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Abstract

We present some examples of hexagonal systems whose Clar covering polynomi-
als have only real zeros, and show that all real zeros of Clar covering polynomials
are dense in the interval (−∞,−1].

1 Introduction

Let H be a hexagonal system with at least one Kekulé structure. A Clar cover of H

is a spanning subgraph of H each (connected) component of which is either a hexagon or

an edge. A resonant pattern of H is a set of hexagons of a Clar cover of H. The Clar

number C(H) of H is the maximum number of hexagons in a resonant pattern of H. In

1996, H. Zhang and F. Zhang [22] introduced the concept of Clar covering polynomial

ζ(H, x) of a hexagonal system H:

ζ(H, x) =

C(H)∑
k=0

c(H, k)xk,

where c(H, k) denotes the number of Clar covers of H having precisely k hexagons. Such

a polynomial is also called the Zhang-Zhang polynomial in the literature [9, 11]. For
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example, let C and T be the coronene and the triphenylene as shown in Figure 1. Then

ζ(C, x) = 2x3 + 14x2 + 30x+ 19 and ζ(T, x) = x3 + 6x2 + 13x+ 9.

TC

Figure 1. Coronene C and triphenylene T

The knowledge of Clar covering polynomials yield immediately a number of impor-

tant topological invariants. For example, the first term c(H,C(H)) and the constant

term c(H, 0) count the numbers of the Clar structures and the Kekulé structures of H

respectively. Zhang and Zhang [23, Conjecture 8] conjectured that the Clar covering poly-

nomial of any hexagonal system has unimodal coefficients. A sequence a0, a1, . . . , an of

nonnegative numbers is unimodal if

a0 ≤ a1 ≤ · · · ≤ am ≥ am+1 ≥ · · · ≥ an

for some m, and log-concave if

ak−1ak+1 ≤ a2k, k = 1, 2, . . . , n− 1.

Clearly, a log-concave sequence of positive numbers is unimodal. A classical approach for

attacking the unimodality and log-concavity problem is to use the Newton inequality: If

the real polynomial f(x) = a0 + a1x+ · · ·+ anx
n has only real zeros, then

a2k ≥ ak−1ak+1
(k + 1)(n− k + 1)

k(n− k)
, k = 1, 2, . . . , n− 1.

In particular, if all coefficients ak are nonnegative, then the sequence of coefficients is

log-concave and unimodal [12, p.104]. So it is natural to ask for which hexagonal systems

the Clar covering polynomials have only real zeros.

A concept closely related to the Clar covering polynomial is the sextet polynomial.

The sextet polynomial of a hexagonal system H is defined as

σ(H, x) =

C(H)∑
k=0

s(H, k)xk,

where s(H, k) denotes the number of resonant patterns of H having precisely k hexagons

and s(H, 0) = 1 if H has a Kekulé structure. A hexagonal system H is called thin if H has

-218-



no coronene C as its nice subgraph (a subgraph C of H is called nice if either H −C has

a perfect matching or H−C is empty). It is known [23] that ζ(H, x) = σ(H, x+1) if H is

a thin hexagonal system. Gutman [7] showed that the sextet polynomial of a hexagonal

chain is precisely the matching polynomial of the corresponding Gutman tree. Gutman [8]

also showed that the sextet polynomial of a resonant hexagonal system coincides with the

independence polynomial of the corresponding Clar graph (see [13] for more information).

On the other hand, Gutman and Godsil [6] showed that the matching polynomial of a

graph has only real zeros. Chudnovsky and Seymour [5] showed that the independence

polynomial of a clawfree graph has only real zeros. As a result, many Clar covering

polynomials have only real zeros.

Zhang et al. [21, Theorem 2.8] showed that if H is a Kekuléan hexagonal system,

then ζ(H, x) = C(R(H), x), where R(H) is the resonance graph of H and C(G, x) is the

cube polynomial of a median graph G. Brešar et al. [2, Theorem 5.1] showed that every

cube polynomial has one real zero in the interval [−2,−1), and so has every Clar covering

polynomial. They also showed that there is no cube zeros in the interval [−1,+∞) and

there exists arbitrarily small negative real cube zeros [2, Corollary 3.2 and Proposition

5.2]. Zhang et al. [21, Theorem 4.11] showed that every cube polynomial can be expressed

in the power of (x+ 1) with nonnegative coefficients.

In this paper we present some non-trivial examples of hexagonal systems whose Clar

covering polynomials have only real zeros. We also show that all real zeros of Clar covering

polynomials are dense in the interval (−∞,−1].

