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Abstract

We propose here a novel tool for chemical graph theory, referred to in the following
as the interface theory of benzenoids, designed for constructing, enumerating, and
characterizing Clar covers of arbitrary benzenoids. The presented interface theory
uses the new concepts of fragments and interfaces to express an arbitrary Clar cover
of a benzenoid B as a collection of covering characters for the interface bonds in B.
A set of fundamental theorems demonstrates that the interface theory is internally
consistent. In particular, we are able to establish the necessary and sufficient condi-
tions required for the existence and uniqueness of a Clar cover in terms of interface
bond coverings. The proposed theoretical framework can be conveniently and ef-
ficiently used for determining whether a given benzenoid is Kekuléan, for finding
its Clar covers and Kekulé structures, for computing its ZZ polynomials, as well as
deriving closed forms of ZZ polynomials for whole families of structurally related
benzenoids, and for many other interesting applications. We believe that the pre-
sented here interface theory of benzenoids opens up new vistas in chemical graph
theory and may revolutionize the field in the future.

1 Introduction

Determination and enumeration of Kekulé structures and Clar covers is one of the most

important topics in chemical graph theory. Considerable scientific effort [26, 29, 31, 40]

has been devoted toward predicting whether a benzenoid is Kekuléan [11, 27, 33, 37,

42, 45, 52, 75], identifying the regions of fixed bonds [14–17, 57, 67, 83], finding what is

the maximal number of aromatic sextets that can be accommodated in a benzenoid
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[1–5, 7, 8, 12, 38, 43, 50, 51, 60, 73, 74, 76], and finding how many Kekulé structures [6, 10,

28–30, 32, 46, 47, 49, 53, 54, 66, 71] and Clar covers [9, 20, 23, 24, 48, 55, 69, 80, 82, 86–90] can

be constructed for a given benzenoid [13, 18, 19, 21, 22, 25, 39, 44, 65, 78, 79, 84, 85]. At the

same time, even a casual inspection of the available literature cannot help the impression

that the accumulated body of knowledge is surprisingly incomplete and many important

results are still missing, despite of many important achievements that have been made.

A few of the most important open problems left there to be solved are: finding Clar num-

bers for an arbitrary benzenoid, enumeration of Clar covers for two most basic classes of

benzenoids, hexagons O(k, l,m) [19,23] and oblate rectangles Ob(n,m) [19,23], enumera-

tion of Clar covers for n-tier regular benzenoids [28,78,79,85], finding ZZ polynomials for

large pericondensed benzenoids [18–25, 61, 65], and efficient algorithms for verification of

Kekuléan character of large benzenoids.

In the current paper, we introduce a novel tool for analyzing and characterizing ben-

zenoid structures, which allows one to demonstrate surprisingly many important prop-

erties of benzenoids in an easy and efficient fashion. The new framework is based on

a concept of interfaces and for this reason we refer to it as the interface theory of ben-

zenoids [61–63]. The definition of interfaces and the closely structurally related fragments

is based on simple geometrical operations performed on a given benzenoid. We show ex-

plicitly that an assignment of covering orders to all the interface bonds uniquely defines a

Clar cover for the analyzed benzenoid, provided that the assignment fulfills a certain set

of conditions. The necessary and sufficient conditions that need to be satisfied for this

purpose are characterized in detail. The new theoretical concepts are accompanied by a

complete set of theorems necessary for applying the interface theory to solving practical

problems in chemical graph theory. We conclude the paper with an algorithm illustrating

how the interface theory can be applied for an automatic generation of Clar covers and

with a discussion of applicability of the presented framework to arbitrary benzenoids,

including those containing topological holes.

