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Abstract

Within the Hückel molecular orbital model, the total π-electron energy, Eπ,
the highest occupied molecular orbital (HOMO) energy, EHOMO, and the lowest
occupied molecular orbital (LOMO) energy, ELOMO, can be expressed in terms
of eigenvalues of the adjacency matrix of the underlying molecular graph. In this
paper, relations between Eπ, EHOMO, and ELOMO are examined. Approximate
expressions are established, relating Eπ with EHOMO and ELOMO in the case of
benzenoid hydrocarbons.

1 Introduction

In this paper we apply spectral graph theory to the Hückel molecular orbital (HMO)

model. Let G be a molecular graph [4, 5, 11, 22], possessing n vertices and m edges. Let

the eigenvalues of the adjacency matrix of G be λ1, λ2, . . . , λn, forming the spectrum of

G [3]. We label the eigenvalues so that

λ1 ≥ λ2 ≥ · · · ≥ λn .

Then, assuming that n is even, the main energy–based quantities of the HMO theory

can be expressed as follows [5, 11,22]:

• The energy of the lowest occupied molecular orbital (LOMO) is ELOMO = λ1.
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• The energy of the highest occupied molecular orbital (HOMO) is EHOMO = λn/2.

• The energy of the lowest unoccupied molecular orbital (LUMO) is ELUMO = λn/2+1.

• The HOMO–LUMO gap is ∆HL = λn/2 − λn/2+1.

• The total π-electron energy is

Eπ = 2

n/2∑
i=1

λi . (1)

In the above formulas, the energies are expresses in the standard β-units. For details

of the HMO theory see [2, 17, 23]. Recall that the HMO model yields its best results

(i.e., results that are in the best agreement with experimental findings) in the case of

benzenoid hydrocarbons, see for instance in [7, 18,21].

For the molecular graphs of benzenoid systems with an even number of vertices [6,9],

λi = −λn−i+1 for i = 1, 2, . . . , n/2

n/2∑
i=1

λ2i = m (2)

and
n/2∏
i=1

λi = K

where K is the number of Kekulé structures. Therefore, for Kekuléan benzenoid hydro-

carbons (i.e., when n=even and K > 0),

EHOMO > 0 , ELUMO = −EHOMO , ∆HL = 2EHOMO > 0

and

Eπ =
n∑
i=1

|λi| .

The dependence of HMO total π-electron energy on molecular structure was much

investigated. The first result along these lines is the McClelland formula [19]

Eπ ≈ a
√

2mn (3)

where a ≈ 0.9 is an fitting parameters. By later detailed studies [7,15] it was established

that this seems to be the best n,m-type approximation for Eπ. However, already in the
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1970s, it was objected [10] that the McClelland formula is insensitive of the (small, but

significant) energy differences between isomers.

Evidently, in order to go beyond the (n,m)-approximations, one needs to include

into consideration some additional topological parameters. In the recent mathematical

literature, several bounds for graph energy have been discovered, which make it possible

to relate Eπ with the HOMO and LOMO energies. Expressed in HMO terms, these

bounds are as follows:

Eπ <

√
2mn− n

[
ELOMO − EHOMO

]2
(4)

Eπ <
√

(n− 2)
[
2m− (EHOMO)2 − (ELOMO)2

]
+ EHOMO + ELOMO (5)

Eπ <
√

(n− 4)
[
2m− 2 (EHOMO)2 − 2 (ELOMO)2

]
+ 2EHOMO + 2ELOMO (6)

Eπ >
EHOMO ELOMO n+ 2m

EHOMO + ELOMO

(7)

Eπ >
2
√
EHOMO ELOMO

EHOMO + ELOMO

√
2mn (8)

Eπ >

√
2EHOMO ELOMO

(EHOMO)2 + (ELOMO)2

√
2mn (9)

Eπ >

√
2EHOMO ELOMO

(EHOMO)2 + (ELOMO)2

√
(n− 2)

[
2m− (EHOMO)2 − (ELOMO)2

]
+ EHOMO + ELOMO (10)

Eπ >

√
2EHOMO ELOMO

(EHOMO)2 + (ELOMO)2

√
(n− 4)

[
2m− 2 (EHOMO)2 − 2 (ELOMO)2

]
+ 2EHOMO + 2ELOMO (11)

The bound (4) was deduced in [12]. The bounds (5) and (6) are reported here for the

first time, but they straightforwardly follows from the considerations in the paper [13].

Relations (7) and (8) were established by Oboudi [20], whereas (9)–(11) by one of the

present authors [8]. In the case of Kekuléan benzenoid hydrocarbons (consisting of two

or more hexagons), all the above inequalities are strict.