Throughout the paper, all terms used but not defined can be found in [10].

2 Clar covering polynomials with only real zeros

In this section we show that Clar covering polynomials of some hexagonal systems have

only real zeros by means of various approaches.

2.1 The phenanthrene chain Bn

Let Bn be the hexagonal system as shown in Figure 2. Then

σ(Bn, x) = 1 + 3nx+ n(2n− 1)x2 +
n(n− 1)(2n− 1)

6
x3

(see [16] for instance). Clearly, Bn is thin, and so ζ(Bn, x) = σ(Bn, x+ 1).
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Figure 2. Bn

It is easy to check that σ(Bn,−3/n) > 0 and σ(Bn,−1/n) < 0. Hence all real zeros of

σ(Bn, x) are located in (−∞,−3/n), (−3/n,−1/n) and (−1/n,+∞) respectively. Thus

σ(Bn, x) has only real zeros. This result can also be followed from the following folklore

result (see [14] for instance).

Lemma 2.1. Let f(x) =
∑n

k=0 akx
k be a polynomial with positive coefficients. If

a2k > 4ak−1ak+1

for k = 1, 2, . . . , n− 1, then zeros of f(x) are real and distinct.

On the other hand, we have ζ(Bn, x) = σ(Bn, x + 1) since Bn is obviously a thin

hexagonal system. We conclude the following result.

Proposition 2.2. The Clar covering polynomials ζ(Bn, x) have only real zeros.

2.2 The multiple linear hexagonal chain P (m,n)

Let P (m,n) be the hexagonal system as shown in Figure 3. Gutman and Borovićanin [9]

showed that the Clar covering polynomial

ζ(P (m,n), x) =

min{m,n}∑
k=0

(
m

k

)(
n+m− k

m

)
xk,

which can be expressed as

ζ(P (m,n), x) =

min{m,n}∑
k=0

(
m

k

)(
n

k

)
(x+ 1)k

(see [4] for instance).
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Figure 3. P (m,n)

Recall the following classical result (see [19] for instance).

Lemma 2.3 (Malo, 1895). Suppose that f(x) =
∑n

k=0 akx
k and g(x) =

∑m
k=0 bkx

k are

two polynomials with only real zeros and all bi have the same sign. Then the polynomial

(f ◦ g)(x) =
min{n,m}∑

i=0

akbkx
k

has only real zeros.

It follows immediately that the polynomial

min{m,n}∑
k=0

(
m

k

)(
n

k

)
xk = (x+ 1)m ◦ (x+ 1)n

has only real zeros. Thus we obtain the following result.

Proposition 2.4. The Clar covering polynomials ζ(P (m,n), x) have only real zeros.

2.3 The hexagonal system Un

Since the Clar covering polynomials of hexagonal systems often satisfy certain recurrence

relations, the following criterion, which is a special case of [15, Theorem 2.3], will be very

useful.

Lemma 2.5. Let (fn(x))n≥0 be a sequence of polynomials of positive coefficients with

deg f0 = 0 and deg fn−1 ≤ deg fn ≤ deg fn−1 + 1. Suppose that

fn(x) = b(x)fn−1(x) + a(x)fn−2(x), n = 2, 3, . . . ,

where a(x) and b(x) are real polynomials. If a(x) ≤ 0 for x ≤ 0, then all fn(x) have only

real zeros.
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Figure 4. Un

Let Un be the hexagonal system as shown in Figure 4. Then

σ(Un, x) = (1 + 2x)σ(Un−1, x) + x(1− x)σ(Un−2, x)

with σ(U0, x) = 1 and σ(U1, x) = 1 + x (see [17] for instance). It follows immediately

from Lemma 2.5 that σ(Un, x) has only real zeros. Now ζ(Un, x) = σ(Un, x+ 1) since Un

are thin hexagonal systems. Hence we have the following result.

Proposition 2.6. The Clar covering polynomials ζ(Un, x) have only real zeros.

2.4 The pyrene chain Pn

The following result is also very useful in studying the location of a polynomial sequence

satisfying the recurrence relation. Denote by <(z) and =(z) the real and imaginary part

of a complex number z, respectively.

