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Abstract

We show that the recently introduced interface theory of benzenoids [Langner and
Witek, MATCH Commun. Math. Comput. Chem. (2020)] can be readily applied
to characterize various properties of benzenoids and their Clar covers. A carefully
selected collection of examples demonstrates how to use interface theory for detect-
ing non-Kekuléan or essentially disconnected character of benzenoids, computing
their Clar numbers, constructing and enumerating their Kekulé structures and Clar
covers, and determining their Zhang-Zhang polynomials. The exposition has rather
pedagogical character and is supposed to familiarize the reader with the basic toolkit
of the interface theory of benzenoids.

1 Introduction

The main purpose of the current paper is to give a practical guide for using interface

theory of benzenoids for problem solving in chemical graph theory. The interface theory,

developed in a prequel to this paper [41], uses the concepts of fragments and interfaces

between fragments to represent uniquely each Clar cover of a given benzenoid [38–40]. We

have demonstrated in the previous paper [41] that each Clar cover of a given benzenoid

can be completely encoded by the covering orders of the interface bonds. On the other

hand, theorems given in [41] provide us with the necessary and sufficient conditions for

a set of interface bond coverings to define a valid Clar cover of a given benzenoid. The
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scope of applications of the interface theory to a given benzenoid is amazingly broad: from

demonstration of its Kekuléan (or non-Kekuléan) character, via detecting the regions of

fixed bonds, computing its Clar number, construction of a Clar cover with a prespecified

number of aromatic sextets, construction of a Clar structure or a Kekulé structure, con-

struction of all its conceivable Clar covers or all Kekulé structures, to computing its Clar

covering polynomial (aka Zhang-Zhang polynomial or ZZ polynomial). Since it is the first

account of using interface theory for practical purposes, and since the introduced concepts

may seem somewhat unfamiliar to the reader, we have decided to resort to an elementary

level of exposition in the current article to guarantee clear and transparent demonstration

of the introduced techniques. We hope that the presented examples convince the chemical

graph theory community that the interface theory of benzenoids is a useful and powerful

novel tool for solving practical problems [2,3,14,44,45,52,59]. In the forthcoming papers,

we are planning to apply the interface theory of benzenoids for finding Clar numbers

of various benzenoid classes and for computing closed form of ZZ polynomials for n-tier

regular strips. Moreover, a rather straightforward extension of the interface theory to

nanotubes and other non-planar structures [1, 7, 19–23, 31–33, 42, 46, 47, 49, 50, 56] is also

planned.

2 Preliminaries

A benzenoid B is defined as a finite plane graph embedded in a hexagonal lattice [26].

Here, we treat the definition of B quite generally, allowing benzenoids with inner perime-

ters and with vertices of degree 1. A Kekulé structure K is a spanning subgraph of B

whose components are K2 [34] and a Clar cover C is a spanning subgraph of B whose

components are either K2 or C6 [15]. Not every benzenoid has Clar covers. A benzenoid

for which at least one Clar cover exists is called Kekuléan; otherwise we say it is non-

Kekuléan [16, 18, 28, 48]. The maximum number Cl of aromatic rings C6 that can be

accommodated in B is called the Clar number [15, 27]. A Clar cover with exactly Cl

aromatic rings is called a Clar structure [15, 27] and a Clar cover with no aromatic rings

is called a Kekulé structure [6, 17, 26, 34, 43]. We say that a benzenoid B has a fixed

bond if this bond has the same bond order in every Clar cover of B. We say that a

benzenoid is essentially disconnected if a region of fixed bonds separates B into at least

two regions of non-fixed bonds, for which the Clar covers can be constructed indepen-
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dently [9, 10, 35, 37, 54]. The number of conceivable Clar covers of a benzenoid B for a

Kekuléan benzenoid is usually quite large. It is convenient to enumerate them using the

Clar covering polynomial (aka Zhang-Zhang polynomial or ZZ polynomial) [53,55,57,58]

ZZ (B, x) =
Cl∑
k=0

ckx
k, (1)

where the coefficient ck indicates the number of Clar covers containing exactly k aromatic

rings C6, and x is a dummy variable keeping track of these coefficients. The ZZ poly-

nomial conspicuously encodes various quantities characterizing a given benzenoid: the

Clar number Cl of B is given by the order of the ZZ polynomial, the number of Clar

structures is given by the coefficient cCl, and the number of Kekulé structures is given by

the coefficient c0. The new terminology used in this paper and pertaining to the interface

theory of benzenoids is briefly introduced in the next section.

3 Brief outline of the interface theory of benzenoids

In the following, we summarize the basic concepts and central theorems of the interface

theory of benzenoids, which have been introduced and derived formally in the prequel

to this manuscript [41]. These concepts, originally tailored only for single zigzag chains,

were introduced in a rudimentary form in [38–40]. In the current paper, we follow a

practical course for exposition of the definitions and theorems given originally in a formal

mathematical language in [41].

Take an arbitrary benzenoid B, and orient it in such a way that some of its bonds are

aligned vertically. Of course, there are six possible ways of doing so, but for the sake of

utilizing the interface theory optimally, it is most convenient to choose an orientation in

which the benzenoid is wide rather than tall. The bonds in B that are aligned vertically

are called interface bonds, and the remaining bonds in B are called spine bonds. In the

next step, we divide the benzenoid B into horizontal stripes called fragments. In practice,

it is easiest to perform this step by drawing a set of K + 1 horizontal partition lines P0,

P1, . . ., PK as shown on the left side of Fig. 1. The portion of the benzenoid B located

between the lines Pk−1 and Pk is called the fragment fk. The set of interface bonds crossed

by the line Pk is called the interface ik. Each fragment fk clearly has two interfaces: ik−1

as its upper interface and ik as its lower interface. Note that the upper interface i0 of the

first fragment f1 and the lower interface iK of the last fragment fK of B are manifestly
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empty. The benzenoid shown in Fig. 1 is divided into five fragments f1, . . ., f5 by six

partition lines P0, . . ., P5. There exist six interfaces i0, . . ., i5; the terminal interfaces i0

and i5 are empty.

fragment f2

fragment f1

fragment f3

fragment f4

fragment f5

P0

P2

P3

P4

P5

P1

interface i0

interface i2

interface i3

interface i4

interface i5

interface i1

Figure 1. Dividing a benzenoid B into fragments. The set of vertical bonds crossed
by the partition line Pk forms the interface ik. Note that the first and
last interfaces, i0 and i5, are empty.

If a fragment fk is connected, we refer to is as an elementary fragment. It may

happen that the fragment fk consists of multiple disconnected pieces; consider for example

the fragment f3 of the benzenoid depicted in panel (a) of Fig. 2, which consists of two

components. In this case, each of these pieces is referred to as an elementary fragment.

A (composite) fragment consisting of multiple elementary fragments is called a combined

f2

f1

f3 = f3    f3

f4

f5

P0

P2

P3

P4

P5

P1

i0

i2

i3

i4

i5

i1

[

(a)

P0

P2

P3

P4

P5

P1

i0

i2

i3

i4

i5

i1
f2

f1

f4

f5

= f2    f2[

f3

= f1    f1    f1[ [

= f4    f4[

= f5    f5    f5[ [

(b)

P0

P2

P3

P4

P5

P1
f2

f1

f4

f5

i0

i2

i3

i4

i5

= f2    f2

i1
[

f3

= f1    f1[

(c)

P0

P2

P3

P4

P5

P1

i0

i2

i3

i4

i5

i1
f2

f1

f4

f5

f3

= f1    f1    f1[ [

= f4    f4[

= f5    f5[

= f2    f2    f2[ [

= f3    f3    f3[ [

(d)

Figure 2. Partition of benzenoids using lines P0, . . ., PK results in a collection of
fragments f1, . . ., fK and interfaces i0, . . ., iK . Each fragment consists of
one or more connected components, referred to as elementary fragments.
A fragment consisting of more than one elementary fragments is referred
to as a combined fragment. The benzenoid in panel (a) has a combined
fragment f3, which consists of two elementary fragments f ′3 and f ′′3 ; the
other fragments f1, f2, f4 and f5 are elementary. The remaining ex-
amples demonstrate how to partition various benzenoids into elementary
fragments.
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shape W shape N shape L shape R

Figure 3. Each elementary fragment can easily be assigned a definite shape
[W (wide), N (narrow), R (right), or L (left)] by inspecting the charac-
ter (lower or upper) of its first atom C1 and its last atom Cm. Note that,
for the shape assignment, it is entirely irrelevant whether the interface
bonds are present or not.

fragment. In this way, any benzenoid can be cut into a collection of elementary fragments,

as illustrated by the examples (a)–(d) in Fig. 2. The notion of elementary fragments is

naturally accompanied by the notion of interfaces of elementary fragments. Assume that

f ≡ fk is a fragment containing an elementary fragment f ′ ⊂ f . Assume further that f

has iu as its upper interface and il as its lower interface. Then, the upper interface i′u and

the lower interface i′l of the elementary fragment f ′ are simply defined as i′u = iu ∩ f ′ and

i′l = il ∩ f ′, respectively.