It is our impression that the presented here theory is different from anything that has

been proposed to date and for this reason it may bring important new results and break-

throughs to the field of chemical graph theory. In order to show how such new results

can be achieved, we accompany the current paper with a sequel paper [64], in which we

demonstrate on a collection of examples how the interface theory can be applied for verify-
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ing the Kekuléan character of benzenoids, finding Clar numbers of benzenoids, computing

their ZZ polynomials, finding essentially disconnected components of benzenoids, and for

a couple of other related problems. Another practical application of the presented here

interface theory of benzenoids is given in our next work, in which we use it for finding

closed form formulas of the ZZ polynomials for the n-tier regular benzenoid strips. We

genuinely hope that the reported here technique will be noticed and becomes popular in

the community, as we find it very useful and powerful.

2 Preliminaries

A benzenoid B is defined as a finite plane graph embedded in a hexagonal lattice [40].

An example of B is shown in Fig. 1 (a). Here, we treat the definition of B quite gener-

ally, allowing benzenoids with inner perimeters and with vertices of degree 1. A Kekulé

structure K is a spanning subgraph of B whose components are K2 [56] and a Clar

cover C is a spanning subgraph of B whose components are either K2 or C6 [26]; ex-

amples of K and C are shown in Figs. 1 (b) and (c), respectively. For convenience,

we establish the following correspondences: a vertex ≡ an atom, an edge ≡ a bond,

an edge belonging to a complete graph on 2 vertices K2 ≡ a double bond, a cycle graph

on 6 vertices C6 ≡ an aromatic ring, and an edge belonging to C6 ≡ an aromatic bond.

The maximal number of aromatic rings C6 that can be accommodated in C is referred

to as the Clar number Cl of B [26,43]. The Clar covers with Cl aromatic sextets C6 are

referred to as the Clar structures of B. [26, 43] The Clar covers with k aromatic sextets

C6 are referred to as the Clar covers of order k. If we represent the number of Clar covers

(a) (b) (c)

Figure 1. Example of (a) a benzenoid B, (b) a Kekulé structure of B, and (c) a
Clar cover of B (which is also a Clar structure, since it has the maximum
possible number of rings). The benzenoid shown here allows a total of
125 Kekulé structures and one Clar structure. The total number of Clar
covers is 847.
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of order k for B by ck, we can define a combinatorial polynomial

ZZ (B, x) =
Cl∑
k=0

ckx
k (1)

usually referred to as the Clar covering polynomial of B or the Zhang-Zhang polynomial

of B or, shortly, the ZZ polynomial of B [82, 87–89]. In the ZZ polynomial, the number

of Clar structures is given by the coefficient cCl, and the number of Kekulé structures

is given by the coefficient c0. For example, the benzenoid shown in Fig. 1 has the ZZ

polynomial (which is easily calculated using the ZZDecomposer [24,91,92])

ZZ(B, x) = x5 + 19x4 + 112x3 + 280x2 + 310x + 125, (2)

where the polynomial degree is the Clar number Cl = 5, the coefficient c0 = ZZ(B, 0) =

125 is the number of Kekulé structures, c5 = 1 is the number of Clar structures, and

c0 + c1 + c2 + c3 + c4 + c5 = ZZ(B, 1) = 847 is the total number of Clar covers.

3 Interface theory formalism

3.1 Definitions and preliminary observations

fragment f2

fragment f1

fragment f3

fragment f4

fragment f5

P0

P2

P3

P4

P5

P1

interface i0

interface i2

interface i3

interface i4

interface i5

interface i1

Figure 2. Dividing a benzenoid B into fragments fk. Sets of vertical bonds of a
fragment fk form interfaces, namely the upper interface ik−1 and the
lower interface ik of fk. Note that the first and last interface, i0 and i5,
are necessarily empty.

