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Abstract

For a given graph G, the Mostar index Mo(G) is a bond-additive topological
index as a measure of peripherality inG. Došlić et al. (2018) posed an open problem:
Find extremal benzenoid chains, catacondensed benzenoids and general benzenoid
graphs with respect to the Mostar index [7]. In this paper, we partially solve
above problem, i.e., sharp upper and lower bounds on the Mostar indices among
hexagonal chains with a given number of hexagons are determined, respectively. All
the corresponding extremal hexagonal chains are characterized.

1. Introduction

In this paper, all the graphs we considered are connected, simple and undirected.

All the notations and terminologies not defined here we refer the reader to Bondy and

Murty [2].

Let G = (VG, EG) be a graph with the vertex set VG and the edge set EG. For a

vertex v ∈ VG, we denote the degree of v by dG(v) (or dv if no ambiguity is possible).

If dG(v) = 1, then v is called a pendant vertex of G. For a set U , denote by |U | its

cardinality. For a vertex subset S of VG, denote by G[S] the subgraph of G induced by
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S. As usual, Pn denotes the path with n vertices. The distance, dG(u, v) (or d(u, v) for

short) between two vertices u, v of G is the length of a shortest u-v path in G.

For each edge e = uv ∈ EG, let

Nu
G(e) = {x ∈ V (G)|d(x, u) < d(x, v)},

N v
G(e) = {x ∈ V (G)|d(x, u) > d(x, v)},

N0
G(e) = {x ∈ V (G)|d(x, u) = d(x, v)}.

and let nu
G(e) = |Nu

G(e)|, nv
G(e) = |N v

G(e)|, n0
G(e) = |N0

G(e)|. For convenience, put

nu := nu
G(e), nv := nv

G(e) and n0 := n0
G(e), respectively, if no ambiguity is possible.

Clearly, one has VG = Nu
G(e) ∪N v

G(e) ∪N0
G(e). If in addition G is bipartite, then we get

N0
G(e) = ∅ and n0 = 0. Otherwise, if there exists x ∈ N0

G(e), then a shortest u-x path, a

shortest v-x path and the edge e implies an odd cycle, which is a contradiction with G is

bipartite.

Specially, a graph G is distance-balanced if nu = nv for each edge uv ∈ EG. Jerebic,

Klavžar and Rall [10] investigated the basic properties of distance-balanced graphs. The

symmetry conditions were studied in [12]. For more details of distance-balanced graphs,

one may be referred to [1, 9, 13] and the references cited therein. But there exists many

graphs which are not distance-balanced. Hence, how far is a graph from being distance-

balanced has received much attention. In 2018, Došlić et al. [7] proposed a new structural

invariant of graphs, called the Mostar index, which is defined as

Mo(G) =
∑

e=uv∈E(G)

φG(e), (1.1)

where

φG(e) = |nu − nv| (1.2)

is called the contribution of the edge e (= uv) for Mo(G).

Clearly, a graph G is distance-balanced if and only if Mo(G) = 0. The Mostar index

produces a global measure of peripherality of G by calculating the sum of peripherality

contributions over all edges in G. Very recently, studying the extremal values of the

Mostar index among graphs have attracted researchers’ attention. In 2018, Došlić et

al. [7] determined the extremal values of the Mostar index among trees and unicyclic

graphs, respectively. In 2019, Tepeh [14] characterized the bicyclic graphs with extremal

Mostar index.
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In the end of [7], the authors stated several conjectures and listed some open problems.

One of them is considered the Mostar index among benzenoid chains, catacondensed

benzenoids and general benzenoid graphs as follows.

Problem 1.1 ( [7]). Find extremal benzenoid chains, catacondensed benzenoids and gen-

eral benzenoid graphs with respect to the Mostar index.

Note that hexagonal chains are the graph representations of an important subclass of

benzenoid molecules, namely the so-called unbranched catacondensed benzenoids. In this

paper, we characterize the structure of hexagonal chains with the extremal Mostar index,

which is a part of Problem 1.1.

A hexagonal chain Gn with n hexagons is a graph consisting of n regular hexagons

C1, C2, . . . , Cn arranged in sequence, which satisfies the following:

(i) Any two hexagons have at most one common edge,

(ii) For each 1 ≤ i < j ≤ n, Ci and Cj have a common edge if and only if j = i+ 1,

(ii) Each vertex belongs to at most two hexagons.

In recent years, there is a lot of work on hexagonal chains. Gutman [8] studied

the extremal hexagonal chains with respect to some topological invariants, including the

Hosaya index, the Merrifield-Simmons index and the spectral radius. Zhang [17] determine

the ordering of single-corner hexagonal chains with respect to the Merrifield-Simmons

index. Zhang and Zhang [18] consider the numbers of k-matchings and k-independent

sets of hexagonal chains. Khadikar, et al. [11] calculate the Padmakar-Ivan index of some

hexagonal chains. Deng [4] give an algorithm for computing the anti-forcing number

of hexagonal chains and determine the bounds of the anti-forcing number of hexagonal

chains. For more results on hexagonal chains one may be referred to [3, 5, 6, 15, 16] and

the references cited therein.

In this paper, we determine sharp upper and lower bounds of the Mostar index among

hexagonal chains with a given number of hexagons, respectively. The extremal hexagonal

chains are also characterized. We give some necessary notations and useful lemmas about

hexagonal chains in the next section. In Sections 3 and 4, we determine the sharp upper

and lower bounds of the Mostar index among hexagonal chains with a given number of

hexagons, respectively. The extremal hexagonal chains are also characterized. Thus, we

partially solved Problem 1.1.
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2. Notations and preliminaries

Let Gn be the set of all the hexagonal chains with n hexagons. For Gn ∈ Gn, it is easy

to check it has (4n+2) vertices and (5n+1) edges. Furthermore, dGn(v) ∈ {2, 3} for each

vertex v ∈ VGn . For convenience, let V3(Gn) (or V3 for short) be the set of all the vertices

with degree 3 in a hexagonal chain Gn.

By considering the structure of Gn[V3], we introduce two significant hexagonal chains.

A linear chain, denote Ln, is a hexagonal chain with n hexagons satisfying Ln[V3] ∼=
(n−1)K2. A helicene chain, denote by Hn, is a hexagonal chain with n hexagons satisfying

thatHn[V3] is isomorphic to an (2n−2)-order comb, which is a graph obtained by attaching

a new pendant vertex to each vertex of Pn−1. The hexagonal chains Ln andHn are depicted

in Fig. 1, where Ln[V3] and Hn[V3] are indicated by thick edges.

. . .

. . .

Ln Hn

Fig. 1. The linear chain Ln and the helicene chain Hn.

Any hexagonal chain Gn in Gn can be obtained by connecting two hexagonal chains

B1 ∈ Gn1 and B2 ∈ Gn2 by a single hexagon X, where n = n1+n2+1. Assume EB1∩EX =

{ab} and EB2∩EX = {xy}. If dX(a, x) = 1, dX(b, y) = 3, then we denote Gn = B1 ·α ·B2.