The next step in any practical application of the interface theory is to determine the

shape of any elementary fragment obtained from the partition above. This is done very

easily simply by looking at the character of the first and the last atom in each elementary

fragment. We say that an atom C is an upper atom if its position in the fragment can be

depicted by one of the following seven symbols: , , , , , , . Similarly, we say that

an atom C is an lower atom if its position in the fragment can be depicted by one of the

following seven symbols: , , , , , , . Based on this classification, the shape of an

elementary fragment f with the first atom v1 and the last atom vm is defined as:

W (wide) if v1 is a lower atom, and vm is a lower atom.
N (narrow) if v1 is an upper atom, and vm is an upper atom.
R (right) if v1 is an upper atom, and vm is a lower atom.
L (left) if v1 is a lower atom, and vm is an upper atom.

Practical application of this classification is illustrated in Fig. 3 for a series of elemen-

tary fragments, many of which appear in Fig. 2. Note that even the most complicated

fragments can be easily assigned a definite shape (W, N, R, or L) using these simple rules.

In the next step, we can focus on the analysis of the Clar covers of B using the
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information about its fragments f1, . . ., fK and interfaces i0, . . ., iK . The most important

tools that will be used for this analysis are the covering orders of the bonds and the

covering orders of the interfaces. The (covering) order of the bond b in a Clar cover of B

is given by

ord(b) =


0 if b is a single bond,
1/2 if b is an aromatic bond,
1 if b is a double bond.

A bond b is said to be covered if ord(b) > 0. Similarly, the (covering) order of the interface

i consisting of the bonds b1, . . ., bn is given by ord(i) = ord(b1)+ . . .+ord(bn). It turns out

that the orders of bonds and the orders of interfaces satisfy a number of interesting and

useful relationships that can be used for characterizing various topological properties of

benzenoids. Let us review briefly the most important of these properties. For proofs and

detailed formulation of the forthcoming facts, see Lemma 8, Remark 9, and Theorems

11, 16, and 21 of [41], respectively, together with the discussion about the elementary

fragments in Section 3.5 of [41].

Consider a benzenoid B. Let f be an elementary fragment of B with iu as its upper

interface and il as its lower interface. Denote by v1 and vm the first and last atom of f ,

respectively. Further, if B is Kekuléan, denote by C one of its Clar covers. Then the

following facts are true.

Lemma 1. The orders of the spine bonds in C are uniquely determined by the orders of

the interface bonds in C.

Lemma 2. The Clar cover C is uniquely and fully determined by the orders of its inter-

face bonds.
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Theorem 3 (First Rule of Interface Theory). The order of the lower interface is fully

determined by the order of the upper interface and the shape of the elementary fragment :

(a) If f has the shape W, then ord(il) = ord(iu) + 1.

(b) If f has the shape N, then ord(il) = ord(iu)− 1.

(c) If f has the shape R or L, then ord(il) = ord(iu).

Theorem 4 (Second Rule of Interface Theory). The covered interface bonds of C

in f are distributed as follows.

(a) The first covered interface bond in f belongs to the upper
lower interface if v1 is an

upper
lower atom.

(b) The last covered interface bond in f belongs to the upper
lower interface if vm is an

upper
lower atom.

(c) Each of the other covered interface bonds (i.e., a double bond or a pair of

aromatic bonds) located in the upper
lower interface is flanked by a pair of covered

interface bonds (i.e., double bonds and/or pairs of aromatic bonds) both located

in the lower
upper interface.

Theorem 5 (Third Rule of Interface Theory). Assume that covering orders for all

interface bonds in B have been assigned in such a way that for every elementary fragment

f of B, the following three conditions are satisfied:

(a) The set of aromatic interface bonds can be written as a union of disjoint pairs

(e, e′), where e and e′ are the left and right interface bonds of some hexagon

of B. Furthermore, the interface bonds connected to this hexagon from above

and below are not covered.

(b) The orders of the upper and lower interface of f satisfy the conditions (a),

(b), and (c) of Theorem 3.

(c) The orders of the upper and lower interface of f satisfy the conditions (a),

(b), and (c) of Theorem 4.

Then, there is exactly one Clar cover with the specified interface bonds.
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4 Introductory examples

The concepts and theorems given in the previous section provide us with valuable informa-

tion about the graph-theoretical structure of benzenoids. In this section, we demonstrate

how to use these tools for predicting the distribution of double bonds and aromatic rings

in a given benzenoid, determining an upper bond for its Clar number, and constructing

its Clar covers. More advanced applications are given in the next section.

Example 6. Consider the benzenoid introduced originally in Fig. 1. The First Rule

(Theorem 3) provides an easy tool for predicting the number of double bonds or aromatic

rings in the interfaces of this structure. The resulting interface orders are given in Fig. 4.

The detailed considerations leading to these conclusions can be summarized as follows:

• The interfaces i0 and i5 do not contain any bonds, and thus must have order

ord(i0) = ord(i5) = 0.

• The fragment f1 has shape W, therefore ord(i1) = ord(i0)+1 = 1. This signifies that

the interface i1 contains either one double bond or one aromatic ring.

• The fragment f2 has shape L, therefore ord(i2) = ord(i1) = 1. This signifies that the

interface i2 contains either one double bond or one aromatic ring.

• The fragment f3 has shape W, therefore ord(i3) = ord(i2)+1 = 2. This signifies that

the interface i3 contains either two double bonds, or two aromatic rings, or exactly

one of each.

• The fragment f4 has shape N, therefore ord(i4) = ord(i3)− 1 = 1.

• The fragment f5 has shape N, therefore ord(i5) = ord(i4)−1 = 0, in agreement with

earlier observation.

ord(i2) = 1

shape(f1) = W

ord(i3) = 2

ord(i4) = 1

shape(f2) = L

shape(f3) = W

shape(f4) = N

shape(f5) = N

ord(i0) = 0

ord(i5) = 0

ord(i1) = 1

Figure 4. Interface orders of the benzenoid B from Fig. 1 as deduced from Theo-
rem 3.
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Example 7. Consider again the benzenoid B = . Example 6 provides us with the

order of each interface ik of B, which can be interpreted as the maximal number of

aromatic rings allowed in ik. Therefore, the upper limit for the total number of aromatic

rings in B (i.e., for the Clar number of B) can be simply computed by summing over all

the interface orders determined in Example 6:

Cl(B) ≤
∑
k

ord(ik) = 5. (2)

Following the information about the interface orders determined in Example 6, it is

straightforward to construct a Clar cover in which this upper bound is achieved.

Figure 5. A Clar cover of B from Fig. 1 with five aromatic sextets distributed as
suggested by Example 6 shows that its Clar number is at least 5. This
fact, together with Eq. (2), which shows that the Clar number is at most
5, establishes that Cl(B) = 5.

Since Cl(B) = 5, the Clar cover shown in Fig. 5 is actually a Clar structure of B.

