+1)\left(n_{1}+1\right)+4(k+2)\left[\left(n_{2}-k-1\right)-\left(n_{1}-n_{2}+k+1\right)\right] \\
& +8\left(n_{1}-n_{2}\right)+4\left(n_{2}-n_{1}-k-1\right)-4 n_{2} \\
= & 8(k+1)\left(n_{1}-n_{2}\right)-8 k^{2}-32 k-24 \\
< & 0,
\end{aligned}
$$

which implies $\operatorname{Mo}\left(G^{2}\right)<\operatorname{Mo}\left(G^{3}\right)$.
Case 2. $n_{1}<n_{2}$. If $n_{2}-n_{1}<k+1$, then by (4.1)-(4.4) one has

$$
\begin{aligned}
\operatorname{Mo}\left(G^{2}\right)-\operatorname{Mo}\left(G^{3}\right)= & -4(k+1)\left(n_{1}+1\right)+4(k+2)\left[\left(n_{2}-k-1\right)-\left(n_{1}-n_{2}+k+1\right)\right] \\
& -8\left(n_{1}-n_{2}\right)+4\left(n_{2}-n_{1}-k-1\right)-4 n_{2} \\
= & (8 k+24)\left(n_{2}-n_{1}\right)-8 k^{2}-32 k-24 \\
< & (8 k+24)(k+1)-8 k^{2}-32 k-24 \\
= & 0,
\end{aligned}
$$

which implies $\operatorname{Mo}\left(G^{2}\right)<\operatorname{Mo}\left(G^{3}\right)$. Otherwise, $n_{2}-n_{1} \geq k+1$. Similarly,

$$
\begin{aligned}
\operatorname{Mo}\left(G^{2}\right)-M o\left(G^{3}\right)= & -4(k+1)\left(n_{1}+1\right)+4(k+2)\left[\left(n_{2}-k-1\right)+\left(n_{1}-n_{2}+k+1\right)\right] \\
& -8\left(n_{1}-n_{2}\right)-4\left(n_{2}-n_{1}-k-1\right)-4 n_{2} \\
= & 0 .
\end{aligned}
$$

By Cases 1 and 2, our lemma is obvious.

Lemma 4.2. $\operatorname{Mo}\left(L_{n}\right)=8 n^{2}-4+4(-1)^{n}$, where L_{n} is a linear chain with n hexagons, which is depicted in Fig.1.

Proof. Suppose that $C_{1}, C_{2}, \ldots, C_{n}$ are the n hexagons of L_{n} with $E_{C_{i}} \cap E_{C_{i+1}}=\left\{x_{i} y_{i}\right\}$ for $1 \leq i \leq n-1$. Let $x_{0} y_{0}$ be an end edge of L_{n} with $x_{0} y_{0} \in E_{C_{1}}$. Note that L_{n} is a linear chain with n hexagons, it is easy to get $x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{n-1} y_{n-1}$ are in parallel relation with $x_{0} y_{0}$. Clearly, there exists another edge, say $x_{n} y_{n}$ in $E_{C_{n}}$ with $x_{n} y_{n} \neq x_{n-1} y_{n-1}$ and $x_{n} y_{n}$ is also in parallel relation with $x_{0} y_{0}$. By Lemma 2.2 and Lemma 2.3 (i), we get $\phi_{L_{n}}\left(e_{i}\right)=\left|n_{L_{n}}^{x_{i}}\left(e_{i}\right)-n_{L_{n}}^{y_{i}}\left(e_{i}\right)\right|=0$ for $0 \leq i \leq n$.

Obviously, there exists just four edges other than $x_{i-1} y_{i-1}$ and $x_{i} y_{i}$ in $E_{C_{i}}$ for each $i \in$ $\{1,2, \ldots, n\}$. Consider the structure of L_{n}, for each $i \in\{1,2, \ldots, n\}$, one can easily check that these four edges in $E_{C_{i}}$ have the common contribution (we denote q_{i} for convenience) for $M o(G)$. By direct computation, we obtain

$$
q_{i}=\left|\left|V_{L_{i-1}}\right|-\left|V_{L_{n-i}}\right|\right|=4|n-2 i+1|,
$$

for $i \in\{1,2, \ldots, n\}$. Thus, by (1.1) we get

$$
\begin{aligned}
M o\left(L_{n}\right) & =4 \sum_{i=1}^{n} q_{i}=16 \sum_{i=1}^{n}|n-2 i+1| \\
& =16 \sum_{i=1}^{\left\lfloor\frac{n}{2}\right\rfloor}(n-2 i+1)-16 \sum_{i=\left\lfloor\frac{n}{2}\right\rfloor+1}^{n}(n-2 i+1) \\
& =8 n^{2}-4+4(-1)^{n},
\end{aligned}
$$

as desired.
Theorem 4.3. If G_{n} is a hexagonal chain in \mathcal{G}_{n}, then $\operatorname{Mo}\left(G_{n}\right) \geq 8 n^{2}-4+4(-1)^{n}$ with equality if and only if $G_{n} \cong L_{n}$.

