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Abstract

A fullerene graph is a planar cubic graph with only pentagonal and hexagonal
faces. It has been proved that fullerene graphs have exponentially many perfect
matchings. The lower bound for this number has been studied in the last 20 years.

The best known result is 2
n−380

61 , which is given in [13] by using the four color
theorem. We generalize the structure using in [13] and obtain the improved lower

bound 2
n−1820
47.29 .

1 Introduction

The fullerenes have been a hot topic over the last 30 years. In the chemical graph theory,

the fullerenes could be modeled with graphs. In which, the vertices represent the carbon

atoms and the edges represent the bonds between adjacent atoms. This gives cubic graphs,

which are planar with only pentagonal and hexagonal faces. The set of double bonds in

fullerene is called a Kekulé structure which is also a perfect matching in a fullerene graph.

The number of Kekulé structure is called Kekulé structure count, denoted by K, which

also represents the number of perfect matching in fullerene graphs. If it is incident with

three edges in a perfect matching, the hexagonal face is resonant hexagon in the fullerene

graph G. Kekulé structure count is a meaningful index which is related to the stability
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of fullerene [1–6]. If all the pentagons in a fullerene are not adjacent, this is called the

isolated-pentagon rule(IPR). Most stable fullerenes meet the isolated-pentagon rule well.

The empirical results suggest that the number of perfect matchings in fullerene graphs

increases exponentially with the number of vertices [7]. It was proved that the general

lower bounds of Kekulé count are linear in the number of vertices [8]. If fullerene contains

a nontrivial cyclic-5-edge cutset, the number of perfect matchings is at least 15 · 2⌊
n

20
⌋

which had been proved by Kutnar and Marušič [9]. A graph is said to be cyclic k-edge-

connected, if at least k edges must be removed to disconnect it into two components,

each containing a cycle. Such a set of k edges is called a cyclic-k-edge cutset and it is

called a trivial cyclic-k-edge cutset if at least one of the resulting two components induces

a single k-cycle. And then Došlić and Kardoš et al present that fullerene graphs have

exponentially many perfect matchings [10–13]. The best known result is given in [13] as

K > 2
n−380

61 . (1)

In this paper, we show that the bound can be improved by generalizing the method

in [13].

In the next section, we present the detailed proof of the Kekulé count lower bound.

In the last section, some discussions will be addressed.

2 Main results

Let Gn be a molecular graph of n carbon atoms Fullerene, G∗
n be the dual graph of Gn.

Gn is a 3−regular graph of n vertices and 3n
2

edges which construct 12 pentagon faces

and (n
2
− 10) hexagon faces. Such graphs exist on all even n ≥ 20 except n = 22 in the

classical definition. The main research graph is G∗
n in this paper. We first introduce three

definitions that are used in the proof.

Definition 2.1. If two vertices vi, vj ∈ G∗
n have an edge connected in the dual graph of

fullerene, the distance between vi and vj is defined as dist(vi, vj) = 1 in G∗
n; otherwise

the dist(vi, vj) is defined as the length of the shortest path between vi and vj.

Definition 2.2. For any hexagonal face f of Gn, the k-layers neighborhood Ck(v) of

the corresponding vertex v in the dual graph G∗
n is a set of vertex in G∗

n. The set Ck(v)

satisfies the following three conditions.
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(1) dist(v, v′) ≤ k, v′ ∈ Ck(v) and v′ ∈ G∗
n;

(2) Each corresponding face of v′ is a hexagonal face in Gn;

(3) For any pentagon face p of Gn with the corresponding vertex u in the dual graph

G∗
n, dist(v, u) > k.

Definition 2.3. For any hexagonal face f of Gn, the Generalized 2k-layers neigh-

borhood C ′
k(v) of the corresponding vertex v in the dual graph G∗

n is a set of vertex in

G∗
n. The set C ′

k(v) satisfies the following two conditions.

(1) dist(v, v′) ≤ 2k, v′ ∈ C ′
k(v) and v′ ∈ G∗

n;

(2) For any pentagon face p of Gn with the corresponding vertex u ∈ C ′
k(v) in the

dual graph G∗
n, dist(v, u) > k.

v

Figure 1. Partially colored two-layer neighborhood.