Moreover, as can be seen from the ZZ polynomial of B, which is readily calculated using

the ZZDecomposer [13],

ZZ(B) = x5 + 19x4 + 112x3 + 280x2 + 310x+ 125847, (3)

there is only one Clar cover with five aromatic sextets (because the coefficient of x5 is 1),

which signifies that the Clar cover shown in Fig. 5 is actually the Clar structure of B.

Subsection 5.3 explores the determination of Clar numbers using interface theory in

more detail, including cases in which the upper limit estimated according to Eq. (2) is

not achieved.

Example 8. Using Theorem 5, it is easy to construct a Clar cover of the benzenoid B =

with some special characteristics. Here, we show how to construct a Clar cover of B

with exactly two aromatic rings. According to Eq. (3), there exist 280 distinct Clar covers

with the required property, out of which
(
5
3

)
· 23 = 80 descent from the Clar structure of

B shown in Fig. 5. Let us construct here a Clar cover of order 2 that does not belong to

this set.
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• Considering the first fragment f1, we see from Theorem 3 that ord(i1) = 1, signifying

that this interface contains exactly one double bond or one aromatic ring. Theorem 4

imposes no restriction on the placement of the covered bond(s). In other words, we

may place one double bond or one aromatic ring anywhere in the first interface. Let

us choose a double bond and place it in the third position of i1.

• Considering the fragment f2, we see from Theorem 3 that ord(i2) = 1, signifying

that this interface again contains exactly one double bond or one aromatic ring.

Theorem 4 applied to the fragment f2 implies that the first covered bond is located in

the lower interface, and that the last covered bond is located in the upper interface.

These two facts signify that the covered bond(s) in the lower interface are located to

the left of the covered bond in the upper interface. Taking into account the actual

position of the double bond in the interface i1, we are left with the possibility of

placing a double bond in the first, second, or third position of the interface i2 or

with the possibility of placing an aromatic ring inside the first or second hexagon

of the interface i2. Let us choose an aromatic ring and place it in the first hexagon

of i2. This location of the aromatic ring is different from the location of aromatic

rings in the Clar structure of B, signifying that the Clar cover we construct here

does not descent from the Clar structure of B shown in Fig. 5.

• Considering the fragment f3, we see from Theorem 3 that ord(i3) = 2. Theorem 4

forces us to place the covered bonds on both sides of the covered bonds of the

interface i2. This signifies that the first covered bond of the interface i3 must be

placed in the first position of i3 and that it must be a double bond, as there is not

enough space to place an aromatic ring there. For the remaining covered bond(s) of

i3, we are left with the possibility of placing a double bond in the third, fourth, or

fifth position of the interface i3 or with the possibility of placing an aromatic ring

inside the third or fourth hexagon of the interface i3. Let us choose an aromatic

ring and place it in the fourth hexagon of i3.

• Considering the fragment f4, we see from Theorem 3 that ord(i4) = 1. Theorem 4

applied to the fragment f2 implies that the covered bond(s) in i4 must be placed

between the double bond and the aromatic ring of the interface i3. Specifically,

we are left with a possibility of placing a double bond in the first, second or third
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position of i4. Let us place a double bond in the third position of i4. Note that no

aromatic ring can be placed in i4, as the Clar cover of order 2 we construct already

contains two aromatic rings (one in i2 and one in i3). This completes the process of

assigning covering orders to the interface bonds in B.

• The distribution of the covered bonds in the interfaces of B satisfies the conditions

of Theorem 5, which guarantees that that there exists a unique Clar cover with the

selected set of covered interface bonds. The resulting Clar cover is depicted on the

right side of Fig. 6.

ord(i2) = 1

ord(i3) = 2

ord(i4) = 1

ord(i1) = 1

 1  2

Figure 6. Construction of an arbitrary Clar cover of a benzenoid B proceeds via
 1 choosing covered interface bonds in agreement with the conditions of
Theorem 5, followed by  2 automatic distribution of covered spine bonds
in agreement with Lemma 1.

The rules of interface theory may at first appear somewhat complicated; however, with

just a little bit of practice, they are easy and straightforward to apply. It might be useful

and enlightening for the readers to get involved in the following two exercises.

Exercise 9. Which of the following structures can be expected to have the highest Clar

number? The solution can be found at the bottom of this page.

Pr(2,4) Ch(2,2,4) O(2,2,4)

SolutiontoExercise9:AccordingtotheFirstRule,theordersoftheinterfacesforPr(2,4)are:1,0,
and1.Similarly,forCh(2,2,4)andO(2,2,4),wehave,respectively,1,1,1,and1,2,1.Theresulting
upperboundsfortheClarnumberofthesethreestructuresare2,3,and4,respectively.Theseupper
boundsareachieved,becausethestructuresarewideenoughtoaccommodatealltherequiredaromatic
rings.Consequently,wefindthatO(2,2,4)isexpectedtohavethehighestClarnumber.
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Exercise 10. Are the following distributions of covered interface bonds allowed? If not,

which rules are violated?

(a)

(d)

(b)

(e)

(c)

(f)

5 Applications

In this section we compile a number of straightforward applications of the interface theory

for solving real-life problems in chemical graph theory, including verification of Kekuléan

character of benzenoids, identification of essentially disconnected components of ben-

zenoids, determination of their Clar number, as well as computation of their Zhang–Zhang

polynomial.

5.1 Kekuléan character

Most non-Kekuléan structures can easily be detected by checking for inconsistencies in

the interface orders.

Example 11. In the goblet X(3, 5) shown in Fig. 7, the First Rule predicts that the

order of the interface i3 should be −1. Since negative covering orders are not allowed, no

Kekulé structure exists for this molecule.

SolutionstoExercise10:
(a)allowed,(b)boththeFirstRuleandcondition(b)oftheSecondRuleareviolated,(c)condition(c)
oftheThirdRuleisviolated,sinceadoublebondintheupperinterfacecannotbelocatedbetweena
pairofaromaticbondsinthelowerinterface,(d)theFirstRuleandcondition(c)oftheSecondRuleare
bothviolated,(e)allowed,(f)theFirstRuleandcondition(a)oftheSecondRulearebothviolated.
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ord(i3) = -1

ord(i4) = 0

ord(i5) = 1

ord(i1) = 1

ord(i2) = 0

shape(f2) = N

shape(f3) = N

shape(f4) = W

shape(f5) = W

ord(i0) = 0

ord(i6) = 0

shape(f1) = W

shape(f6) = N

Figure 7. Theorem 3 predicts a negative order for the interface i3 of the goblet
X(3, 5). Since this is an absurdity, X(3, 5) is non-Kekuléan.

Example 12. Consider the benzenoid shown in Fig. 8. It is clear that for the empty

interfaces i0 and i4, ord(i0) = ord(i4) = 0. However, a consecutive application of Theo-

rem 3 to the interface sequence i0 → i1 → i2 → i3 → i4 predicts that ord(i4) = 1. This

discrepancy proves that no Kekulé structure can be found for this benzenoid.

ord(i2) = 1

ord(i3) = 1

ord(i4) = 0

ord(i0) = -1

ord(i1) = 0

W

W

R

N

ord(i2) = 2

ord(i3) = 2

ord(i4) = 1

ord(i0) = 0

ord(i1) = 1

Figure 8. This benzenoid is non-Kekuléan, since it is not possible to find consistent
and legitimate interface orders using Theorem 3.

In less obvious cases, where the interface orders behave in agreement with the First

Rule, the Kekuléan character of a benzenoid can be verified by attempting to explicitly

ord(i3) = 3

ord(i4) = 2

ord(i5) = 1

ord(i1) = 1

ord(i2) = 2

shape(f2) = W

shape(f3) = W

shape(f4) = N

shape(f5) = N

ord(i0) = 0

ord(i6) = 0

shape(f1) = W

shape(f6) = N

Figure 9. The interface i3 does not contain sufficiently many locations to accom-
modate the three double bonds required by ord(i3) = 3, thus no Kekulé
structure is possible.
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construct a Kekulé structure using the Third Rule, Theorem 5.

Example 13. Consider the benzenoid shown in Fig. 9. In this case, the interface orders

are consistent, but it is not possible to accommodate three double bonds in the interface

i3, because there are only two positions available there. Therefore, no Kekulé structure

can be found for this benzenoid.