Proof. Choose a hexagonal chain G_{n} in \mathcal{G}_{n} such that $\operatorname{Mo}\left(G_{n}\right)$ is as small as possible. If $G_{n} \cong L_{n}$, then by lemma 4.2 , our result holds. Now suppose that $G_{n} \not \approx L_{n}$ and denote

$$
G_{n}=L_{l_{0}} \cdot \theta \cdot L_{l_{1}} \cdot \theta \cdots \cdot \theta \cdot L_{l_{k-1}} \cdot \theta \cdot L_{l_{k}},
$$

where $l_{0}+l_{1}+\cdots+l_{k}=n-k, l_{i} \geq 1$ for $0 \leq i \leq k$ and $\theta \in\{\alpha, \gamma\}$. Without loss of generality, we assume that $l_{0} \leq l_{k}$. Put $B^{*}:=L_{l_{1}} \cdot \theta \cdots \cdots \theta \cdot L_{l_{k-1}} \cdot \theta \cdot L_{l_{k}}$. Obviously, $G_{n}=L_{l_{0}} \cdot \theta \cdot B^{*}$, where $B^{*} \in \mathcal{G}_{n-l_{0}-1}$ and

$$
l_{0} \leq l_{k} \leq l_{1}+\cdots+l_{k}+k-1=n-l_{0}-1 .
$$

Construct a new graph $\widetilde{G_{n}}=L_{l_{0}} \cdot \beta \cdot B^{*}$. Clearly, $\widetilde{G_{n}}$ is also in \mathcal{G}_{n}. Note that $G_{n}=L_{l_{0}} \cdot \theta \cdot B^{*}$ with $\theta \in\{\alpha, \gamma\}$. If $\theta=\alpha$, then by Lemma 3.1 (i), $\operatorname{Mo}\left(\widetilde{G_{n}}\right)<\operatorname{Mo}\left(G_{n}\right)$, which is a contradiction with the choice of G_{n}. Now we consider that $\theta=\gamma$. Note that $l_{0} \leq n-l_{0}-1$. By Lemma 4.1, we get $\operatorname{Mo}\left(\widetilde{G_{n}}\right)<\operatorname{Mo}\left(G_{n}\right)$, which is also a contradiction with the choice of G_{n}.

This completes the proof of Theorem 4.3.

Acknowledgment: S.H. acknowledges the financial support from the National Training Programs of Innovation and Entrepreneurship for Undergraduates (Grant Nos. 105112019020156), S.L. acknowledges the financial support from the National Natural Science Foundation of China (Grant Nos. 11671164, 11271149) and M.Z acknowledges the financial support from the National Natural Science Foundation of China (Grant No. 11901179).

References

[1] K. Balakrishnan, B. Brešar, M. Chagat, S. Klavžar, A. Vesel, P. Žigert Pleteršek, Equal opportunity networks, distance-balanced graphs, and Wiener game, Discr. Opt. 12 (2014) 150-154.
[2] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, New York, 2008.
[3] A. A. Dobrynin, E. Estaji, Wiener index of certain families of hexagonal chains, J. Appl. Math. Comput. 59 (2019) 245-256.
[4] H. Y. Deng, The anti-forcing number of hexagonal chains, MATCH Commun. Math. Comput. Chem. 58 (2007) 675-682.
[5] H. Y. Deng, Z. Tang, Kirchhoff indices of spiro and polyphenyl hexagonal chains, Util. Math. 95 (2014) 113-128.
[6] T. Došlić, A. Graovac, O. Ori, Eccentric connectivity index of hexagonal belts and chains, MATCH Commun. Math. Comput. Chem. 65 (2011) 745-752.
[7] T. Došlić, I. Martinjak, R. Škrekovski, S. T. Spužević, I. Zubac, Mostar index, J. Math. Chem. 56 (2018) 2995-3013.
[8] I. Gutman, Extremal hexagonal chains, J. Math. Chem. 12 (1993) 197-210.
[9] A. Ilić, S. Klavžar, M. Milanović, On distance-balanced graphs. Eur. J. Comb. 31 (2010) 733-737.
[10] J. Jerebić, S. Klavžar, D. F. Rall, Distance-balanced graphs, Ann. Comb. 12 (2008) 71-79.
[11] P. V. Khadikar, P. P. Kale, N. V. Deshpande, S. Karmarkar, V. K. Agrawal, Novel PI indices of hexagonal chains, J. Math. Chem. 29 (2001) 143-150.
[12] K. Kutnar, A. Malnič, D. Marušič, Š. Miklavič, Distance-balanced graphs: symmetry conditions. Discr. Math. 306 (2006) 1881-1894.
[13] Š. Miklavič, P. Šparl, l-distance-balanced graphs. Discr. Appl. Math. 244 (2018) 143-154.
[14] A. Tepeh, Extremal bicyclic graphs with respect to Mostar index, Appl. Math. Comput. 355 (2019) 319-324.
[15] C. Q. Xiao, H. Y. Chen, Kekulé structures of square-hexagonal chains and the Hosoya index of caterpillar trees, Discr. Math. 339 (2016), 506-510.
[16] S. J. Xu, H. P. Zhang, Generalized Hosoya polynomials of hexagonal chains, J. Math. Chem. 43 (2008) 852-863.
[17] L. Z. Zhang, On the ordering of a class of hexagonal chains with respect to MerrifieldSimmons index, Sys. Sci. Math. Sci. 13 (2000) 219-224.
[18] L. Z. Zhang, F. J. Zhang, Extremal hexagonal chains concerning k-matchings and k-independent sets, J. Math. Chem. 27 (2000) 319-329.

[^0]: *Corresponding author