In the next section we prove an additional results of the same type, namely inequality
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(12).

Theorem 1. If EHOMO ≥ (3−
√

8)ELOMO, then there is a counterpart of Oboudi’s bound

(7):

Eπ <
EHOMO ELOMO n+ 4m

EHOMO + ELOMO

. (12)

2 Proving Theorem 1

For the sake of simplicity, denote ELOMO = λ1 and EHOMO = λn/2 by a and b, respectively.

Noting that
a

2
− λi ≤

a

2
and

b

2
− λi ≤ −

b

2

holds for all i = 1, 2, . . . , n/2, we may be tempted to write(a
2
− λi

)( b
2
− λi

)
≤ −ab

4

which, however, in the general case is incorrect. Examine, therefore, the inequality(a
2
− x
)( b

2
− x
)
≥ −ab

4

which can be rewritten as

2x2 − (a+ b)x+ ab ≥ 0 .

It will hold for all values of the variable x provided the discriminant

D = (a+ b)2 − 8ab = b2 − 6ab+ a2

is negative–valued or zero. The relation D ≤ 0 happens to hold when b belongs to the

interval (b1, b2) where b1 = (3−
√

8)a and b2 = (3+
√

8)a are the solutions (in the variable

b) of the equation b2 − 6ab+ a2 = 0. Note that 3−
√

8 ≈ 0.17157.

The condition b ≤ b2 is satisfied in a trivial manner. What remains is the condition

b1 ≤ b. Assume thus that b ≥ (3−
√

8)a. Then the inequality(a
2
− λi

)( b
2
− λi

)
≥ −ab

4

i.e.,

2λ2i − (a+ b)λi + ab ≥ 0 (13)
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holds for all values of i = 1, 2, . . . , n/2. For at least one value of i the above inequalities

are strict.

Summing (13) over i = 1, 2, . . . , n/2, and taking into Eqs. (1) and (2), we arrive at

2m− (a+ b)
Eπ
2

+ ab
n

2
> 0

which directly implies

Eπ >
abn+ 4m

a+ b

i. e., the upper bound (12).

3 Approximate formulas for total π-electron energy

McClelland obtained his formula (3) by using the upper bound Eπ ≤
√

2mn [19]. Also

other upper and lower bounds for HMO total π-electron energy were found to be reason-

ably well linearly correlated with Eπ, see [7, 12–15] for details. In line with this, in this

paper we examine approximate formulas for total π-electron energy of the form

Eπ ≈ AE∗ +B (14)

where E∗ is one of the expressions occurring on the right–hand side of Eqs. (4)–(11) as

well as (12), whereas A and B are determined by least–squares fitting.

In all our earlier works [7, 12–15], the quality of the correlation of the type (14) was

tested on a sample consisting of 105 non-isomeric polycyclic Kekuléan benzenoids from

the book [24]. Thus, in this sample the parameters n and m vary significantly, and their

effect overshadows those of other topological features.

In order to eliminate the effect of the parameters n and m, in the present work

we employ sets of benzenoid isomers. In particular, our samples consist of all possible

catacondensed benzenoids with a fixed number h of hexagons, h = 6, 7, 8, 9, 10. These

samples were created by means of the computer program CaGe. Their sizes are 36, 118,

411, 1489, and 5572, respectively. Recall that n = 4h+ 2 and m = 5h+ 1.

In Kekuléan benzenoid hydrocarbons, EHOMO is significantly smaller than ELOMO.

For instance, in the case of heptacenes (h = 7), 0.13 ≤ EHOMO ≤ 0.59, whereas the

minimum value of ELOMO is 2.52; in the case of octacenes (h = 8), 0.11 ≤ EHOMO ≤ 0.53,

whereas ELOMO ≥ 2.53. Taking this into account, the right–hand side of (8) can be
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transformed as

2
√
EHOMO ELOMO

EHOMO + ELOMO

√
2mn ≈ 2

√
EHOMO ELOMO

ELOMO

√
2mn = 2

√
EHOMO

ELOMO

√
2mn

implying a further test–formula

E∗ =

√
EHOMO

ELOMO

√
2mn . (15)

The same test–formula would be obtained also from (9).

The results of our numerical testings are shown in the following table; R = the corre-

lation coefficient, ARE = average relative error (in %), MRE = maximal relative error

(in %).