Example 14. Consider the benzenoid shown in Fig. 10. The interface orders are consis-

tent. The interface i4, consisting of three interface bonds, has order 3; therefore, all three

bonds in i4 must be double bonds. Consider now the fragment f4. According to Theo-

rem 4 (c), the double bond in the second position of i4 must be flanked by two covered

interface bonds in i3. However, the topology of f4 does not allow this. Therefore, the

benzenoid shown in Fig. 10 is non-Kekuléan.

ord(i4) =3

ord(i5) = 3

ord(i6) = 2

ord(i2) = 2

ord(i3) =3

shape(f2) = W

shape(f3) = W

shape(f4) = R

shape(f5) = L

ord(i1) = 1

ord(i7) =1

shape(f1) = W

shape(f6) = N

ord(i0) = 0

ord(i8) =0

shape(f7) = N

shape(f8) = N

Figure 10. The First Rule requires placing three double bonds in the interface i4 of
the presented benzenoid. However, it is impossible to distribute covered
bonds in the interface i3 in a way that satisfies the Second Rule for the
fragment f4. Consequently, no Kekulé structure can be constructed for
this benzenoid.

Example 15. Consider the benzenoid shown in Fig. 11. To demonstrate that this a

Kekuléan molecule, it is sufficient to construct a single Kekulé structure for it. This can

be easily done by placing double bonds in agreement with the conditions of Theorem 5,

as demonstrated for example on the left side of Fig. 11. Note that any of the 41 possible

Kekulé structures, which can be constructed in similar way for the studied here molecule,

would demonstrate its Kekuléan character .
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ord(i3) = 1

ord(i4) = 1

ord(i5) = 1

ord(i1) = 1

ord(i2) = 1

L

R

L

R

ord(i0) = 0

ord(i6) = 0

W

N

Figure 11. According to the interface theory, a demonstration that a benzenoid is
Kekuléan can proceed by placing double interface bonds in agreement
with the First Rule and the Second Rule. Then, the Third Rule guaran-
tees that there exists a Kekulé structure with such prespecified covered
interface bonds.

5.1.1 Connection to previous results

Gutman and Cyvin [28] introduced a method for identifying Kekuléan structures which

is equivalent to the criteria derived here, which relies on the peaks and valleys approach

[30]. Their algorithm is based on the concept of monotonous (always going downwards),

alternating (passing through single and double bonds alternately), independent (without

common atoms) paths from peaks (upper atoms with two spine bonds and no interface

bond) to valleys (lower atoms with two spine bonds and no interface bond). According

to [24, 28], there is a one-to-one correspondence between Kekulé structures and sets of

monotonous alternating independent paths from peaks to valleys that start with a double

bond. In the words of the interface theory, each such path is composed of single interface

bonds and double spine bonds. The interface bonds that are not involved in any path

are exactly the covered interface bonds. This relation is bidirectional: Choosing a set of

double interface bonds uniquely determines a set of paths. This one-to-one correspondence

is illustrated in Fig. 12. It might be instructive to give here some further discussion of the

correspondence mentioned above. Every peak introduces an additional single bond to the

following interface, and every valley removes a single bond from the following interface.

The fact that one can always find a continuous path between a peak and a valley is closely

related to the fact that single interface bonds are always located in adjacent positions

in neighbouring interfaces [24], which is a reflection of Theorem 4 applied to Kekulé

structures. The algorithm introduced in [28] uses an iterative process to determine the

Kekuléan character of a structure, which proceeds as follows. If there is a pendent atom

-191-



W

W

N

N

ord(i2) = 2

ord(i3) = 1

ord(i4) = 0

ord(i0) = 0

ord(i1) = 1

Figure 12. It is equivalent to choose a set of double interface bonds in accordance
with Theorem 5 (left) or a set of monotonous alternating independent
paths from peaks to valleys (right). The double interface bonds are
exactly the interface bonds that do not lie on any path. Either repre-
sentation determines the same Kekulé structure.

(an atom with only one bond), remove it together with its first neighbor. Otherwise,

remove an entire path from the side of a benzenoid. These operations do not change

the Kekuléan character of a benzenoid, and are repeated until the remaining structure

is clearly Kekuléan or non-Kekuléan. In terms of the interface theory, removing a path

does not change the fragment shapes, and is equivalent to assigning single bond character

to all interface bonds on the path. Removing a pendent atom that has only a spine

bond together with its neighbor does not change the fragment shape, and is equivalent to

assigning single bond character to the interface bond of the neighboring atom. Removing

a pendent atom that has only an interface bond together with its neighbor does change

the fragment shape, and is equivalent to assigning double bond character to that interface

bond. In this sense, the algorithm in [28] iteratively selects—whenever possible—a set

of covered interface bonds that in the light of the Third Rule corresponds to a unique

Kekulé structure.

5.2 Essentially disconnected structures

Some Kekuléan benzenoids possess fixed bonds, i.e., bonds that in all Clar covers (natu-

rally including all Kekulé structures) have the same covering order. In some situations, the

fixed bonds separate regions with variable bond covering order. Such regions are referred

to as disconnected components of the benzenoid and such a benzenoid is referred to as

essentially disconnected. In the current section, we show how to use the interface theory

to detect fixed bonds in benzenoids and how to discover their essentially disconnected

character. The rules are rather simple and straightforward. If an interface has order zero,

all its bonds are single bonds. Likewise, if an interface consisting of n bonds has order n,
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all its bonds must be double bonds. Note that detecting essentially disconnected charac-

ter of a given benzenoid has far-reaching practical consequences, as the coverings can be

constructed independently for each of the disconnected components. Consequently, the

ZZ polynomial of an essentially disconnected benzenoid is simply the product of the ZZ

polynomials of its disconnected components.

Example 16. In the prolate rectangle Pr(3, n), shown in Fig. 13, the interfaces i2 and i4

have order zero, meaning that all bonds in these interfaces are single bonds. Therefore,

Pr(3, n) is an essentially disconnected structure, and its ZZ polynomial is simply derived

from the ZZ polynomials of the three polyacenes L(n) in the first, third and fifth row:

ZZ(Pr(3, n)) = ZZ(L(n)) · ZZ(L(n)) · ZZ(L(n)).

ord(i3) = 1

ord(i4) = 0

ord(i5) = 1

ord(i1) = 1

ord(i2) = 0

ord(i0) = 0

ord(i6) = 0

Figure 13. The vanishing interface order for the interfaces i2 and i4 of Pr(3, n)
naturally implies that i2 and i4 consist entirely of single bonds. There-
fore, this structure is essentially disconnected and equivalent to three
independent polyacenes L(n). This observation is illustrated here for
n = 4.

Example 17. The interface i3 of the structure B shown in Fig. 14 has order 2, implying

that i3 consists entirely of double bonds. The system of parallel double bonds in i3

propagates partially to i2 and i4, fixing the order of the first bond in each of these interfaces

and separating two independent polyacenes L(2), depicted in black in Fig. 14. Therefore,

the benzenoid B is essentially disconnected, and its ZZ polynomial is simply the product

of the ZZ polynomials of the two disconnected L(2) components

ZZ(B) = ZZ(L(2)) · ZZ(L(2)).
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ord(i3) = 2

ord(i4) = 2

ord(i5) = 1

ord(i1) = 1

ord(i2) = 2

ord(i0) = 0

ord(i6) = 0

Figure 14. The interface i3 has order 2, which implies that both bonds in i3 are
double bonds. The Second Rule requires that also the first bonds of the
interfaces i2 and i4 are double bonds. Consequently, this structure is
essentially disconnected.

Example 18. Consider the benzenoid B depicted in Fig. 15. We find that the interface

i4 has order ord(i4) = 2, which signifies that both bonds in i4 are double bonds. The

double character of these bonds propagates partially to the interfaces i3 and i5, fixing the

covering order of the first and the last bond in each of these interfaces. As a result, the

bonds depicted in gray in Fig. 15 are fixed and the two remaining parallelograms M (2, 2)

depicted in black can be covered independently. Consequently, the ZZ polynomial of the

benzenoid B is computed as the product

ZZ(B) = ZZ(M(2, 2)) · ZZ(M(2, 2)).