In a two-layers neighborhood of v, every vertex is a hexagon face of the Gn. The

distance between each vertex of the two-layers neighborhood and v is not more than 2.

If part of the vertices are colored, other outer vertices can take an arbitrary three colors

under the condition that adjacent vertices take different colors [13]. As shown above in

Figure 1. In a neighborhood of v where the distance is not more than 5, every vertex is

a hexagon face of the Gn. All vertices form a five-layers neighborhood C5(v). A part of

the vertices are colored c(v), as shown below in Figure 2. We want to prove that each v

five-layers neighborhood C5(v) whose part of the vertices are colored also has the same

conclusion as two-layers neighborhood.
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v

Figure 2. Partially colored five-layer neighborhood.

Then, we will prove our main results. The following Theorem 2.1 and 2.2 illustrative

the coloring problem on the outer layer. Based on these conclusions, the improved lower

bound of Kekulé count of fullerenes is presented in Theorem 2.3. Theorem 2.4 shows the

generalized result.

Theorem 2.1. Under the condition that the adjacent vertices are colored differently, the

non-colored vertices on the outer layer of C5(v) can choose any other three colors.

Proof. Six 2-layer neighborhoods located inside 1-6 locations of C5(v), as shown below in

Figure 3. For example: location 1 is the two-layers neighborhood on the upper left and

location 2 is the two-layers neighborhood on the upper right in the figure. Considering

the two-layers neighborhood of location 1, the non-colored vertices on the outer layer can

choose any other three colors. Assume that the color of vertex D1 has been selected,

the color of the outer layer vertex D2 which is adjacent to the vertex D1 can be selected

from the other two colors of the four colors. Each color of the vertex D2 corresponds to a

different colored structure. In the two-layers neighborhood of location 2, the color of the

outer layer vertex D1 has been determined at this time and the color of other peripheral

non-colored vertices can be arbitrarily selected. According to the same principle, it can

be seen that the non-colored vertices on the outer layer of the five-layers neighborhood

C5(v) can choose any other three colors.

Therefore, by the Four Color Theorem [14–16], we can extend the partially colored

five-layers neighborhood to the entire dual graph G∗
n.
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Figure 3. The configuration C5(v) contains six two-layers neighborhood.

In a neighborhood of any v ∈ V where the distance is not more than 3k + 2, every

vertex is a hexagon face of the Gn. All vertices form a (3k + 2)-layers neighborhood

C3k+2(v). A part of the vertices are colored c(v). The coloring law is as follows. Firstly,

the v is colored c(v). In the two-layers neighborhood of v, the colored form of some

vertices is shown in Figure 1. Then the just colored vertices are used as the two-layers

neighborhood. The colored form of some vertices is shown in Figure 1. Finally, the process

will stop until the colored vertices reach the edge of C3k+2(v).

Theorem 2.2. Under the condition that the adjacent vertices are colored differently, the

non-colored vertices on the outer layer 3k + 2 of C3k+2(v) can choose any other three

colors.

Proof. If V is a Generalized (6k + 4)-layers neighborhood of {v}, (3k + 2)-layers neigh-

borhood of any v ∈ V contains 6k two-layers neighborhood that are located between 3k

layer and 3k + 2 layer. According to Theorem 2.1, it can be seen that the non-colored

vertices on the outer layer of the (3k + 2)-layers neighborhood C3k+2(v) can choose any

other three colors.

Therefore, by the Four Color Theorem, we can extend the (3k + 2)-layers neighbor-

hood to the entire dual graph G∗
n.

Theorem 2.3. If the fullerene graph Gn does not contain the nontrivial cyclic-5-edge

cutset structure, the number of perfect matchings is at least 2
n−1820
47.29 .
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Proof. Let U = {u1, · · · , u12} represent the vertex set of the pentagons. We will create a

vertex set V of the hexagons which needs to meet two conditions:

(1) When any v, v′ ∈ V and v 6= v′, dist(v, v′) ≥ 11;

(2) When any v ∈ V and u ∈ U , dist(v, u) ≥ 6.