Lemma 2.7 ( [18, Theorem 1]). Let (fn(z))n≥0 be a sequence of polynomials whose gen-

erating function is ∑
n≥0

fn(z)t
n =

1

1 +B(z)t+ A(z)t2

where A(z) and B(z) are two complex polynomials. Then the zeros of fn(z) which satisfy

A(z) 6= 0 lie on the curve C defined by =
[
B2(z)
A(z)

]
= 0

0 ≤ <
[
B2(z)
A(z)

]
≤ 4,

and are dense there as n → +∞.

Corollary 2.8. Let (fn(z))n≥0 be a sequence of polynomials of real coefficients satisfying

fn(z) = c(z)fn−1(z)− z2fn−2(z) (1)

with f0(z) = 1 and f1(z) = c(z). Then the nonzero zeros of fn(z) lie on the curve C

defined by  =
[
c(z)
z

]
= 0

−2 ≤ <
[
c(z)
z

]
≤ 2,

(2)

and are dense there as n → +∞.
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Proof. Note first that (1) implies∑
n≥0

fn(z)t
n =

1

1− c(z)t+ z2t2
.

Now let <
[
c(z)
z

]
= u and =

[
c(z)
z

]
= v. Then

c2(z)

z2
= (u+ vi)2 = (u2 − v2) + 2uvi.

By Lemma 2.7, the curve C is decided by v = 0 and u2 ≤ 4, as required.

. . .

1 2 n

Figure 5. Pn

Let Pn be the hexagonal systems as shown in Figure 5. Then

σ(Pn, x) = (x2 + 4x+ 1)σ(Pn−1, x)− x2σ(Pn−2, x)

with σ(P0, x) = 1 and σ(P1, x) = x2+4x+1 (see [16] for instance). Now c(x) = x2+4x+1,

which has two real zeros. Assume that z0 = a+bi is a non-real zeros of a certain σ(Pn, x).

Then
c(z0)

z0
=

(
a+ 4 +

a

a2 + b2

)
+

(
1− 1

a2 + b2

)
bi.

By the equality in (2), we have a2 + b2 = 1, and so |a| < 1. It follows that∣∣∣∣a+ 4 +
a

a2 + b2

∣∣∣∣ = |2a+ 4| ≥ 4− 2|a| > 2,

a contradiction to the inequality in (2). Thus σ(Pn, x) have only real zeros. Since the

hexagonal systems Pn are thin, we have the following result.

Proposition 2.9. The Clar covering polynomials ζ(Pn, x) have only real zeros.

2.5 The hexagonal system L(n)

Let L(n) be the hexagonal systems as shown in Figure 6.
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n. . .21

Figure 6. L(n)

Zhang et al. [20] gave the explicit expression of the sextet polynomial of L(n) by means

of the transfer-matrix method:

σ(L(n), x) =
λn+1
1 − λn+1

2

λ1 − λ2

, (3)

where

λ1,2 =
x3 + 9x2 + 9x+ 1±

√
x6 + 18x5 + 99x4 + 164x3 + 95x2 + 18x+ 1

2
.

We next show that σ(L(n), x) have only real zeros. We do this only for n even since the

case is similar for n odd. Recall that the identity

λ2n+1
1 − λ2n+1

2 = (λ1 − λ2)
n∏

k=1

[
(λ1 + λ2)

2 − 4λ1λ2 cos
2 kπ

2n+ 1

]
.

Now λ1 + λ2 = x3 + 9x2 + 9x+ 1 and λ1λ2 = x2. Hence

σ(L(n), x) =
n∏

k=1

[
(x3 + 9x2 + 9x+ 1)2 − 4x2 cos2

kπ

2n+ 1

]

=
2n∏
k=1

(
x3 + 9x2 + 9x+ 1− 2x cos

kπ

2n+ 1

)
.

It follows from Lemma 2.1 that x3+9x2+9x+1−2cx has only real zeros for −1 < c < 1, so

does σ(L(n), x). Note that L(n) are thin hexagonal systems. Hence we have the following

result.

Proposition 2.10. The Clar covering polynomials ζ(L(n), x) have only real zeros.

3 Distribution of real Clar covering zeros
It is known [21, Corollary 4.7] that there is no Clar covering zeros in the interval [−1,+∞).

In this section we show that real Clar covering zeros are dense in the interval (−∞,−1].