Eq. R ARE MRE Eq. R ARE MRE

h = 6 (4) 0.8552 0.14 0.43 (9) 0.9356 0.09 0.27
(5) 0.8638 0.13 0.44 (10) 0.9359 0.09 0.27
(6) 0.8559 0.14 0.45 (11) 0.9362 0.09 0.27
(7) 0.9075 0.11 0.32 (12) 0.4416 0.24 0.87
(8) 0.9358 0.09 0.28 (15) 0.9351 0.09 0.27

h = 7 (4) 0.7593 0.15 0.58 (9) 0.8925 0.11 0.47
(5) 0.7847 0.15 0.57 (10) 0.8930 0.11 0.47
(6) 0.7755 0.15 0.57 (11) 0.8934 0.11 0.47
(7) 0.8482 0.13 0.51 (12) 0.3109 0.23 1.15
(8) 0.8929 0.11 0.48 (15) 0.8919 0.11 0.47

h = 8 (4) 0.7269 0.16 0.69 (9) 0.8836 0.11 0.45
(5) 0.7473 0.15 0.60 (10) 0.8843 0.11 0.45
(6) 0.7373 0.15 0.61 (11) 0.8849 0.11 0.45
(7) 0.8292 0.13 0.51 (12) 0.2363 0.21 1.34
(8) 0.8831 0.11 0.46 (15) 0.8835 0.11 0.45

h = 9 (4) 0.6827 0.15 0.86 (9) 0.8607 0.11 0.59
(5) 0.7069 0.15 0.76 (10) 0.8614 0.11 0.59
(6) 0.6973 0.15 0.77 (11) 0.8303 0.11 2.47
(7) 0.7978 0.13 0.68 (12) 0.2089 0.20 1.45
(8) 0.8598 0.11 0.58 (15) 0.8607 0.11 0.59

h = 10 (4) 0.6624 0.15 0.98 (9) 0.8495 0.10 0.60
(5) 0.6887 0.14 0.88 (10) 0.8502 0.10 0.60
(6) 0.6800 0.14 0.89 (11) 0.8509 0.10 0.59
(7) 0.7828 0.12 0.76 (12) 0.2114 0.19 1.53
(8) 0.8485 0.10 0.61 (15) 0.8496 0.10 0.60
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From the above table we see that there are five approximate expressions for Eπ,

namely those based on Eqs. (8), (9), (10), (11), and (15), that have nearly the same

accuracy, and that are better than the other examined approximations. Their correlation

coefficients are not impressive, but they all reproduce about 99.9% of the HMO total

π-electron energy of benzenoid hydrocarbons.

On the other hand, since these formulas have quite different algebraic forms, we must

conclude that our study did not succeed to reveal the true (LOMO,HOMO)-dependence

of Eπ. Additional research along these lines would be required. George Hall’s famous

pessimistic opinion [16] that ”the variation in ∆HL from molecule to molecule follows

too complicated a pattern to be summarized in general rules” seems to have not been

overcome.

Within classes of isomeric benzenoids, the LOMO-energy varies within very nar-

row limits. In the case of catacondensed species with h = 6, 7, 8, 9, 10, these limits are

(2.51 , 2.62), (2.52 , 2.64), (2.53 , 2.67), (2.54 , 2.68), and (2.54 , 2.70), respectively. Bearing

this in mind, we may treat the parameter ELOMO as a constant. If so, then the formula

(15) is additionally simplified as

E∗ =
√
EHOMO

√
2mn or, equivalently, E∗ =

√
∆HL

√
2mn . (16)

The approximation based on Eq. (16) was recently considered in [14], but was tested

only for the Zahradńık–Panćı̌r sample of non-isomeric benzenoids. When testing it for

the present samples of isomeric catacondensed benzenoids, we arrive at the following

results:

R ARE MRE

h = 6 0.9428 0.09 0.25
h = 7 0.9038 0.10 0.45
h = 8 0.8981 0.10 0.42
h = 9 0.8773 0.10 0.57
h = 10 0.8668 0.10 0.57

Surprisingly, the approximation (16), in spite of its simple form, is (slightly) better

than any of the (LOMO,HOMO)-type formulas examined above. Therefore, until a

numerically better or theoretically more justified dependence of total π-electron energy

of benzenoid hydrocarbons on ELOMO and EHOMO is discovered, the approximation based

on Eq. (16) may be viewed as the best what we have at the present moment. As shown
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in Ref. [14],

Eπ ≈
(
A+B

√
EHOMO

)√
2mn ; A = 0.889 , B = 0.035

or

Eπ ≈
(
A+B

√
∆HL

)√
2mn ; A = 0.889 , B = 0.025 .
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