Assume V0 = φ, we color the vertices white that the distance from ui(i = 1, · · · , 12)

is not more than 5. The rest of the vertices are colored black in G∗
n. The number of white

vertices colored by each ui is at most 1+
j=5
∑

j=1

5j = 76. Therefore, the maximum number of

white vertices is 12 · 76 = 912. Choose any black vertex and add it to the creation point

set, Vk := Vk−1

⋃

{vk}. We colore the vertices white that the distance from vk is not more

than 10. The number of white vertices colored by each vk is at most 1 +
j=10
∑

j=1

6j = 331.

The process terminates until there is no black vertex. At this time, Vk is V . Then

|V | ≥
n
2
+ 2− 912

331
=

n− 1820

662
. (2)

The four colored vertices are marked as A, B, C and D respectively in G∗
n. There are

only six edge forms among them: A−B, A− C, A−D, B − C, B −D and C −D. We

mark the edges A−B and C−D as 1, the edges A−C and B−D as 2, the edges A−D

and B − C as 3. It has been proved that all the 1 edges constitute a perfect match for

G [13]. The same is true for 2 and 3.

Take any point of vi ∈ V . The points with the distance of vi no more than 5 constitute

a five-layers neighborhood C5(vi). The points with the distance of vi no more than 10

constitute a Generalized ten-layers neighborhood. Each non-colored vertex inside C5(vi)

is connected to three colored vertices. Known by the dual graph, each point corresponding

to a face in the G. The face is a resonant hexagon in one of the three matchings formed

by the edges of 1, the edges of 2, and the edges of 3.

The number of resonant hexagons inside C5(vi) is 6+
j=3
∑

j=1

6j = 42. So there are a total

of 42|V | resonant hexagons,

42|V | ≥
n− 1820

662
· 42 =

n− 1820

331
· 21. (3)

Then, the number of resonant hexagons in one of the matchings is at least

14|V | ≥
n− 1820

331
· 7 =

n− 1820

47.29
. (4)

The resonant hexagons in one color class are always disjoint that has been proved [13].

So the number of perfect matchings is at least 2
n−1820
47.29 .
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In the proof process just now, if the set V is regarded as the Generalized ten-layers

neighborhood of {vi}, V can also choose Generalized (6k + 4)-layers neighborhood, k =

0, 1, 2, · · · . Now we take the general structure that is the Generalized (6k + 4)-layers

neighborhood to prove the similar conclusion. Follow the same method.

Theorem 2.4. If the fullerene graph Gn does not contain the nontrivial cyclic-5-edge

cutset structure, the number of perfect matchings is at most 2
n

30 .

Proof. Let U = {u1, · · · , u12} represent the set of vertices of the pentagons. We will

create a vertices set V of the hexagons which needs to meet two conditions:

(1) When any v, v′ ∈ V and v 6= v′, dist(v, v′) ≥ 6k + 5;

(2) When any v ∈ V and u ∈ U , dist(v, u) ≥ 3k + 3.

Assume V0 = φ, we color the vertices white that the distance from ui(i = 1, · · · , 12)

is not more than 3k + 2. The rest of the vertices are colored black in G∗
n. The number of

white vertices colored by each ui is at most

1 + (5 + 10) +

j=k
∑

j=1

5(3j + 3j + 1 + 3j + 2) =
45k2 + 75k + 32

2
.

Therefore, the maximum number to be colored white vertices is

12 ∗
45k2 + 75k + 32

2
= 6(45k2 + 75k + 32).

Choose any black vertex and add it to the creation point set, Vk := Vk−1

⋃

{vk}. We color

the vertices white that the distance from vk is not more than 6k+4. The number of white

vertices colored by each vk is at most

1+(6+12+18+24)+

j=k
∑

j=1

6(5j+5j+1+5j+2+5j+3+5j+4+5j+5) = 90k2+180k+61.

The process terminates until there is no black vertex. At this time, Vk is V . Then

|V | ≥
n+ 4− 12(45k2 + 75k + 32)

2(90k2 + 180k + 61)
. (5)

The number of colored vertices in the internal 3k + 1 layer of C3k+2(v) is
j=k
∑

j=1

6(j + j + j) = 9k2 + 9k.