Similarly, if dX(a, x) = dX(b, y) = 2 and dX(a, x) = 3, dX(b, y) = 1, then we denote

Gn = B1 ·β ·B2 and Gn = B1 ·γ ·B2, respectively.(see in Fig. 2.) For convenience, we also

use α-type, β-type, γ-type to denote the single hexagon X. In particular, Ln = Ln−2 ·β ·C
and Hn = Hn−2 · α · C, where C is a single hexagon.

B1B1B1

B2

B2

B2

B1 · α ·B2 B1 · β ·B2 B1 · γ ·B2

aaa

bbb x

x
x

y
y

y

Fig. 2. The three types connecting B1 and B2.
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Let Gn ∈ Gn and e = uv and f = ab be two edges in EGn . We say e and f are in

parallel relation, or e is in parallel relation with f if and only if d(u, a) = d(v, b) and

d(u, b) = d(v, a). Especially, we say each edge is in parallel relation with itself. Denote by

sGn(e) (or s(e) for short) the number of edges in parallel relation with e in Gn. We have

the following.

Lemma 2.1. Let Gn be a hexagonal chain with n hexagons and xy be an edge of Gn.

Then,

(i) uv is in parallel relation with xy in Gn with d(u, x) < d(v, x) if and only if x ∈
Nu

Gn
(uv), y ∈ N v

Gn
(uv).

(ii) s(xy) = |{e = uv ∈ EG|x ∈ Nu
G(e), y ∈ N v

G(e)}|.

Proof. (i) Firstly, we show the necessity. Since uv is in parallel relation with xy in Gn,

one has d(u, x) = d(v, y), d(u, y) = d(v, x). Note that d(u, x) < d(v, x). So x ∈ Nu
Gn

(uv)

and d(v, y) = d(u, x) < d(v, x) = d(u, y), which implies y ∈ N v
Gn

(uv), as desired.

Secondly, we show the sufficiency. Let uv be an edge in EGn with x ∈ Nu
G(uv), y ∈

N v
G(uv), which implies d(u, x) < d(v, x) and d(u, y) > d(v, y). Together with uv and xy

are edges of Gn, we get d(u, x) = d(v, x)− 1 and d(v, y) = d(u, y)− 1. Thus,

d(u, x) = d(v, x)− 1 ≤ d(v, y) + d(y, x)− 1 = d(v, y) = d(u, y)− 1 < d(u, y),

Note that xy is an edge of Gn and recall that d(u, x) = d(v, x)− 1, d(v, y) = d(u, y)− 1,

we get

d(u, x) = d(u, y)− 1 = d(v, y), d(u, y) = d(u, x) + 1 = d(v, x).

That is, uv is in parallel relation with xy with d(u, x) < d(v, x).

This completes the proof of (i).

(ii) Note that s(xy) is the number of edges in parallel relation with xy in Gn. By (i),

(ii) is obvious.

Lemma 2.2. Let Gn ∈ Gn and uv, xy be two edges in parallel relation in Gn. If d(u, x) <

d(v, x), then Nu
Gn

(uv) = Nx
Gn

(xy) and N v
Gn

(uv) = Ny
Gn

(xy).

Proof. One may check that all edges in parallel relation with xy constitute an edge cut,

say Exy, of G. Assume Gx, Gy are the two components of G − Exy with x ∈ VGx and

y ∈ VGy . Clearly, VGn = VGx ∪ VGy . Note that d(u, x) < d(v, x). For each vertex
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a ∈ VGx , it is easy to check that d(a, x) < d(a, y) and d(a, u) < d(a, v). Similarly,

d(b, x) > d(b, y), d(b, u) > d(b, v) for each vertex b ∈ VGy . Thus,

Nu
G(uv) = Nx

G(xy) = VGa , N
v
G(uv) = Ny

G(xy) = VGb
,

which completes the proof.

B

. . .
x

y

Fig. 3. Lk · α ·B.

Let Gn ∈ Gn and C1, C2, . . . , Cn be the hexagons contained in Gn with ECi
∩ ECi+1

=

{ei} for 1 ≤ i ≤ n − 1. Clearly, there exists an edge e0 6= e1 in EC1 such that e0 is in

parallel relation with e1 in Gn. For convenience, we call e0 an end edge of Gn and have

the following.

Lemma 2.3. Let Gn be a hexagonal chain with n hexagons and e0 = xy be an end edge

of Gn. Then

(i) If Gn
∼= Ln, then sLn(xy) = n+ 1 and nx

Ln
(xy) = ny

Ln
(xy).

(ii) If Gn
∼= Lk · α · B, where B is a hexagon chain with n− k − 1(≥ 1) hexagons, then

sGn(xy) = k + 2 and nx
Gn

(xy) − ny
Gn

(xy) = 4(n − k − 1). The graph Lk · α · B is

depicted in Fig. 3.

Proof. (i) By the structure of Ln, it is easy to check e1, e2, . . . , en−1 are in parallel relation

with xy in Ln. In addition, there exists an edge en 6= en−1 in ECn such that en is in

parallel relation with them in Ln. So

sLn(xy) = |{e0 = xy, e1, e2, . . . , en}| = n+ 1.

We may assume en = xnyn with d(x, xn) < d(x, yn). Let P (x, xn) (resp. P (y, yn)) be

the shortest path between x and xn (resp. y and yn). One may check that Nx
Ln

(xy) =

|VP (x,xn)| = 2n + 1, Ny
Ln

(xy) = |VP (y,yn)| = 2n + 1, which implies nx
Ln

(xy) = ny
Ln

(xy). (i)

holds.
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(ii) Note that Lk and B are connected by α-type. For each edge e ∈ EB, it is easy

to check that e is not in parallel relation with xy. By a similar proof as (i), we get

sGn(xy) = k + 2.

Denote by C the cycle connecting Lk and B in Gn. By the structure of Lk ·α ·B, there

exists just two vertices, say a and b, in VC \ (VLk
∪ VB). One has Nx

G(xy) = Nx
Lk

(xy)∪ VB
and Ny

G(xy) = Ny
Lk

(xy) ∪ {a, b}. By (i) we get nx
Ln

(xy) = ny
Ln

(xy). Thus,

nx
G(xy)− ny

G(xy) = nx
Lk

(xy) + |VB| − ny
Lk

(xy)− 2 = |VB| − 2 = 4(n− k − 1).

This completes the proof of (ii).

3. Maximum Mostar index among Gn
In this section, we determine that the helicene chain Hn is the unique graph with

maximum Mostar index among Gn. In order to obtain our main result, the following

lemma is necessary.

a
a

a

a

b
b

b

b

c
c

c

c

x
x x

x

y
y y

y

z

z z

z

B1

B1

B1

B1

B2

B2

B2

B2

G1

G2 G3 G4

Fig. 4. The graphs G1, G2, G3 and G4.

Lemma 3.1. Let B1 ∈ Gn1 , B2 ∈ Gn2 with n1 ≥ 1, n2 ≥ 1 and n1 + n2 + 1 = n.