Example 19. For some benzenoids, the two simple rules exploited in the current section

ord(i4) =2

ord(i5) = 3

ord(i6) = 2

ord(i2) = 2

ord(i3) =3

ord(i1) = 1

ord(i7) =1

ord(i0) = 0

ord(i8) =0

Figure 15. The interface i4 has order 2, which implies that both bonds in i4 are
double bonds. The Second Rule requires that also the first and the last
bonds of the interfaces i3 and i5 are double bonds. Consequently, this
structure is essentially disconnected.
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have indeed far-reaching consequences. Consider the molecule B depicted in Fig. 16. It is

not a benzenoid sensu stricto, but the interface theory can still be applied to it. The order

of the middle interface is ord(i2) = 2, signifying that both bonds in the interface i2 are

double bonds. Similarly to the Example 18, the system of double bonds in i2 propagates

to i1 and i3 and fixes all (!) bonds in this benzenoid. Consequently, there is only one

possible Kekulé structure for the molecule B, which is depicted in gray in Fig. 16. As a

result, the ZZ polynomial of the structure B is

ZZ(B) = 1.

ord(i3) = 1

ord(i4) = 0

ord(i1) = 1

ord(i2) = 2

ord(i0) = 0

Figure 16. Theorems 3 and 4 show that all bonds in this molecule are fixed. Con-
sequently, there is only one possible Kekulé structure.

5.3 Clar number

The determination of the Clar number Cl(B) of some benzenoid B (i.e., the maximal

number of aromatic rings that can be accommodated in B) using the interface theory

proceeds in two steps. The first step involves finding the upper bound for Cl(B), which

is given by the sum of interface orders determined with the First Rule

Cl(B) ≤
∑
k

ord(ik). (4)

The second step involves an attempt to construct a Clar cover with exactly
∑

k ord(ik)

aromatic rings, where the distribution of the covered aromatic interface bonds is governed

by Theorem 5. Example 7 in Section 4 demonstrates a successful application of this

strategy. However, it is not always possible to achieve this upper limit, as the following

example clearly demonstrates.

Example 20. Consider the benzenoidB = phenanthrene shown in Fig. 17. The interface

orders allow one aromatic ring in each row, giving an upper bound for its Clar number

Cl(B) ≤
∑
k

ord(ik) = 3. (5)
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However, this upper bound cannot be achieved, since placing aromatic rings in three

adjacent hexagons of phenanthrene does not produce a valid Clar cover. Consequently,

Cl(B) = 2, as confirmed by the Clar cover shown in the lower panel of Fig. 17.

ord(i3) = 1

ord(i4) = 0

ord(i1) = 1

ord(i2) = 1

ord(i0) = 0 Cl(B             )  = 3 

Cl(B             )  = 2 ✓

✘

Figure 17. The upper bound
∑

k ord(ik) = 3 for the Clar number of phenanthrene
does not correspond to any valid Clar cover. The only candidate, with
three aromatic rings in three consecutive hexagons, is clearly wrong.
Consequently, only two aromatic rings may be placed in this benzenoid.

For phenanthrene, the problem of predicting a too large upper bound for the Clar

number can be readily resolved, as the following argument suggests. Consider the three

possible orientations of the phenanthrene molecule as shown in Fig. 18. For each of

these orientations, the interface orders can be determined and used to compute the upper

bound using Eq. (4). Clearly, the Clar number of phenanthrene cannot be larger than the

smallest of these three values; we have

Cl(B) ≤ min (3, 2, 2) = 2.

We see that from this point of view, the upper bound is actually achieved.

ord(i2) = 1

ord(i3) = 1

ord(i4) = 0

ord(i0) = 0

ord(i1) = 1

ord(i2) = 1

ord(i3) = 0

ord(i0) = 0

ord(i1) = 1

ord(i2) = 1

ord(i3) = 0

ord(i0) = 0

ord(i1) = 1

Figure 18. The Clar number of phenanthrene obviously does not depend on its ori-
entation. However, the upper bound for the Clar number determined
from the interface orders is clearly orientation dependent. To resolve
this apparent obstacle, we take as the upper bound for Cl(B) the min-
imum over the three possible orientations of a given benzenoid B.
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Example 21. To illustrate the point from the previous example on a more compli-

cated pericondensed benzenoid, consider the parallelogram M(5, 3). The interface or-

ders and the upper bounds for Cl(M(5, 3)) determined for the three possible orientations

of M(5, 3) are given in Fig. 19. The actual, orientation-independent upper bound for

Cl(M(5, 3)) is taken as the minimum of these three values; we have

Cl(M(5, 3)) ≤ min (5, 15, 3) = 3.

ord(i3) = 1

ord(i4) = 1

ord(i5) = 1

ord(i1) = 1

ord(i2) = 1

ord(i0) = 0

ord(i6) = 0

ord(i4) =3

ord(i5) = 3

ord(i6) = 2

ord(i2) = 2

ord(i3) =3

ord(i1) = 1

ord(i7) =1

ord(i0) = 0

ord(i8) =0

ord(i2) = 1

ord(i3) = 1

ord(i4) = 0

ord(i0) = 0

ord(i1) = 1

Figure 19. The three possible orientations of the parallelogram M(5, 3) gener-
ate three different sets of interface orders and three different upper
bounds for its Clar number Cl(M(5, 3)). The minimum over these
upper bounds usually corresponds to the widest/lowest orientation of
the benzenoid.

To show that this upper bound is actually achieved, we need to construct a Clar cover

ofM (5, 3) with three aromatic rings. This can be done independently for each of the three

possible orientations of M (5, 3). Obviously, choosing any of these orientations would be

sufficient here for demonstrating our claim, but we have written before that the interface

theory works most efficiently when the benzenoid is oriented in such a way that it is wider

than taller, and the current example constitutes a convenient demonstration ground for

illustrating this guideline.

For the first orientation shown in the left panel of Fig. 19, the interface orders allow

one aromatic ring in each row. However, according to Theorem 4, each aromatic ring

has to be located to the right of the previous one. Therefore, three aromatic rings can

be accommodated in the first three interfaces of M (5, 3), with the covered bonds in the

interfaces i4 and i5 being necessarily double bonds, as depicted in the left panel of Fig. 20.

Very similar reasoning applies to the last orientation shown in the right panel of Fig. 19,

for which Theorem 4 requires placing each aromatic ring to the left of the previous ring;
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a distribution of covered interface bonds obtained in this way is shown in the right panel

of Fig. 20. Constructing an appropriate Clar cover for the tallest orientation, shown in

the center of Fig. 19, is most time-consuming, as the number of covered interface bonds

is as large as 15. A possible distribution of covered interface bonds resulting from such

a construction is depicted in the center of Fig. 20. It is obvious that the construction

of an appropriate Clar cover has been most straightforward for the orientation in which

M (5, 3) is widest and lowest.

Figure 20. Distribution of covered interface bonds leading to a Clar structure can
be performed for any of the three orientations of a benzenoid, but
the most straightforward and least time-consuming construction is per-
formed for its widest/lowest orientation shown on the right in red.

Note that the three distributions of the covered interface bonds shown in Fig. 20 for the

three possible orientations of M (5, 3) correspond exactly to the same Clar cover

which we have depicted using the same color scheme as in Fig. 20 to demonstrate that

the covered interface bonds in one orientation correspond to the covered spine bonds in

the remaining two orientations.

Example 22. At this point, one may be tempted to claim that

Cl(B) = min

{∑
ik∈ B

ord(ik),
∑
ik∈B

ord(ik),
∑
ik∈B

ord(ik)

}
, (6)

where B, B and B denote the three possible orientations of a benzenoid B. This idea is

disproven by considering the hollow structure B considered originally in Example 17, for

which the minimum over the three orientations shown in Fig. 21 yields an upper bound
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of 3 for Cl(B). This upper bound is not achieved due to the region of fixed bonds in B

discovered in Example 17 and explicitly shown here again in gray in Fig. 22. Each of the

remaining black fragments can accommodate at most one aromatic ring, which results in

a Clar number of Cl(B) = 2.