Take an arbitrary benzenoid B in the orientation shown in Fig. 2 (i.e., with some of its

edges oriented vertically) and introduce a system of horizontal partition lines Pk (shown

in red in Fig. 2). In cases where a line Pk intersects the periphery of B in exactly two

places, it is usually referred to in the existing literature as an elementary cut [41,72] or an

orthogonal edge cut [34,59]. Note, however, that each of our partition lines can intersect

the periphery of B in more than two places (for details, see Fig. 4 and Section 3.5),

depending on the actual shape of B. The partition lines Pk divide B into stripes. The
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set of bonds (edges) and atoms (vertices) within the stripe located (at least partially)

between the lines Pk−1 and Pk is called a fragment fk. Each fragment f consists of

vertices vj (sometimes referred to as atoms of f), vertical edges ej (referred to as interface

bonds or interface edges of f), and the remaining non-vertical edges sj (referred to as

spine bonds or spine edges of f). The intersection ik = fk ∩ fk+1, consisting of interface

bonds belonging simultaneously to both fragments fk and fk+1, is called the interface

ik. The fragment fk has ik−1 as its upper interface and ik as its lower interface. It is

convenient to augment the set of interfaces with two additional empty sets: the upper

interface i0 of the first fragment f1 and the lower interface iK of the last fragment fK .

The vertices vj within a given fragment f are enumerated from left to right. The

enumeration of spine bonds simply follows from the relation sj = vjvj+1. Take now an

interface bond e = v′iv
′′
j located between the vertex v′i of the fragment f ′ and the vertex

v′′j of the fragment f ′′. Depending on our needs, we will refer to e as ei (when we discuss

fragment f ′) or as ej (when we discuss fragment f ′′). We are careful in the following that

this double enumeration scheme does not lead to inconsistencies or ambiguities. This

labeling system is illustrated in Fig. 3.

v1 v3 v5 v7

v2 v4 v6

v9

v8 s
2 s

4
s
6

s
8

s1 s3 s5 s7

e2 e4 e6 e8

e1 e3 e5 e7 e9

atoms spine bonds interface bonds

Figure 3. Detailed label assignment for the atoms and bonds in the fragment f2 of
the benzenoid B from Fig. 2. Spine bonds sj have the same index as the
atom vj to their left, and interface bonds ej have the same index as the
atom vj to their top or bottom. Here, the bonds e2, e4, e6 and e8 form
the interface i1, which is the upper interface of f2. The bonds e1, e3, e5,
e7 and e9 form the interface i2, which is the lower interface of f2.

For now, let us require that the benzenoid has no holes, in the sense that all spine

bonds s1, . . . , sm−1 in all fragments exist. Allowing holes makes the formalism only slightly

more complicated; this case will be covered later. On the other hand, whether or not any

of the interface bonds are missing is irrelevant for the derivations that follow.

-147-



 

e1 e2 e3 e4  

b1 b2 

b3 b4  

Figure 4. Two equivalence classes of the Θ∗ relation, {e1, e2, e3, e4} and
{b1, b2, b3, b4}, demonstrate that for benzenoids with an inner perime-
ter (here, a fenestrene) the Θ∗ equivalence classes might or might not
coincide with the interfaces defined in the current work.

We believe that it can be possible to define the notions of fragments and interfaces

in a more formal way using the theory of elementary cuts [34, 41, 58, 59, 72, 81] and em-

ploying the equivalence classes of the Θ∗ relation [35, 68, 77]. Such a task seems rather

straightforward for the benzenoid shown in Fig. 2 (we thank the referees for bringing it

to our attention), but for benzenoids with holes certain problems must be resolved first.

To explicate the problems, let us recapitulate the relevant definitions. An elementary cut

of B is a straight line segment, passing through the centers of some edges of B, being

orthogonal to these edges, and intersecting the perimeter of B exactly twice. However,

often in our considerations we are forced to consider partition lines cutting through holes

inside benzenoids, i.e., cuts that intersect the—outer or inner—perimeter(s) of B more

than twice, and such a partition line does not conform to any of the definitions of an

elementary cut that we could find in the literature. It should be possible to introduce

a new definition of an elementary cut that will be applicable also to such a situation;

this task is not attempted here because of the other, more serious problem. Assuming

that a suitable definition of an elementary cut has been introduced, we could define an

interface ik as an equivalence class of the Θ∗ relation induced by elementary cuts in one