Suppose that G1, G2, G3, respectively, are hexagonal chains by connecting B1 and B2 by

the α-type, β-type and γ-type hexagon X, where EB1 ∩ EX = {ab}, EB2 ∩ EX = {xy}.
G4 is a hexagonal chain obtained by reversing the edge xy in G1. The hexagonal chains

G1, G2, G3 and G4 are depicted in Fig. 4. If na
B1

(ab) ≥ nb
B1

(ab) and nx
B2

(xy) ≥ ny
B2

(xy),

then

(i) Mo(G1) > Mo(G2).

(ii) Mo(G1) ≥Mo(G3) with equality if and only if G1 ∼= G3.
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(iii) Mo(G1) ≥Mo(G4) with equality if and only if G1 ∼= G4.

Proof. Clearly, |VB1| = 4n1 + 2, |VB2| = 4n2 + 2. Since na
B1

(ab) ≥ nb
B1

(ab), one has

B1
∼= Ln1 or may be denoted as Lk1 · α · B with B ∈ Gn1−k1−1. Furthermore, ab is

an end edge of B1 with ab ∈ VLn1
or VLk1

. By Lemma 2.3, we get sB1(ab) = k1 + 2

and na
B1

(ab) − nb
B1

(ab) = 4(n1 − k1 − 1) ≥ 0. (Especially, if B1
∼= Ln1 , then denote

n1 := k1 + 1 for convenience. By Lemma 2.3 (i) we also get sB1(ab) = n1 + 1 = k1 + 2

and na
B1

(ab) − nb
B1

(ab) = 0 = 4(n1 − k1 − 1)). Note that nx
B2

(xy) ≥ ny
B2

(xy). Similarly,

B1
∼= Ln2 or may be denoted as Lk2 · α · B′ with B′ ∈ Gn2−k2−1. Furthermore, xy is

an end edge of B2 with xy ∈ VLn2
or VLk2

. Thus, we also get sB2(xy) = k2 + 2 and

nx
B2

(xy)− ny
B2

(xy) = 4(n2 − k2 − 1) ≥ 0.

(i) By (1.1) we get

Mo(G1)−Mo(G2) =
∑

e∈EG1

φG1(e)−
∑

e∈EG2

φG2(e)

=
∑

e∈EB1

(φG1(e)− φG2(e)) +
∑

e∈EB2

(φG1(e)− φG2(e))

+(φG1(ax) + φG1(bc) + φG1(cz) + φG1(yz))

−(φG2(az) + φG2(zx) + φG2(bc) + φG2(cy)).

For convenience, denote Λ1 =
∑

e∈EB1
(φG1(e)−φG2(e)), Λ2 =

∑
e∈EB2

(φG1(e)−φG2(e))

and

Λ3 = (φG1(ax) + φG1(bc) + φG1(cz) + φG1(yz))− (φG2(az) + φG2(zx) + φG2(bc) + φG2(cy)).

Thus,

Mo(G1)−Mo(G2) = Λ1 + Λ2 + Λ3. (3.1)

Firstly, let us determine Λ1. Note that B1 is bipartite. For each edge e = uv ∈ EB1 ,

we may let VB1 = Nu
B1

(e) ∪N v
B1

(e). If a, b ∈ Nu
B1

(e), then

Nu
G1(e) = Nu

G2(e) = Nu
B1

(e) ∪ VB2 ∪ {c, z}, N v
G1(e) = N v

G2(e) = N v
B1

(e),

which implies nu
G1(e) = nu

G2(e) and nv
G1(e) = nv

G2(e). By (1.2), one has

φG1(e)− φG2(e) = |nu
G1(e)− nv

G1(e)| − |nu
G2(e)− nv

G2(e)| = 0.

If a, b ∈ N v
B1

(e), by a similar discussion as above, one can also get φG1(e)−φG2(e) = 0. In

order to determine Λ1, it suffices to consider the case a ∈ Nu
B1

(e), b ∈ N v
B1

(e). By Lemma

-256-



2.1 (i), uv is in parallel relation with ab in B1 and d(a, u) < d(b, u). By Lemma 2.2, we

get Nu
B1(uv) = Na

B1(ab) and N v
B1(uv) = N b

B1(ab). Thus,

Nu
G1(e) = Nu

B1
(uv) ∪ VB2 = Na

B1
(ab) ∪ VB2 ,

N v
G1(e) = N v

B1
(uv) ∪ {c, z} = N b

B1
(ab) ∪ {c, z}.

(3.2)

Similarly, we also get xy is in parallel relation with ab in G2 and then

Nu
G2(e) = Na

B1
(ab) ∪Nx

B2
(xy) ∪ {z}, N v

G2(e) = N b
B1

(ab) ∪Ny
B2

(xy) ∪ {c}. (3.3)

Recall that na
B1

(ab)−nb
B1

(ab) = 4(n1−k1−1) ≥ 0, nx
B2

(xy)−ny
B2

(xy) = 4(n2−k2−1) ≥
0. Combining (1.2) with (3.2), (3.3), one has

φG1(e)− φG2(e) = |nu
G1(e)− nv

G1(e)| − |nu
G2(e)− nv

G2(e)|

=
∣∣na

B1
(ab) + |VB2| − nb

B1
(ab)− 2

∣∣
−
∣∣na

B1
(ab) + nx

B2
(xy) + 1− nb

B1
(ab)− ny

B2
(xy)− 1

∣∣
=

(
na
B1

(ab)− nb
B1

(ab)
)

+ (|VB2| − 2)

−
(
na
B1

(ab)− nb
B1

(ab)
)
−
(
nx
B2

(xy)− ny
B2

(xy)
)

= (|VB2| − 2)−
(
nx
B2

(xy)− ny
B2

(xy)
)

= 4n2 − 4(n2 − k2 − 1)

= 4(k2 + 1).

By Lemma 2.1, sB1(ab) = |{e = uv ∈ EB1|a ∈ Nu
B1

(e), b ∈ N v
B1

(e)}|. Hence,

Λ1 =
∑

e=uv∈EB1

(φG1(e)− φG2(e))

=
∑

e=uv∈EB1
a,b∈Nu

B1
(e)

(φG1(e)− φG2(e)) +
∑

e=uv∈EB1
a,b∈Nv

B1
(e)

(φG1(e)− φG2(e))

+
∑

e=uv∈EB1
a∈Nu

B1
(e),b∈Nv

B1
(e)

(φG1(e)− φG2(e))

= 4(k2 + 1)|{e = uv ∈ EB1|a ∈ Nu
B1

(e), b ∈ N v
B1

(e)}|

= 4(k2 + 1)sB1(ab)

= 4(k2 + 1)(k1 + 2) > 0. (3.4)

Secondly, by an argument analogous as above, one has

Λ2 =
∑

e∈EB2

(φG1(e)− φG2(e)) > 0. (3.5)
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Finally, we consider Λ3. Without loss of generality, we assume that n1 ≤ n2, which

implies |VB1| ≤ |VB2|. It is easy to check that

φG1(bc) =
∣∣nx

B2
(xy) + |VB1| − ny

B2
(xy)− 2

∣∣ , φG1(yz) =
∣∣na

B1
(ab) + |VB2| − nb

B1
(ab)− 2

∣∣
and

φG1(ax) = φG1(cz) = φG2(az) = φG2(zx) = φG2(bc) = φG2(cy) = |VB2 | − |VB1|.