The total number of vertices that is in the internal 3k + 1 layer is

j=3k+1
∑

j=1

6j = 27k2 + 27k + 6.
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Then, the number of resonant hexagons is 18k2 + 18k + 6. A total number of resonant

hexagons is (18k2+18k+6)|V | in the G. The number of resonant hexagons in one of the

matchings is at least

(6k2 + 6k + 2)|V | ≥
n+ 4− 12(45k2 + 75k + 32)

90k2 + 180k + 61
· (3k2 + 3k + 1). (6)

So the number of perfect matchings is 2
n+4−12(45k2+75k+32)

90k2+180k+61
·(3k2+3k+1)

.

We consider the limit case. When k is large, it is a level of n
30
.

3 Conclusion

In this paper, the number of perfect matchings has been improved by generalizing the

method in [13]. Based on our calculation experience on this problem, there may be

another way to improve the lower bound by using the relation between Kekulé count and

permanents of adjacency matrices of fullerenes. We hope to have a discussion here and

as the next research direction.

For an n× n matrix A = [aij], the permanent is defined as

Per(A) =
∑

σ∈Λn

n
∏

i=1

aiσ(i). (7)

where Λn denotes the set of all possible permutations of 1, 2, · · · , n. Though the definition

of permanent looks similar to the determinant, the computation of permanent is proved

to be a #P-complete problem in counting [17]. Hence, the results about the bound of

permanent are abundant. If A = [aij] is a k−regular 0-1 matrix, in which k 1s are in each

column and row, the lower bound has been found as [18]

Per(A) ≥

(

(k − 1)k−1

kk−2

)n

. (8)

When k = 3, just corresponding to the adjacency matrix of fullerene molecule graph, the

result is

Per(A) ≥

(

4

3

)n

. (9)

which is the best lower bound of permanent for fullerenes till now.

Using the algorithm proposed in [19], we compute the permanent and Kekulé count

for all the fullerene isomers with atoms between 20 and 60 and all the IPR structure

fullerene isormers with atoms no more than 100. For C20∼60, the ratios of ln(Perm)/ln(K)
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are between 2.0199 and 2.2378. For C70∼100 IPR structurethe ratios of ln(Perm)/ln(K)

are between 2.0739 and 2.1906. If the ratio of ln(Perm)/ln(K) is always no more than

2.5, then

K(A) > Perm(A)1/2.5 > (4/3)n/2.5 ≈ 2n/6.

An elaborate relation between permanent and Kekulé count is presented in [20] as

follows

Perm(A) = K(A)2 +
∑

s∈S•

2r(s). (10)

where r(s) is the number of cyclic components of the Sachs graph s and where the sum-

mation goes over the elements of the set S•, namely over the Sachs graphs embracing all

vertices of the molecular graph and possessing at least one odd-membered cyclic compo-

nent.

We hope to obtain the better lower bound of Kekulé count by the relation (10)

in future work. Recently, the transfer matrix method is applied to counting perfect

matchings in fullerene-like graphs by Behmaram, Došlić and Friedland [21]. We will

study the method further and look forward to better results.
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[13] F. Kardoš, D. Král, J. Mǐskuf, J. S. Sereni, Fullerene graphs have exponentially many

perfect matchings, J. Math. Chem. 46 (2009) 443–447.

[14] K. Appel, W. Haken, J. Koch, Every planar map is four colorable. Part I: Discharging,

Illinois J. Math. 21 (1977) 429–490.

[15] K. Appel, W. Haken, J. Koch, Every planar map is four colorable. Part II: Reducibil-

ity, Illinois J. Math. 21 (1977) 491–567.

[16] N. Robertson, D. Sanders, P. Seymour, R. Thomas, The four–colour theorem, J.

Comb. Theory B 70 (1997) 2–44.

[17] L. G. Valiant, The complexity of computing the permanent, Theor. Comput. Sci. 8

(1979) 189–201.

[18] A. Schrijver, Counting 1-factors in regular bipartite graphs, J. Comb. Theory B 72

(1998) 122–135.

[19] B. Yue, H. Liang, F. Bai, Improved algorithms for permanent and permanental poly-

nomial of sparse graph,MATCH Commun. Math. Comput. Chem. 69 (2013) 831–842.

[20] I. Gutman, Permanents of adjacency matrices and their dependence on molecular

structure, Polycyc. Arom. Comp. 12 (1998) 281–287.

[21] A. Behmaram, T. Došlić, S. Friedland, Matchings in m-generalized fullerene graphs,

Ars Math. Contemp. 11 (2016) 301–313.

-248-