direction, where Θ∗ is the transitive closure of the Djoković-Winkler relation Θ relation

defined as follows. Two edges e1 = u1w1 and e2 = u2w2 of the graph B are in the Θ

relation, e1Θe2, if dB (u1, u2) + dB (w1, w2) 6= dB (w1, u2) + dB (u1, w2), where the dis-

tance dB (u1, u2) between the vertices u1 and u2 is the number of edges on the shortest

u1,u2-path. Consider now the fenestrene [25] shown in Fig. 4. Some of the Θ∗ equivalence

classes, for example {e1, e2, e3, e4}, coincide with interfaces of this structure. However,

other Θ∗ equivalence classes, for example {b1, b2, b3, b4}, contain interface bonds belong-
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ing to multiple interfaces. This example shows that the interface theory of benzenoids

constructed in the current work cannot be currently expressed in a general case by the

existing theory of elementary cuts and the equivalence classes of the Θ∗ relation, but we

would not be surprised if such a generalization is discovered in the future.

An atom v can have two possible orientations. If its interface bond points up and its

spine bonds point down (e.g., , , ), v is called an upper atom. Otherwise (e.g., , ,

), it is called a lower atom. Based on this classification, each fragment can be assigned

to one of four shapes depicted schematically in Fig. 5.

shape Nshape W shape R shape L

Figure 5. Fragments can have four possible shapes, W (wide), N (narrow), R (right),
or L (left). Note that, for the shape assignment, it is entirely irrelevant
whether or not all interface bonds are present.

Definition 1. The function shape of a fragment f with m atoms is defined as follows

shape (f) =


W (wide) if v1 is a lower atom, and vm is a lower atom.
N (narrow) if v1 is an upper atom, and vm is an upper atom.
R (right) if v1 is an upper atom, and vm is a lower atom.
L (left) if v1 is a lower atom, and vm is an upper atom.

Equivalently, we can say that the shape of a fragment with m atoms is

W (wide) if m is odd, and the upper atoms vj have even indices j.
N (narrow) if m is odd, and the upper atoms vj have odd indices j.
R (right) if m is even, and the upper atoms vj have odd indices j.
L (left) if m is even, and the upper atoms vj have even indices j.

Following this classification, we can easily find that in the benzenoid B depicted in Fig. 2,

f1 and f2 have shape W, f3 and f5 have shape N, and f4 has shape R.

Remark 2. Fragment shapes can be used to uniquely specify the structure of regular

benzenoid strips, i.e. merged rows of hexagons where two adjacent rows differ at each

end by ±1
2
hexagon unit [31, 36, 78]. For example, [W, W, N, R, N] with n = 3 hexagons in
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the first row denotes the benzenoid B given in Fig. 2, [W, R, R, N] with n = 3 denotes the

parallelogram M(3, 3) , and [W, L, R, N] with n = 2 denotes the chevron Ch(2, 2, 2) .

An attentive reader might further notice that the number of occurrences of W-shaped

fragments is identical to the number of N-shaped fragments in all of these examples. This

is, in fact, not a coincidence, but, as we will soon see, one of the requirements for a

benzenoid structure B to be Kekuléan.

Definition 3. Let b be a bond in B and let C denote some Clar cover of B. The covering

order of the bond b, ordC(b), in the Clar cover C is a number assigned as follows:

ordC(b) =


1 if b is a double bond
1/2 if b is an aromatic bond
0 if b is a single bond

Alternatively, we can say that

ordC(b) =


1 if b ∈ E (K2) , K2 ⊂ C
1/2 if b ∈ E (C6) , C6 ⊂ C

0 otherwise

From now on, the bond covering orders will be referred to as bond orders and a short-

hand notation ord(b) ≡ ordC(b) will be used for the bond covering orders as long as the

underlying Clar cover C is clear from the context. A bond b is said to be covered if

ord(b) > 0.