Recall that na
B1

(ab)−nb
B1

(ab) = 4(n1−k1−1) ≥ 0, nx
B2

(xy)−ny
B2

(xy) = 4(n2−k2−1) ≥ 0.

Combining (1.2) with (3.2), (3.3), one has

Λ3 = (φG1(ax) + φG1(bc) + φG1(cz) + φG1(yz))

−(φG2(az) + φG2(zx) + φG2(bc) + φG2(cy))

=
∣∣nx

B2
(xy) + |VB1| − ny

B2
(xy)− 2

∣∣+
∣∣na

B1
(ab) + |VB2| − nb

B1
(ab)− 2

∣∣
−2(|VB2| − |VB1 |)

= (nx
B2

(xy)− ny
B2

(xy)) + (|VB1| − 2) + (na
B1

(ab)− nb
B1

(ab)) + (|VB2| − 2)

−2(|VB2| − |VB1 |)

= (na
B1

(ab)− nb
B1

(ab)) + (nx
B2

(xy)− ny
B2

(xy)) + 3|VB1| − |VB2| − 4

= 4(n1 − k1 − 1) + 4(n2 − k2 − 1) + 3(4n1 + 2)− (4n2 + 2)− 4

= 16n1 − 4k1 − 4k2 − 8. (3.6)

Thus, Combining (3.1) with (3.4)-(3.6), one has

Mo(G1)−Mo(G2) =Λ1 + Λ2 + Λ3

>4(k2 + 1)(k1 + 2) + 16n1 − 4k1 − 4k2 − 8 = 16n1 + 4k1k2 + 4k2

>0,

which implies Mo(G1) > Mo(G2), (i) holds.

(ii) By (1.1), similar with the proof of (i) we get

Mo(G1)−Mo(G3) =
∑

e∈EG1

φG1(e)−
∑

e∈EG3

φG2(e) = Λ4 + Λ5 + Λ6, (3.7)

where Λ4 =
∑

e∈EB1
(φG1(e)− φG3(e)), Λ5 =

∑
e∈EB2

(φG1(e)− φG3(e)) and

Λ6 = (φG1(ax) + φG1(bc) + φG1(cz) + φG1(yz))− (φG3(ac) + φG3(by) + φG3(cz) + φG3(zx)).
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Firstly, let us determine Λ4. For each edge e = uv ∈ EB1 , by an argument analogous

to the proof of (i), one has φG1(e) − φG3(e) = 0 if a, b are both in Nu
B1

(e) or in N v
B1

(e).

In order to determine Λ4, we only need to consider that a ∈ Nu
B1

(e) and b ∈ N v
B1

(e). In

this case, it is easy to check that (3.2) holds and

Nu
G3(e) = Na

B1
(e) ∪ {c, z}, N v

G3(e) = N b
B1

(e) ∪ VB2 . (3.8)

Recall that na
B1

(ab)− nb
B1

(ab) ≥ 0. Together with (1.2), (3.2) and (3.8), one has

φG1(e)− φG3(e) = |nu
G1(e)− nv

G1(e)| − |nu
G3(e)− nv

G3(e)|

=
∣∣na

B1
(ab) + |VB2| − nb

B1
(ab)− 2

∣∣− ∣∣na
B1

(ab) + 2− nb
B1

(ab)− |VB2|
∣∣

≥
(
na
B1

(ab)− nb
B1

(ab)
)

+ (|VB2| − 2)

−
(
na
B1

(ab)− nb
B1

(ab)
)
− (|VB2| − 2) (3.9)

= 0.

Note that na
B1

(ab)− nb
B1

(ab) ≥ 0 and |VB2| − 2 = 4n2 > 0. The equation in (3.9) holds if

and only if

∣∣(na
B1

(ab)− nb
B1

(ab)
)
− (|VB2 | − 2)

∣∣ =
(
na
B1

(ab)− nb
B1

(ab)
)

+ (|VB2| − 2) ,

which implies na
B1

(ab) = nb
B1

(ab). So φG1(e) − φG3(e) ≥ 0 with equality if and only if

na
B1

(ab) = nb
B1

(ab).

Hence,

Λ4 =
∑

e=uv∈EB1

(φG1(e)− φG3(e))

=
∑

e=uv∈EB1
a,b∈Nu

B1
(e)

(φG1(e)− φG3(e)) +
∑

e=uv∈EB1
a,b∈Nv

B1
(e)

(φG1(e)− φG3(e))

+
∑

e=uv∈EB1
a∈Nu

B1
(e),b∈Nv

B1
(e)

(φG1(e)− φG3(e))

≥ 0. (3.10)

The equality in (3.10) holds if and only if na
B1

(ab) = nb
B1

(ab).

Secondly, by an argument analogous as above, one has

Λ5 =
∑

e∈EB2

(φG1(e)− φG3(e)) ≥ 0 (3.11)
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with equality if and only if nx
B2

(xy) = ny
B2

(xy).

Finally, let us consider Λ6. It is easy to check that

φG1(ax) = φG1(cz) = φG3(by) = φG3(cz) = ||VB2| − |VB1|| .

Note that nx
B2

(xy)− ny
B2

(xy) ≥ 0. One has

φG1(bc)− φG3(ac) =
∣∣nx

B2
(xy) + |VB1| − ny

B2
(xy)− 2

∣∣− ∣∣ny
B2

(xy) + |VB1| − nx
B2

(xy)− 2
∣∣

=
(
nx
B2

(xy)− ny
B2

(xy)
)

+ (|VB1| − 2)

−
∣∣(|VB1 | − 2)−

(
nx
B2

(xy)− ny
B2

(xy)
)∣∣

≥
(
nx
B2

(xy)− ny
B2

(xy)
)

+ (|VB1| − 2)

− (|VB1 | − 2)−
(
nx
B2

(xy)− ny
B2

(xy)
)

(3.12)

=0.

Similar with (3.9), the equality in (3.12) holds if and only if nx
B2

(xy) = ny
B2

(xy). Note

that na
B1

(ab)− nb
B1

(ab) ≥ 0, we also get

φG1(yz)− φG3(xz) =
∣∣na

B1
(ab) + |VB2| − nb

B1
(ab)− 2

∣∣− ∣∣nb
B1

(ab) + |VB2| − na
B1

(ab)− 2
∣∣

=
(
na
B1

(ab)− nb
B1

(ab)
)

+ (|VB2 | − 2)

−
∣∣(|VB2| − 2)− (na

B1
(ab)− nb

B1
(ab))

∣∣
≥
(
na
B1

(ab)− nb
B1

(ab)
)

+ (|VB2| − 2)

− (|VB2| − 2)−
(
na
B1

(ab)− nb
B1

(ab)
)

(3.13)

=0.