Example 23. Let us now identify the Clar numbers of the hexagonal flakes O(3, 2, 3)

and O(3, 2, 4) shown in Fig. 23. The interface orders are identical for both structures and

predict an upper bound for their Clar number∑
k

ord(ik) = 6,

with at most one aromatic ring in the first and last interface, and at most two aromatic

rings in the second and third interface. However, it turns out that placing two aromatic

rings in the second interface ofO(3, 2, 3) prevents one from placing two aromatic rings in its

third interface (and vice versa), as there is not sufficient space left there for accommodating

the other aromatic ring. Consequently, only five aromatic rings can be accommodated in

ord(i3) = 1

ord(i4) = 0

ord(i1) = 1

ord(i2) = 0+1

ord(i0) = 0

ord(i3) = 1

ord(i4) = 0

ord(i1) = 1

ord(i2) = 1+0

ord(i0) = 0

ord(i3) = 2

ord(i4) = 2

ord(i5) = 1

ord(i1) = 1

ord(i2) = 2

ord(i0) = 0

ord(i6) = 0

Figure 21. The upper bound for the Clar number of the benzenoid B, computed
as a minimum of the upper bounds for its three possible orientations,
is 3. However, as Fig. 22 clearly demonstrates, this upper bound is not
achieved.

ord(i1) = 1

ord(i
1 )

 =
 1

'

Figure 22. In every Clar cover that can be constructed for the essentially discon-
nected benzenoid B from Fig. 21 the bonds depicted in gray are fixed,
i.e. have constant orders. Consequently, only each of the remaining
fragments depicted in black can accommodate one aromatic ring, show-
ing that Cl(B) = 2.
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ord(i2) = 2

ord(i3) = 2

ord(i4) = 1

ord(i1) = 1

ord(i2) = 2

ord(i3) = 2

ord(i4) = 1

ord(i1) = 1

Figure 23. Determination of the Clar number of a benzenoid B by constructing its
Clar structure using the rules of interface theory.

O(3, 2, 3), and such an arrangement can be performed in two possible ways, resulting in

two distinct Clar structures, which are depicted in Fig. 23. It follows that Cl(O(3, 2, 3)) =

5. No such difficulty occurs for O(3, 2, 4), for which the length of the interfaces i2 and

i3 is sufficient to accommodate two aromatic rings in each of them without collisions. It

follows that Cl(O(3, 2, 4)) = 6.

5.3.1 Connection to previous results

It was shown by Klavžar, Žigert, and Gutman [36] that in catacondensed benzenoid hy-

drocarbons, the Clar number is equal to the minimum number of straight lines (along

the centers of rows of hexagons) required to intersect all hexagons. In the language of

interface theory, this fact is directly connected to the observation that in a catacondensed

benzenoid, all interfaces of elementary fragments have order one, and every line utilized

by Klavžar et al. lies along one of these interfaces. On the other hand, as noted in [36],

the method of intersecting lines does not predict the correct Clar number for most peri-

condensed benzenoids. For example, for the structures depicted in Fig. 24, the minimum

number of lines needed to intersect every hexagon is 3. However, the Clar numbers are 2

and 4, respectively, as anticipated from the analysis of the interface orders using interface
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theory.

ord(i2) = 0

ord(i3) = 1

ord(i4) = 0

ord(i0) = 0

ord(i1) = 1

ord(i2) = 2

ord(i3) = 1

ord(i4) = 0

ord(i0) = 0

ord(i1) = 1

Figure 24. Two benzenoid structures (B6 and B7 of [36]) clearly show that in peri-
condensed molecules, lines crossing rows of hexagons correspond to in-
terfaces of not necessarily order 1, and therefore cannot be used to count
the maximum possible number of Clar sextets.

5.4 Zhang–Zhang polynomials

Our main motivation stimulating the development of the interface theory of benzenoids

comes from the need for efficient and robust computation of ZZ polynomials of benzenoids.

In the previous Examples 16–19, we have shown how to use the interface theory to compute

the ZZ polynomials for essentially disconnected benzenoids. Here, we give a brief account

how to apply it to general benzenoids. We start with an obvious example.

n

n+1 possible double  
bond placements

n+1 Kekule structures n possible ring placements n Clar structures

..
.

..
.

..
.

..
.

Figure 25. The polyacene L(n) has only one interface, which is fully covered by
one aromatic ring or one double interface bond, because ord(i1) = 1.
Various placements of the covered interface bond(s) give rise to all pos-
sible Clar covers of L(n). The shaded hexagon schematically represents
a segment of width n− 4.

Example 24. The order of the only non-empty interface i1 of a polyacene L(n) is 1. In

other words, the entire polyacene chain shown in Fig. 25, no matter how long, contains

exactly one aromatic ring or one double interface bond. Combinatorially speaking, there

are n available locations for the aromatic ring and n+1 available locations for the double
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interface bond, therefore

ZZ(L(n)) = n · x1︸ ︷︷ ︸
aromatic ring

+ (n+ 1) · x0︸ ︷︷ ︸
double bond

= n(x+ 1) + 1.

Similar considerations will be used in a forthcoming paper to determine closed–form for-

mulas of the Zhang–Zhang polynomials of regular strips.

Example 25. Consider the fenestrene F (n,m) shown in Fig. 26. The fragments f1, f2,

fm and fm+1 of F (n,m) are elementary fragments. All fragments in between are combined

fragments, each consisting of two elementary fragments: fk = f ′k∪f ′′k for k = 3, . . . ,m−1.

The interface i1 has order 1.

ik = ik    ik

im

i1

i2 = i2    i2

i0

im+1

im-1

(for all 2 ≤ k ≤ m-1)

n

m

shape(f2)

shape(f3)

shape(f2j)

shape(f2j+1)

shape(f1)

shape(fm-1)

shape(fm) 

shape(fm+1) 

 = L,R

 = N

 = N

 = R,L

 = L,R

 = R,L

 = W

 = W

[

[
..
.

..
.

Figure 26. Fenestrene F (n,m). The hatched sections are repeated n−4 and 1
2(m−

5) times, respectively. The fragments fk with 3 ≤ k ≤ m − 1 are
combined: fk = f ′k ∪ f ′′k . Theorems 3 and 4 apply to the elementary
fragments of F (n,m): f1, f2, f ′3, f ′′3 , . . ., f ′m−1, f ′′m−1, fm and fm+1.

Let us denote the upper interface of f ′3 and f ′′3 by i′2 and i′′2, respectively. Likewise,

denote the lower interface of each f ′k and f ′′k by i′k and i′′k, respectively. It is clear that

ik = i′k ∪ i′′k and consequently ord(ik) = ord(i′k) + ord(i′′k) for all k = 2, . . . ,m − 1. In

the first step, the First Rule is invoked to determine the interface orders. Clearly, the

interfaces i1 and i2 have the orders ord(i1) = 1 and ord(i2) = 2. Considering the situation

from the perspective of the fragment f3, the interface i2 is naturally split into the upper

interfaces i′2 and i′′2 of f ′3 and f ′′3 . The interface order can be distributed between i′2 and

i′′2 in three different ways:

1. ord(i′2) + ord(i′′2) = 2 + 0, signifying two double bonds in i′2.

2. ord(i′2) + ord(i′′2) = 1 + 1, signifying one double bond or one aromatic ring in each

of the interfaces i′2 and i′′2.
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3. ord(i′2) + ord(i′′2) = 0 + 2, signifying two double bonds in i′′2.

Note now that all elementary fragments f ′k and f ′′k (for k = 3, . . . ,m− 1) have either the

shape R or the shape L. Therefore, the First Rule shows that

ord(i′2) = ord(i′3) = . . . = ord(i′m−2) = ord(i′m−1)) and

ord(i′′2) = ord(i′′3) = . . . = ord(i′′m−2) = ord(i′′m−1)).