Definition 4. Let v be an atom in B and let b1, . . . , bn be all the bonds connected to v

in some Clar cover C of B. The covering order of the atom v, ordC(v), in the Clar cover

C is defined as

ordC(v) = ordC(b1) + . . . + ordC(bn).

Lemma 5. Since for a given Clar cover C of B, every vertex v is matched (i.e., v ∈

V (K2) , K2 ⊂ C or v ∈ V (C6) , C6 ⊂ C ), the atom covering order ord(v) ≡ ordC(v) is

constant and independent of C:

ord(v) =

{
1 + 0 + 0
1/2 + 1/2 + 0

}
= 1. (3)

Proof. A graphical justification of this fact, up to a rotation, is given in Fig. 6. Formal

proof relies on the observation that the Clar cover C is a perfect matching of B and every

vertex of B is matched exactly once, either belonging to one K2 component of C or to
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one C6 component of C. In the first situation, one of the edges incident to v has order 1

and all others have order 0, therefore their sum is 1. In the second situation, two of the

edges incident to v have order 1/2 and all others have order 0, thus their sum is also 1.

0 0

1

⅟₂ ⅟₂

0

0

1

⅟₂

⅟₂ 1

n=3 n=2 n=1

Figure 6. Possible bonding situations for an atom in a Clar cover. The number n
denotes the number of bonds connected to C, and the numbers 0, 1/2 and
1 denote the covering order of each bond.

Definition 6. Let i be an interface consisting of the bonds b1, . . ., bn. The interface order

ordC(i) of the interface i is defined as

ordC(i) = ordC(b1) + . . . + ordC(bn).

The order of an empty interface (such as the upper interface i0 of f1) is obviously zero.

In the following, we will often resort to a shorthand notation ord(i) ≡ ordC(i) as long as

the underlying Clar cover C is clear from the context. The orders of spine bonds are of

secondary importance for the development of interface theory thanks to Lemma 8.

Lemma 7. Let C be a Clar cover of a benzenoid B. Consider a fragment f of B together

with its upper interface iupper and its lower interface ilower. Then∑
ej∈iupper

(1− ord(ej)) =
∑

ej∈ilower

(1− ord(ej)) (4)

Proof. The fragment f consists of atoms v1, . . . , vm, interface bonds e1, . . . , em, and spine

bonds s1, . . . , sm−1. By applying Lemma 5 to each atom vj in f , we find the system of

equations:

Atom v1 : ord(e1) + ord(s1) = 1,

Atom vj : ord(sj−1) + ord(ej) + ord(sj) = 1 for 1 < j < m,

Atom vm : ord(sm−1) + ord(em) = 1.

(5)

Multiplying these equations by a weight (−1)j and summing them together eliminates

the orders of spine bonds and produces
m∑
j=1

(−1)jord(ej) =
m∑
j=1

(−1)j.
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Regrouping of these terms results in Eq. (4), where iupper consists of ej with odd indices

and ilower consists of ej with even indices, or vice versa.

Lemma 8. The orders of the spine bonds in a Clar cover C of a benzenoid B are uniquely

determined by the orders of the interface bonds.

Proof. Consider a fragment f of B consisting of atoms v1, . . . , vm, interface bonds e1, . . . ,

em, and spine bonds s1, . . . , sm−1. For a given Clar cover C, the interface bond orders

ord(e1), . . . , ord(em) are by assumption all known. (Whenever an interface bond ej is

missing, ord(ej) is taken to be zero.) The spine bond orders ord(s1), . . . , ord(sm−1) can

be determined from Eqs. (5), which are an overdetermined system of m linear equations

for m− 1 unknown variables ord(sj). For 1 ≤ j < m, Eqs. (5) have a unique solution

ord(sj) =

j∑
i=1

(−1)(i+j) (1− ord(ei)) (6)

= −
m∑

i=j+1

(−1)(i+j) (1− ord(ei)) (7)

provided that
m∑
j=1

(−1)j (1− ord(ej)) = 0. (8)

But now by assumption C is a Clar cover and Eq. (8) is satisfied by Lemma 7.