The equality in (3.13) holds if and only if na
B1

(ab) = nb
B1

(ab).

Hence,

Λ6 =(φG1(ax) + φG1(bc) + φG1(cz) + φG1(yz))

− (φG3(ac) + φG3(by) + φG3(cz) + φG3(zx)) ≥ 0 (3.14)

with equality if and only if na
B1

(ab) = nb
B1

(ab) and nx
B2

(xy) = ny
B2

(xy).

Together with (3.7) and (3.10)-(3.14), we get Mo(G1)−Mo(G3) = Λ4 + Λ5 + Λ6 ≥ 0

with equality if and only if na
B1

(ab) = nb
B1

(ab) and nx
B2

(xy) = ny
B2

(xy). That is, Mo(G1) ≥
Mo(G3) with equality if and only if na

B1
(ab) = nb

B1
(ab) and nx

B2
(xy) = ny

B2
(xy). Consider

the structure of B1 and B2, one has na
B1

(ab) = nb
B1

(ab) if and only if B1 = Ln1 and ab is
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an end edge of B1; n
x
B2

(xy) = ny
B2

(xy) if and only if B2 = Ln2 and xy is an end edge of

B2. Together with the structures of G1 and G3, one has Mo(G1) ≥Mo(G3) with equality

if and only if G1 ∼= G3. This completes the proof of (ii).

(iii) By (1.1), similar with the proof of (i) we get

Mo(G1)−Mo(G4) =
∑

e∈EG1

φG1(e)−
∑

e∈EG4

φG4(e) = Λ7 + Λ8 + Λ9

where Λ7 =
∑

e∈EB1
(φG1(e)− φG4(e)), Λ8 =

∑
e∈EB2

(φG1(e)− φG4(e)) and

Λ9 = (φG1(ax) + φG1(bc) + φG1(cz) + φG1(yz))− (φG4(ay) + φG4(bc) + φG4(cz) + φG4(xz)).

Firstly, let us determine Λ7. For each edge e = uv ∈ EB1 , by an argument analogous

to the proof of (i), one has φG1(e)− φG4(e) = 0 if a, b are both in Nu
B1

(e) or in N v
B1

(e). In

order to determine Λ7, we only need to consider that a ∈ Nu
B1

(e) and b ∈ N v
B1

(e). Clearly,

Nu
G1(e) = Nu

G4(e) = Nu
B1

(e) ∪ VB2 , N v
G1(e) = N v

G4(e) = N v
B1

(e) ∪ {c, z},

which implies φG1(e)− φG4(e) = 0. Hence, Λ7 =
∑

e=uv∈EB1
(φG1(e)− φG4(e)) = 0.

Secondly, let us determine Λ8. For each edge e = uv ∈ EB2 , by an argument analogous

to the proof of (i), one has φG1(e) − φG4(e) = 0 if x, y are both in Nu
B2

(e) or in N v
B2

(e).

In order to determine Λ8, it suffies to consider the case x ∈ Nu
B2

(e) and y ∈ N v
B2

(e). In

this case, xy and uv are in parallel relation in B2. Thus,

Nu
G1(e) = Nx

B2
(xy) ∪ VB1 , N v

G1(e) = Ny
B2

(xy) ∪ {c, z}

and

Nu
G4(e) = Nx

B2
(xy) ∪ {c, z}, N v

G4(e) = Ny
B2

(xy) ∪ VB1 .

Thus,

φG1(e)− φG4(e) =
∣∣nx

B2
(xy) + |VB1| − ny

B2
(xy)− 2

∣∣− ∣∣nx
B2

(xy) + 2− ny
B2

(xy)− |VB1|
∣∣

=
(
nx
B2

(xy)− ny
B2

(xy)
)

+ (|VB1| − 2)

−
∣∣(nx

B2
(xy)− ny

B2
(xy))− (|VB1| − 2)

∣∣
≥
(
nx
B2

(xy)− ny
B2

(xy)
)

+ (|VB1| − 2)

−
(
nx
B2

(xy)− ny
B2

(xy)
)
− (|VB1 | − 2) (3.15)

=0.
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Similar with (3.9), the equality in (3.15) holds if and only if nx
B2

(xy) = ny
B2

(xy). Hence,

Λ8 =
∑

e=uv∈EB2
(φG1(e)− φG4(e)) ≥ 0 with equality if and only if nx

B2
(xy) = ny

B2
(xy).

Finally, let us consider Λ9. It is easy to check that

φG1(ax) = φG1(cz) = φG4(ay) = φG4(cz) = ||VB1| − |VB2|| .

Note that nx
B2

(xy) ≥ ny
B2

(xy). By an argument analogous as the determination of Λ6, one

has

Λ9 = (φG1(ax) + φG1(bc) + φG1(cz) + φG1(yz))

−(φG4(ay) + φG4(bc) + φG4(cz) + φG4(xz))

= (φG1(bc)− φG4(bc)) + (φG1(yz)− φG4(xz))

=
∣∣nx

B2
(xy) + |VB1| − ny

B2
(xy)− 2

∣∣− ∣∣ny
B2

(xy) + |VB1| − nx
B2

(xy)− 2
∣∣

+
∣∣na

B1
(ab) + |VB2| − nb

B1
(ab)− 2

∣∣− ∣∣na
B1

(ab) + |VB2| − nb
B1

(ab)− 2
∣∣

≥
(
nx
B2

(xy)− ny
B2

(xy)
)

+ (|VB1| − 2)

−
(
nx
B2

(xy)− ny
B2

(xy)
)
− (|VB1| − 2) (3.16)

= 0.

The equality in (3.16) holds if and only if nx
B2

(xy) = ny
B2

(xy).

Thus, Mo(G1)−Mo(G4) = Λ7 + Λ8 + Λ9 ≥ 0 with equality if and only if nx
B2

(xy) =

ny
B2

(xy). That is, Mo(G1) ≥ Mo(G4) with equality if and only if nx
B2

(xy) = ny
B2

(xy).

Consider the structure of B2, one has nx
B2

(xy) = ny
B2

(xy) if and only if B2 = Ln2 and xy is

an end edge of B2. Together with the structures of G1 and G4, one has Mo(G1) ≥Mo(G4)

with equality if and only if G1 ∼= G4. This completes the proof.

Now, let us determine the value of Mo(Hn).

Lemma 3.2. Mo(Hn) = 16n2 − 20n + 6 + 2(−1)n, where Hn is a helicene chain with n

hexagons, which is depicted in Fig. 1.

Proof. Note that Hn is a helicene chain with n hexagons, Hn[V3] is isomorphic to a comb.