The upper interface im−1 of the fragment fm is the union of i′m−1 and i′′m−1, and conse-

quently ord(im−1) = ord(i′m−1) + ord(i′′m−1) = ord(i′2) + ord(i′′2) = 2. Finally, it is clear

that the interfaces im and im+1 have the orders ord(im) = 1 and ord(im+1) = 0.

These observations can be used to determine the ZZ polynomial of F (n,m). There

are three fundamentally different ways of of distributing the covered interface bonds in i2

between i′2 and i′′2, given as cases 1–3 above. Let us consider each case more closely.

1. Assume that both double bonds of i2 are located in i′2. We see from the above

considerations that ord(i′k) = 2 and ord(i′′k) = 0 for all 2 ≤ k ≤ m − 1. Since both

bonds in i2 and i′m−1 are double bonds, it follows from the Second Rule given in

Theorem 4 that the first interface bond in i1 and im must be a double bond; all

other bonds in i1 and im are single bonds due to ord(i1) = ord(im) = 1. With this,

the covering orders of all interface bonds are decided, meaning that case 1 allows

only one Clar cover, which is shown in the first part of Fig. 27.

2. Assume that i′2 and i′′2 each contain one double bond, which implies ord(i′k) =

ord(i′′k) = 1 for 1 < k < m, meaning that the vertical parts on the left and right side

of the fenestrene act like single zigzag chains N(l) with a length l of at least m− 2;

examples for this behaviour are given in the last two parts of Fig. 27. (It is easy to

see that single zigzag chains always have interface order 1, compare also [38].) Each

of the interfaces i1 and im contains either one double bond or one pair of aromatic

bonds, which can be positioned in three different ways:

a. The covered interface bond(s) are located within the first two interface bonds,

extending the left single zigzag chain by one hexagon.

b. The covered interface bond(s) are located within the last two interface bonds,

extending the right single zigzag chain by one hexagon.
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 N(m)

 N(m-2)  N(m-1) N(m-2)

 L(n-2)

Case 3, a in i1
Case 3, a in im

Case 3, c in i1
Case 3, b in im

Case 1

Figure 27. Depending on the position of the covered interface bond(s) in i2, the
Clar cover of the fenestrene F (n,m) is either uniquely defined (cases
1 and 2), or can be interpreted as some combination of Clar covers of
single zigzag chains N(m′) and/or polyacenes L(n− 2) (cases 3 a–c).

c. None of the above. In this case, the interface bonds behave as if they were

part of a polyacene L(n− 2) in which the first and last interface bond are not

allowed to be double bonds (which would count towards case a or b).

3. Assume that both double bonds of i2 are located in i′′2. Mirrored versions of the

considerations from case 1 apply; exactly one such Clar cover is possible.

Considering all possible combinations of these cases leads to the following ZZ polynomial

of a fenestrene F (n,m), in agreement with [11, 13] (for the sake of brevity, we write Nm

instead of ZZ(N(m)), etc., and (x, y) for „Case x in interface i1, Case y in im”):

Fn,m = 2

︸︷︷︸
Cases 1, 2

+ 2NmNm−2︸ ︷︷ ︸
(a,a) and (b,b)

+ 2N2
m−1︸ ︷︷ ︸

(a,b) and (b,a)

+4Nm−1Nm−2(Ln−2 − 2)︸ ︷︷ ︸
(a,c), (b,c), (c,a) and (c,b)

+N2
m−2(Ln−2 − 2)2︸ ︷︷ ︸

(c,c)︸ ︷︷ ︸
Case3

,

Note that, while of course the result of the derivation shown here is the same as that

of the derivation in [13], the process is rather different. This new way of determination

of ZZ polynomials through combinatorial considerations will, in subsequent publications,

be used to derive new results for larger classes of benzenoids, such as regular benzenoid

strips.

Example 26. Let us consider now some arbitrary benzenoidB consisting ofK fragments.

The ZZ polynomial of B can be computed using an algorithm that is a straightforward

generalization of the method presented earlier for single zigzag chains [38, 39]. The algo-

rithm involves a number of steps. In the first step, one uses the First Rule to determine

the orders of the interfaces i0, i1, . . ., iK . In the second step, for each of the interfaces of
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B, one creates a complete list of interface bond coverings corresponding to the interface

orders determined in step one. The next step involves establishing a connectivity network

between coverings of consecutive interfaces; we say that two coverings, one of the interface

ik−1 and one of ik, are connected if there exists a covering of the fragment fk compatible

with the interface coverings. In practice, it is never necessary to identify an appropriate

covering of the fragment fk, because it is sufficient to verify that the interface coverings

satisfy the conditions of the Third Rule. The connectivity network can be represented

in a form of an directed connectivity graph, with vertices corresponding to the interface

coverings and edges corresponding to the fragment coverings. The orientation of each

edge is such that it points from a covering of ik−1 to a covering of ik. In addition, the

(empty) covering of the empty interface i0 is referred to as Start and the (empty) covering

of the empty interface iK is referred to as End. Finally, in the last step, the connectivity

graph can be used to compute the ZZ polynomial of B as the sum of monomials xa over

all possible paths from Start to End, where a stands for the number of aromatic rings

along a given path.

The connectivity graph can be utilized also in many other useful ways.

• A path from Start to End represents uniquely some Clar cover of B.

• The full set of paths on the connectivity graph from Start to End corresponds to

the full set of Clar covers of B.

• The total number of Clar covers of B corresponds to the number of possible paths

on the connectivity graph from Start to End.

• A path on the connectivity graph from Start to End passing only through interface

coverings without aromatic rings represents uniquely some Kekulé structure of B.

• The full set of paths on the connectivity graph from Start to End passing only

through interface coverings without aromatic rings corresponds to the full set of

Kekulé structures of B.

• The total number of Kekulé structures of B corresponds to the number of possible

paths on the connectivity graph from Start to End passing only through interface

coverings without aromatic rings.
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• Non-Kekuléan character of B reveals itself by the fact that the vertices Start and

End are disconnected.

We feel that it instructive to illustrate these rather abstract ideas with a simple exam-

ple. Let us consider the benzenoid B = M(2, 2) for this purpose. The three examples

below demonstrate how to construct the connectivity graph for M(2, 2), how to use it

for determining the total number of Clar covers in M(2, 2), and finally, how to use it for

computing the ZZ polynomial of M(2, 2).

Example 27. The parallelogram M(2, 2) = has three nonempty interfaces with the

orders ord(i1) = ord(i3) = 1 and ord(i2) = 2. To construct the connectivity graph of

M(2, 2) shown in Fig. 28, first we generate all the possible coverings of these interfaces

with appropriate orders. The interfaces i1 and i3 have three coverings each, and the

interface i2 has five coverings. We distribute these coverings in horizontal rows, beginning

with the (empty) covering Start of the interface i0 in the first row, continuing with the

End

Start

Figure 28. The connectivity graph—here constructed for M(2, 2)—consists of ver-
tices corresponding to the coverings of the interfaces and edges corre-
sponding to the coverings of the fragments. The coverings of the same
interface are distributed in the same horizontal row. The vertices Start
and End correspond to the empty interfaces i0 and iK .
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Figure 29. The weight of each vertex in the connectivity graph for B is defined as
the number of distinct paths leading to it from the vertex Start. In this
way, the weight of the vertex End is identical with the number of Clar
covers of B. These ideas, applied to the connectivity graph of M(2, 2)
shown in Fig. 28, lead to the conclusion that M(2, 2) has 13 distinct
Clar covers.

coverings of the interface i1 in the second row, coverings of i2 in the third row, and

coverings of i3 in the fourth row, we finish with the (empty) covering End of the interface

i4 in the last row. The edges of theM(2, 2) connectivity graph are generated in agreement

with the conditions of the Third Rule. For example, the covering of the interface i1 is

connected in Fig. 28 to the covering of the interface i2, because the covered aromatic

bonds in i1 are flanked on both sides by double bonds in i2 and because the middle bond in
i2 is not covered as required by the condition (a) of Theorem 5. In this way, the conditions

of the Third Rule are satisfied and the edge exists. In fact, it is quite straightforward

to identify the valid covering of the fragment f2 which incorporates both interface

coverings. Each edge is depicted in Fig. 28 with an arrow pointing from a covering of

ik−1 to a covering of ik; in addition, to convince the reader that each edge is legitimately

placed, a small drawing of the fragment covering compatible with both interface coverings

is depicted at the center of each arrow. This completes the construction of the connectivity

graph for M(2, 2). Now, every path from Start to End corresponds to some Clar cover of

M(2, 2). For example, the path crossing the rightmost vertices of the connectivity graph

in Fig. 28 corresponds to the Clar cover .