We need the following lemma.
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Let (fn(x))n≥0 be a sequence of complex polynomials. We say that the complex number

x is a limit of zeros of the sequence (fn(x))n≥0 if there is a sequence (zn)n≥0 such that

fn(zn) = 0 and zn → x as n → +∞. Suppose now that (fn(x))n≥0 is a sequence of

polynomials satisfying the recursion

fn+k(x) = −
k∑

j=1

cj(x)fn+k−j(x)

where cj(x) are polynomials in x. Let λj(x) be all zeros of the associated characteristic

equation λk +
∑k

j=1 cj(x)λ
k−j = 0. It is well known that if λj(x) are distinct, then

fn(x) =
k∑

j=1

αj(x)λ
n
j (x), (4)

where αj(x) are determined from the initial conditions.

Lemma 3.1 ( [1, Theorem]). Under the non-degeneracy requirements that in (4) no αj(x)

is identically zero and that for no pair i 6= j is λi(x) ≡ ωλj(x) for some ω ∈ C of unit

modulus, then x is a limit of zeros of (fn(x))n≥0 if and only if either

(i) two or more of the λi(x) are of equal modulus, and strictly greater (in modulus) than

the others; or

(ii) for some j, λj(x) has modulus strictly greater than all the other λi(x) have, and

αj(x) = 0.

Corollary 3.2. Let (fn(x))n≥0 be a sequence of real polynomials satisfying the recurrence

relation

fn(x) = b(x)fn−1(x) + a(x)fn−2(x), n = 2, 3, . . . ,

where a(x), b(x) ∈ R[x], b2(x) + 4a(x) is not identically zero. Suppose that fn(x)/fn−1(x)

are not identical for all n. If all fn(x) have only real zeros, then these zeros are dense on

the set

I = {x ∈ R : b2(x) + 4a(x) ≤ 0}.

For m ≥ 2, let L(m,n) be the hexagonal chains shown as in Figure 7. Then

ζ(L(m,n), x) = [(m− 2)x+ (m− 1)]ζ(L(m,n− 1), x) + (x+ 1)ζ(L(m,n− 2), x) (5)

with ζ(L(m, 0), x) = 1 and ζ(L(m, 1), x) = mx+m+1 (see [3,22] for instance). We next

discuss the location of zeros of all ζ(L(m,n), x).
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Figure 7. L(m,n)

Consider first the case m = 2. In this case,

ζ(L(2, n), x) = ζ(L(2, n− 1), x) + (x+ 1)ζ(L(2, n− 2), x)

with ζ(L(2, 0), x) = 1 and ζ(L(2, 1), x) = 2x+ 3. It follows from Corollary 3.2 that zeros

of all ζ(L(2, n), x) are dense in the set {x ∈ R : 1 + 4(x+ 1) ≤ 0}, i.e., x ∈ (−∞,−5/4].

We next consider the case m ≥ 3. Then zeros of ζ(L(m,n), x) are dense in the set

{x ∈ R : (m− 2)2(x+ 1)2 + 2m(x+ 1) + 1 ≤ 0},

i.e., x ∈ Im = [am, bm], where

am = − 1

(
√
m− 1− 1)2

− 1, bm = − 1

(
√
m− 1 + 1)2

− 1. (6)

Clearly, (am), (bm) are increasing sequences and am+1 < bm for m ≥ 3. Hence Im∩Im+1 6=

∅. Also, a3 = −2(2 +
√
2) and bm → −1 when m → +∞. Thus zeros of ζ(L(m,n), x) for

m ≥ 3 are dense in the interval [−2(2 +
√
2),−1].

Since −2(2+
√
2) < −5/4, we conclude that zeros of ζ(L(m,n), x) for m ≥ 2 are dense

in the interval (−∞,−1]. Thus we have the following result.

Theorem 3.3. Real Clar covering zeros are dense in the interval (−∞,−1].

4 Further work

The Clar covering polynomial of a hexagonal system may have non-real zeros. For exam-

ple, the Clar covering polynomial of the triphenylene T is

ζ(T, x) = x3 + 6x2 + 13x+ 9,

whose three zeros are

x1 ≈ −1.32, x2 ≈ −2.34 + 1.16i, x3 ≈ −2.34− 1.16i.
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By checking small hexagonal systems, we found that the real part of every zero of Clar

covering polynomials is less than −1. It is possible that all Clar covering polynomials

have such properties.

H. Zhang and F. Zhang [23, Conjecture 8] conjectured that the Clar covering poly-

nomial of a hexagonal system has unimodal coefficients. Numerical results suggest the

following stronger conjecture.

Conjecture 4.1. The Clar covering polynomial of a hexagonal system has log-concave

coefficients.

Acknowledgment: The authors thank the anonymous referee for valuable comments and
suggestions.
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