We may assume C1, C2, . . . , Cn are the n hexagons of Hn with ECi
∩ ECi+1

= {xiyi} and

yiyi+1 ∈ EHn for 1 ≤ i ≤ n − 1. Obviously, {x1y1, x2y2, · · · , xn−1yn−1} ⊂ EHn[V3]. For

convenience, let E1 = {x1y1, x2y2, · · · , xn−1yn−1} and E2 = {y1y2, y2y3, · · · , yn−2yn−1}.
Clearly, |E1| = n− 1, |E2| = n− 2 and EHn[V3] = E1 ∪ E2.
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By direct computation, we may obtain φHn(xiyi) = 4n − 8 for 1 ≤ i ≤ n − 1

and φHn(yiyi+1) = 4(n − 2i − 1) for i = 1, . . . , bn
2
c. By the symmetry of Hn, we get

φHn(yiyi+1) = φHn(yn−2−iyn−1−i) for i = bn
2
c+ 1, . . . , n− 2.

For convenience, denote Ẽ1 be the set of edges of Hn who is in parallel relation with

one of the edges in E1. Lemma 2.2 implies that the edges in parallel relation have equal

contribution for Mo(Hn). That is, φHn(e) = 4n − 8 for e ∈ Ẽ1. Note that there exists

just three edges in parallel relation with xiyi in Hn for 1 ≤ i ≤ n − 1 and xiyi, xjyj are

not in parallel relation in Hn for i 6= j. One has
∣∣∣Ẽ1

∣∣∣ = 3|E1| = 3(n− 1). So∑
e∈Ẽ1

φG(e) = 3(n− 1)(4n− 8) = 12n2 − 36n+ 24.

Similarly, denote Ẽ2 be the set of edges of Hn who is in parallel relation with one of

the edges in E2. Note that there exists just two edges in parallel relation with yiyi+1 in

Hn for 1 ≤ i ≤ n − 2 and yiyi+1, yjyj+1 are not in parallel relation in Hn for i 6= j. We

get
∣∣∣Ẽ2

∣∣∣ = 2|E2| = 2(n− 2). Furthermore, one has∑
e∈Ẽ2

φG(e) = 2(4(n− 3) + 4(n− 5) + · · ·+ 8 + 0 + 8 + · · ·+ 4(n− 3)) = 4n2 − 16n+ 12,

when n is odd, while∑
e∈Ẽ2

φG(e) = 2(4(n− 3) + 4(n− 5) + · · ·+ 8 + 2 + 8 + · · ·+ 4(n− 3)) = 4n2 − 16n+ 16,

when n is even. That is,
∑

e∈Ẽ2 φG(e) = 4n2 − 16n+ 14 + 2 · (−1)n.

Note that Hn is a helicene chain with n hexagons, EHn = 5n + 1. Combining with∣∣∣Ẽ1

∣∣∣ = 3(n−1) and
∣∣∣Ẽ2

∣∣∣ = 2(n−2), one has there exists eight edges in EHn \(Ẽ1∪Ẽ2). It

is easy to check that EHn \ (Ẽ1∪ Ẽ2) contains four edges in C1 and four edges in Cn which

are not in parallel relation with x1y1 and xn−1yn−1, respectively. By direct computation,

the contribution of each for Mo(Hn) is 4n− 4.

By (1.1), we have

Mo(Hn) =
∑
e∈Ẽ1

φG(e) +
∑
e∈Ẽ2

φG(e) +
∑

e∈EHn\(Ẽ1∪Ẽ2)

φG(e)

= 12n2 − 36n+ 24 + 4n2 − 16n+ 14 + 2 · (−1)n + 8(4n− 4)

= 16n2 − 20n+ 6 + 2(−1)n.

This completes the proof.
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C1

C1 C2

C2

LtLt

C1 · γ · Lt · α · C2 C1 · α · Lt · γ · C2

. . .. . . γγ αα

Fig. 5. C1 · γ · Lt · α · C2 and C1 · α · Lt · γ · C2.

Now, let us give our main result in this section.

Theorem 3.3. If Gn is a hexagonal chain in Gn, then Mo(Gn) ≤ 16n2−20n+6+2(−1)n

with equality if and only if Gn
∼= Hn.

Proof. Choose a hexagonal chain Gn in Gn such that Mo(Gn) is as large as possible. We

proceed by showing the following claims.

Claim 1. If C1, C2 are single hexagons and t ≥ 0, then Gn contains neither C1·γ·Lt·α·C2

nor C1 · α · Lt · γ · C2 as its subgraph, which are depicted in Fig. 5.

Proof of Claim 1. By the symmetry, we only need to show Gn does not contain C1 · γ ·
Lt · α · C2 as its subgraph. Otherwise, suppose that C1 · γ · Lt · α · C2 is a subgraph of

Gn satisfying that ab (resp. xy) is the common edge of C1 and γ (resp. γ and Lt) with

by ∈ EGn . We may denote Gn as Gp · θ ·C1 · γ ·Lt · α ·C2 · θ ·Gq, where θ ∈ {α, β, γ} and

Gp ∈ Gp, Gq ∈ Gq (Maybe p = 0 or q = 0 and maybe θ does not exist). Let B1 = Gp ·θ ·C1

and B2 = Lt · α · C2 · θ ·Gq. Thus, Gn = B1 · γ ·B2.

Note that B2 = Lt ·α ·C2 · θ ·Gq. It is easy to check nx
B2

(xy) > ny
B2

(xy). If na
B1

(ab) ≥
nb
B1

(ab), then by Lemma 3.1 (ii), B1 ·α ·B2 is a hexagonal chain in Gn such that Mo(B1 ·
α · B2) > Mo(Gn), which implies a contradiction with the choice of Gn. Similarly, if

na
B1

(ab) < nb
B1

(ab), then there exists a hexagonal chain G′n such that Mo(G′n) > Mo(Gn)

by Lemma 3.1 (iii), which is also a contradiction with the choice of Gn.

This completes the proof of Claim 1.

Claim 2. Gn does not contain L3 as a subgraph.

Proof of Claim 2. We suppose, to the contrary, L3 = Cq−1CqCq+1 is a subgraph of Gn,

where Ci is a single hexagon for i = q − 1, q, q + 1. We may say L3 = Cq−1 · β · Cq+1.

Similar with Claim 1, we may denote Gn = B1 ·β ·B2, where Cq−1 is contained in B1 and

Cq+1 is contained in B2, respectively.
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Suppose that a′b′ (resp. x′y′) is the common edges of B1 and β (resp. B2 and β). If

na′
B1(a′b′) ≥ nb′

B1(a′b′) and nx′
B2(x′y′) ≥ ny′

B2(x
′y′), then by Lemma 3.1 (i), B1 · α · B2 is a

hexagonal chain in Gn with Mo(B1 · α · B2) > Mo(Gn), which implies a contradiction to

the choice of Gn. By the symmetry, the remaining case we need to consider is na′
B1(a′b′) <

nb′
B1(a′b′) and nx′

B2(x′y′) ≥ ny′

B2(x
′y′). In this case, one can easily check that Gn contains

C1 · γ · Lt · α · C2 as its subgraph, a contradiction with Claim 1.

This completes the proof of Claim 2.

Based on Claims 1 and 2, we get Gn
∼= Hn. Together with Lemma 3.2, our result

holds.

4. Minimum Mostar index among Gn
In this section, we determine that the linear chain Ln is the unique graph with mini-

mum Mostar index among Gn. In order to do so, the following lemmas are necessary.