Example 28. The connectivity graph shown in Fig. 28 can be readily used for computing

the total number of Clar covers of M(2, 2). To do this, we assign a weight to each

vertex following two easy rules: (i) the Start vertex is initialized with a weight of 1, (ii)

the weight of every other vertex is computed as the sum of weights of the predecessor
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Figure 30. Initializing the weight of the Start vertex with 1 and propagating it
all the way down along the connectivity graph of B to the End vertex
produces the ZZ polynomial of B if one uses the following propagation
rules: (i) every edge multiplies the weight of the vertex it originates from
by its own weight, (ii) every vertex sums over all the incoming edges.
The weight xa of each edge indicates the number a of aromatic rings
of the vertex it terminates at. For M(2, 2), propagating the weights all
the way down through the depicted connectivity graph produces the ZZ
polynomial of M(2, 2).

vertices. Following these rules, it is straightforward to assign the weights to all vertices

of the connectivity graph as it is shown in Fig. 29. The weight of the End vertex is found

to be 13, which signifies that M(2, 2) has exactly 13 distinct Clar covers.

Example 29. The determination of the ZZ polynomial of M(2, 2) using its connectivity

graph follows closely the determination of the total number of Clar covers discussed in

Example 28. The only difference concerns additional weights assigned to the edges of the

connectivity graph. The weight of the edge connecting a covering of ik−1 with a covering

of ik is given by the factor xa, where a is the number of aromatic rings in the covering of

ik. For example, the weight of the edge connecting the covering of the interface i1 with

the covering of the interface i2 is x0, because contains 0 aromatic rings. Similarly,

the weight of the edge connecting the covering of the interface i2 with the covering

of the interface i3 is x1, because contains 1 aromatic ring. Now, as in the previous

example, every path on the connectivity graph shown in Fig. 30 corresponds to a Clar

cover of M(2, 2), and the order of this Clar cover (i.e., the number of aromatic rings in
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it) can be easily computed by multiplying the factors xa along this path. Determination

of the ZZ polynomial of M(2, 2) can be now achieved as follows. The Start vertex is

initialized with the weight 1. The weight of every vertex is propagated to the next vertex

by multiplying it by the weight of the edge; if a vertex has more than one arrow pointing

toward it, then its weight is calculated as a sum over all the incoming arrows. Then, the

weight of the End vertex determined in this way is automatically equal to the Zhang-Zhang

polynomial ZZ (M(2, 2), x) = x2 + 6x + 6. Note that substituting x = 1 automatically

assigns all edge weights to 1 and reproduces the total number of Clar covers of M(2, 2)

as ZZ (M(2, 2), 1) = 13, making the previous Example 28 obsolete.

The presented ideas are general and can be applied for determination of ZZ polynomi-

als of arbitrary benzenoids. The efficiency of the underlying algorithm is higher than the

efficiency of the previously reported algorithms [12, 13, 29] and we are currently working

on its robust implementation to provide the community with an efficient tool for comput-

ing ZZ polynomials of large pericondensed benzenoids. In some situations, however, it is

preferred to determine the ZZ polynomials not following the general algorithm introduced

above, particularly if one aims at discovering a closed-form ZZ polynomial formula appli-

cable to a whole family of structured benzenoids. Two such situations are discussed in

the forthcoming papers, where we apply the interface theory of benzenoids for computing

closed form ZZ polynomials for n-tier regular strips and analyzing and enumerating the

Clar covers of various families of fenestrene benzenoids.

6 Conclusion
We present here a collection of basic applications of the recently introduced interface

theory of benzenoids [41]. The selected examples have mainly didactic function and are

designed to familiarize the reader with the application of the interface theory framework

to practical problems in chemical graph theory. The presented material starts with a brief

exposition of the basic rules of the interface theory in terms of benzenoid fragments and in-

terfaces mediating neighbouring fragments. The First Rule determines interface covering

orders and introduces a number of straightforward applications of interface theory, such

as detecting a non-Kekuléan or essentially disconnected character of many benzenoids or

computing an upper limit for their Clar numbers. The Second and Third Rule provide

us with further tools permitting to discern whether or not any given benzenoid B is
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Kekuléan and give rise to algorithms allowing to find its Clar number, to construct any

possible Clar cover of B, to determine the total number of Clar covers for B, as well

as to compute its ZZ polynomial. The latter tasks are most conveniently performed by

constructing the so-called connectivity graph of B, for which every oriented path from

Start to End encodes a distinct Clar cover of B. In this way, the whole set of Clar covers

simply corresponds to the totality of paths from Start to End on the connectivity graph.

The total number of Clar covers and the ZZ polynomial of B can be readily computed

as the weight of the vertex End of the connectivity graph in the way described in Ex-

amples 28 and 29, respectively. These ideas lead naturally to a robust implementation

of the connectivity graphs in form of an automatized computer program to provide the

community with an efficient tool for computing ZZ polynomials; work along this line is

in progress. The presented here basic applications of interface theory will be further il-

lustrated by more involved, combinatorial applications leading to a novel way of deriving

Zhang–Zhang polynomials for various families of benzenoids and finding closed form for-

mulas of ZZ polynomials for the n-tier regular strips. We hope that the presented here

appetizing morsels of applied interface theory will stimulate broader scientific interest in

its further applications to various graph theoretical problems [4, 5, 8, 25,51,60].

7 Open problems

The Clar theory of basic benzenoids slowly enters into its maturity with closed-form

formulas for the ZZ polynomials known for most classes of basic benzenoids. The two

important missing components of the general theory are the closed-form formulas for the

ZZ polynomials of hexagonal flakes O(k,m, n) and of oblate rectangles Ob(n,m).

Another topic that was just recently initiated is the determination of ZZ polynomials

(and generally: classification of Clar covers) for complex benzenoids obtained by merging

or overlapping of smaller, regular-shape benzenoids with a well-understood structure of

Clar covers. This topic brings about a natural question, that is, whether the John-

Sachs theory of Kekulé structures—based on the determination of the total number of

Kekulé structures of some benzenoid B by finding all of its monotonic subgraphs bij,

computing K {bij}, and arranging them in a determinant—can be generalized to the

world of Clar covers. We have recently discovered numerous numerical results, which we

plan to communicate soon, that suggest that this indeed might be possible.
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Another attractive avenue in the development of the Clar theory is writing an efficient

computer code related to the communicated here interface theory and possibly based on

the Algorithm 1 in [41]. The existing ZZDecomposer algorithm is based on the decom-

position scheme, which, for large pericondensed benzenoids, becomes prohibitively slow.

We anticipate that the code based on the interface theory—or even better: on the merge

of both theories—would perform much better for these large pericondensed benzenoids.

We believe that an initial dissection of a large benzenoid into smaller fragments using the

interface theory and subsequent recursive decomposition of the smaller fragments might

be the optimal strategy for determination of ZZ polynomials.

Finally, we would like to interest the reader in the communicated here connectivity

graphs for benzenoid interfaces. The connectivity graphs have been introduced in our

previous work [38] in three different forms. It seems to us that the interface connectivity

graph is the most interesting and its properties can be used to discover many important

properties of benzenoids. One could for example study the adjacency matrix associated

with this graph and try to connect it to the number of Kekulé structures, the number

of Clar structures, or the ZZ polynomial of a given benzenoid. The connectivity graphs

(particularly the reduced ones) produce also completely new recurrence relations that can

be used for determination of ZZ polynomials. None of these topics has been elucidated

in the literature.
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