Lemma 4.1. Let B1 = Ln1 , B2 ∈ Gn2 with n1 ≥ 1, n2 ≥ 1, n1 +n2 + 1 = n and ab is an

end edge of B1. Suppose that G2 and G3 are hexagonal chains in Gn by connecting B1 and

B2 with β-type and γ-type hexagon X, respectively, where EB1 ∩EX = {ab}, EB2 ∩EX =

{xy}. Graphs G2 and G3 can be seen in Fig. 4. Then Mo(G2) ≤ Mo(G3) with equality

if and only if B2 = Lk · α ·B and n1 − n2 ≥ k + 1, where B ∈ Gn2−k−1.

Proof. Clearly, |VB1| = 4n1+2, |VB2| = 4n2+2. Note that B1 = Ln1 and ab is an end edge

of B1. By Lemma 2.3(i), one has sB1(ab) = n1 + 1 and na
B1

(ab) = nb
B1

(ab). If nx
B2

(xy) <

ny
B2

(xy), then by Lemma 3.1 (i) we get Mo(G2) < Mo(G3), our result holds. Now, we

assume nx
B2

(xy) ≥ ny
B2

(xy) in the following. Clearly, B2 may be denoted as Lk ·α ·B with

B ∈ Gn2−k−1 and n2 ≥ k + 1. Furthermore, xy is an end edge of B2 with xy ∈ ELk
. By

Lemma 2.3 (ii) we get sB2(xy) = k + 2 and nx
B2

(xy) − ny
B2

(xy) = 4(n2 − k − 1) ≥ 0. By

(1.1) we get

Mo(G2)−Mo(G3) =
∑

e∈EG2

φG2(e)−
∑

e∈EG3

φG3(e) = Γ1 + Γ2 + Γ3, (4.1)

where Γ1 =
∑

e∈EB1
(φG2(e)− φG3(e)), Γ2 =

∑
e∈EB2

(φG2(e)− φG3(e)) and

Γ3 = (φG2(az) + φG2(zx) + φG2(bc) + φG2(cy))− (φG3(ac) + φG3(cz) + φG3(zx) + φG3(by)).

Firstly, let us determine Γ1. For each edge e = uv ∈ EB1 , by an argument analogous

to the proof of Lemma3.1 (i), one has φG2(e) − φG3(e) = 0 if a, b are both in Nu
B1

(e) or
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in N v
B1

(e). So in order to determine Γ1, we only need to consider that a ∈ Nu
B1

(e) and

b ∈ N v
B1

(e). By Lemma 2.1(i), uv is in parallel relation with ab in B1 with d(u, a) < d(v, a).

By Lemma 2.2, one has Nu
B1

(uv) = Na
B1

(ab) and N v
B1

(uv) = N b
B1

(ab). Similarly, we get

Nx
G2(xy) = Na

G2(ab) and Ny
G2(xy) = N b

G2(ab). Considering the structure of G2 and G3,

one has

Nu
G2(e) = Na

B1
(ab) ∪Nx

B2
(xy) ∪ {z}, N v

G2(e) = N b
B1

(ab) ∪Ny
B2

(xy) ∪ {c}

and

Nu
G3(e) = Na

B1
(ab) ∪ {c, z}, N v

G3(e) = N b
B1

(ab) ∪ VB2 .

Recall that na
B1

(ab) = nb
B1

(ab) and nx
B2

(xy)−ny
B2

(xy) = 4(n2− k− 1) ≥ 0. Together with

(1.2), one has

φG2(e)− φG3(e) = |nu
G2(e)− nv

G2(e)| − |nu
G3(e)− nv

G3(e)|

=
∣∣na

B1
(ab) + nx

B2
(xy) + 1− nb

B1
(ab)− ny

B2
(xy)− 1

∣∣
−
∣∣na

B1
(ab) + 2− nb

B1
(ab)− |VB2|

∣∣
=

(
nx
B2

(xy)− ny
B2

(xy)
)
− (|VB2| − 2)

= 4(n2 − k − 1)− 4n2

= −4(k + 1).

Since ab is an end edge of B1, by Lemma 2.1 one has

sB1(ab) = |{e = uv ∈ EB1|a ∈ Nu
B1

(e), b ∈ N v
B1

(e)}|.

Note that sB1(ab) = n1 + 1. Thus,

Γ1 =
∑

e=uv∈EB1

(φG2(e)− φG3(e))

=
∑

e=uv∈EB1
a,b∈Nu

B1
(e)

(φG2(e)− φG3(e)) +
∑

e=uv∈EB1
a,b∈Nv

B1
(e)

(φG2(e)− φG3(e))

+
∑

e=uv∈EB1
a∈Nu

B1
(e),b∈Nv

B1
(e)

(φG2(e)− φG3(e))

= −4(k + 1)
∣∣{e = uv ∈ EB1|a ∈ Nu

B1
(ab), b ∈ N v

B1
(ab)}

∣∣
= −4(k + 1)sB1(ab)
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= −4(k + 1)(n1 + 1). (4.2)

Secondly, let us determine Γ2. For each edge e = uv ∈ EB2 , by an argument analogous

to the proof of Lemma 3.1 (i), one has φG2(e)− φG3(e) = 0 if x, y are both in Nu
B2

(e) or

in N v
B2

(e). So in order to determine Γ2, we only need to consider that x ∈ Nu
B2

(e) and

y ∈ N v
B2

(e). By Lemma 2.1 (i), uv is in parallel relation with xy in B2. By Lemma 2.2,

Nu
B2

(uv) = Nx
B2

(xy) and N v
B2

(uv) = Ny
B2

(xy). Thus,

Nu
G2(e) = Na

B1
(ab) ∪Nx

B2
(xy) ∪ {z}, N v

G2(e) = N v
B1

(ab) ∪Ny
B2

(xy) ∪ {c}.

and

Nu
G3(e) = Nx

B2
(xy) ∪ {c, z}, N v

G3(e) = Ny
B2

(xy) ∪ VB1 .

Recall that na
B1

(ab) = nb
B1

(ab) and nx
B2

(xy)−ny
B2

(xy) = 4(n2− k− 1) ≥ 0. Together with

(1.2), one has

φG2(e)− φG3(e) = |nu
G2(e)− nv

G2(e)| − |nu
G3(e)− nv

G3(e)|

=
∣∣na

B1
(ab) + nx

B2
(xy) + 1− nb

B1
(ab)− ny

B2
(xy)− 1

∣∣
−
∣∣nx

B2
(xy) + 2− ny

B2
(xy)− |VB1|

∣∣
=

(
nx
B2

(xy)− ny
B2

(xy)
)
−
∣∣4n1 −

(
nx
B2

(xy)− ny
B2

(xy)
)∣∣

= 4(n2 − k − 1)− |4n1 − 4(n2 − k − 1)| .

Hence, by an argument analogous as the determination of Γ1,

Γ2 =
∑

e=uv∈EB2

(φG2(e)− φG3(e))

=
∑

e=uv∈EB2
x∈Nu

B2
(e),y∈Nv

B2
(e)

4(n2 − k − 1)− |4n1 − 4(n2 − k − 1)|

= sB2(xy) [4(n2 − k − 1)− |4n1 − 4(n2 − k − 1)|]

= (k + 2) [4(n2 − k − 1)− |4n1 − 4(n2 − k − 1)|] (4.3)

Finally, we consider Γ3. It is easy to check that

φG2(az) = φG2(zx) = φG2(cy) = φG2(bc) = φG3(by) = φG3(cz)

= ||VB1| − |VB2|| = 4|n1 − n2|,

φG3(ac) =
∣∣|VB1|+ ny

B2
(xy)− nx

B2
(xy)− 2

∣∣
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=
∣∣nx

B2
(xy)− ny

B2
(xy)− 4n1

∣∣ = |4(n2 − k − 1)− 4n1| ,

φG3(zx) =
∣∣na

B1
(ab) + 2− nb

B1
(ab)− |VB2|

∣∣ = |VB2| − 2 = 4n2.

Thus,

Γ3 = (φG2(az) + φG2(zx) + φG2(bc) + φG2(cy))

−(φG3(ac) + φG3(cz) + φG3(zx) + φG3(by))

= 8|n1 − n2| − 4 |n2 − n1 − k − 1| − 4n2. (4.4)

We proceed by considering the following two cases:

Case 1. n1 ≥ n2. In this case, note that k ≥ 0, one has n1 ≥ n2 > n2 − k − 1. By

(4.1)-(4.4) one has

Mo(G2)−Mo(G3) = Γ1 + Γ2 + Γ3

= −4(k + 1)(n1 + 1) + 4(k + 2) [(n2 − k − 1)− (n1 − n2 + k + 1)]

+8(n1 − n2) + 4(n2 − n1 − k − 1)− 4n2

= 8(k + 1)(n1 − n2)− 8k2 − 32k − 24

< 0,

which implies Mo(G2) < Mo(G3).

Case 2. n1 < n2. If n2 − n1 < k + 1, then by (4.1)-(4.4) one has

Mo(G2)−Mo(G3) = −4(k + 1)(n1 + 1) + 4(k + 2) [(n2 − k − 1)− (n1 − n2 + k + 1)]

−8(n1 − n2) + 4(n2 − n1 − k − 1)− 4n2

= (8k + 24)(n2 − n1)− 8k2 − 32k − 24

< (8k + 24)(k + 1)− 8k2 − 32k − 24

= 0,

which implies Mo(G2) < Mo(G3). Otherwise, n2 − n1 ≥ k + 1. Similarly,

Mo(G2)−Mo(G3) = −4(k + 1)(n1 + 1) + 4(k + 2) [(n2 − k − 1) + (n1 − n2 + k + 1)]

−8(n1 − n2)− 4(n2 − n1 − k − 1)− 4n2

= 0.

By Cases 1 and 2, our lemma is obvious.
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Lemma 4.2. Mo(Ln) = 8n2 − 4 + 4(−1)n, where Ln is a linear chain with n hexagons,

which is depicted in Fig.1.

Proof. Suppose that C1, C2, . . . , Cn are the n hexagons of Ln with ECi
∩ ECi+1

= {xiyi}
for 1 ≤ i ≤ n−1. Let x0y0 be an end edge of Ln with x0y0 ∈ EC1 . Note that Ln is a linear

chain with n hexagons, it is easy to get x1y1, x2y2, . . . , xn−1yn−1 are in parallel relation

with x0y0. Clearly, there exists another edge, say xnyn in ECn with xnyn 6= xn−1yn−1 and

xnyn is also in parallel relation with x0y0. By Lemma 2.2 and Lemma 2.3 (i), we get

φLn(ei) = |nxi
Ln

(ei)− nyi
Ln

(ei)| = 0 for 0 ≤ i ≤ n.

Obviously, there exists just four edges other than xi−1yi−1 and xiyi in ECi
for each i ∈

{1, 2, . . . , n}. Consider the structure of Ln, for each i ∈ {1, 2, . . . , n}, one can easily check

that these four edges in ECi
have the common contribution (we denote qi for convenience)

for Mo(G). By direct computation, we obtain

qi = ||VLi−1
| − |VLn−i

|| = 4|n− 2i+ 1|,

for i ∈ {1, 2, . . . , n}. Thus, by (1.1) we get

Mo(Ln) = 4
n∑

i=1

qi = 16
n∑

i=1

|n− 2i+ 1|

= 16

bn2 c∑
i=1

(n− 2i+ 1)− 16
n∑

i=bn2 c+1

(n− 2i+ 1)

= 8n2 − 4 + 4(−1)n,

as desired.

Theorem 4.3. If Gn is a hexagonal chain in Gn, then Mo(Gn) ≥ 8n2 − 4 + 4(−1)n with

equality if and only if Gn
∼= Ln.

Proof. Choose a hexagonal chain Gn in Gn such that Mo(Gn) is as small as possible. If

Gn
∼= Ln, then by lemma 4.2, our result holds. Now suppose that Gn 6∼= Ln and denote

Gn = Ll0 · θ · Ll1 · θ · · · · · θ · Llk−1
· θ · Llk ,

where l0 + l1 + · · · + lk = n − k, li ≥ 1 for 0 ≤ i ≤ k and θ ∈ {α, γ}. Without loss of

generality, we assume that l0 ≤ lk. Put B∗ := Ll1 · θ · · · · · θ · Llk−1
· θ · Llk . Obviously,

Gn = Ll0 · θ ·B∗, where B∗ ∈ Gn−l0−1 and

l0 ≤ lk ≤ l1 + · · ·+ lk + k − 1 = n− l0 − 1.
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Construct a new graph G̃n = Ll0 ·β ·B∗. Clearly, G̃n is also in Gn. Note that Gn = Ll0 ·θ·B∗

with θ ∈ {α, γ}. If θ = α, then by Lemma 3.1 (i), Mo(G̃n) < Mo(Gn), which is a

contradiction with the choice of Gn. Now we consider that θ = γ. Note that l0 ≤ n−l0−1.

By Lemma 4.1, we get Mo(G̃n) < Mo(Gn), which is also a contradiction with the choice

of Gn.

This completes the proof of Theorem 4.3.
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[15] C. Q. Xiao, H. Y. Chen, Kekulé structures of square–hexagonal chains and the Hosoya

index of caterpillar trees, Discr. Math. 339 (2016), 506–510.

[16] S. J. Xu, H. P. Zhang, Generalized Hosoya polynomials of hexagonal chains, J. Math.

Chem. 43 (2008) 852–863.

[17] L. Z. Zhang, On the ordering of a class of hexagonal chains with respect to Merrifield-

Simmons index, Sys. Sci. Math. Sci. 13 (2000) 219–224.

[18] L. Z. Zhang, F. J. Zhang, Extremal hexagonal chains concerning k-matchings and

k-independent sets, J. Math. Chem. 27 (2000) 319–329.

-271-