Remark 9. It is obvious from Lemma 7 that a Clar cover C of a given benzenoid B is

uniquely and fully determined by its interface bond orders.

Remark 10. Note that a complete set of interface bond orders for a given benzenoid B

can only correspond to a Clar cover of B if it satisfies the necessary (but not sufficient)

conditions given by Lemma 7 for every fragment fk of B. Sufficient conditions will be

derived later.

3.2 First rule of interface theory

Theorem 11. (First rule of interface theory: interface order criterion) Let C

be some Clar cover of a benzenoid B. Let fk be a fragment of B, and let ik−1 and ik

be the upper and lower interfaces of fk, respectively. The following conditions are always

satisfied.

(a) If fk has the shape W, then ord(ik) = ord(ik−1) + 1.
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(b) If fk has the shape N, then ord(ik) = ord(ik−1)− 1.

(c) If fk has the shape R or L , then ord(ik) = ord(ik−1).

Proof. Eq. (4) can be rewritten in the following form.

∑
j odd

ord(ej)−
∑
j even

ord(ej) = −
m∑
i=1

(−1)i =

{
0 if m is even
1 if m is odd

(9)

Note now that the bonds ej with even j form either the upper (for shape(fk) = R or N) or

the lower (for shape(fk) = L or W) interface of fk. Similarly, the bonds ej with odd j form

either the upper (for shape(fk) = L or W) or the lower (for shape(fk) = R or N) interface

of fk. Therefore, by Definition 6,

∑
j even

ord(ej) =

{
ord(ik−1) if shape(fk) = L or W,
ord(ik) if shape(fk) = R or N,∑

j odd

ord(ej) =

{
ord(ik−1) if shape(fk) = R or N,
ord(ik) if shape(fk) = L or W.

In either case, Eq. (9) can be rewritten as

ord(ik)− ord(ik−1) =


0 if m is even, i.e. if shape(fk) = R or L,
1 if m is odd and shape(fk) = W,

−1 if m is odd and shape(fk) = N.

Corollary 12. If the conditions given by Theorem 11 are satisfied, then so is Eq. (8);

i.e., the system of equations (5) can be solved for the spine bond orders.

Remark 13. The orders of spine bonds obtained in Corollary 12 may be ill-defined, in the

sense that Eq. (6) predicts spine bond orders other than 0, 1/2 or 1. Therefore, Theorem 11

provides us with a necessary condition for admissible values of interface and spine bonds,

but this condition is not sufficient. We will see soon that a sufficient condition will be

provided by Theorem 16.

Example 14. Theorem 11 provides an easy tool for predicting the number of double

bonds or aromatic rings in each interface. Applying the theorem to the benzenoid B

originally introduced in Fig. 2 produces the interface orders shown in Fig. 7, which can

be computed as follows:
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• The interface i0 does not contain any bonds, and therefore, by Def. 6, its order must

be ord(i0) = 0.

• The fragment f1 has shape W, therefore ord(i1) = ord(i0) + 1 = 1. This signifies that

interface i1 contains either one double bond or one aromatic ring.

• The fragment f2 has shape W, therefore ord(i2) = ord(i1) + 1 = 2. This signifies that

interface i2 contains either two double bonds, or two aromatic rings, or exactly one

of each.

• The fragment f3 has shape N, therefore ord(i3) = ord(i2)− 1 = 1.

• The fragment f4 has shape R, therefore ord(i4) = ord(i3) = 1.

• The fragment f5 has shape N, therefore ord(i5) = ord(i4)− 1 = 0, which agrees with

the fact that the interface i5 is empty.

ord(i2) = 2

shape(f1) = W

ord(i3) = 1

ord(i4) = 1

shape(f2) = W

shape(f3) = N

shape(f4) = R

shape(f5) = N

ord(i0) = 0

ord(i5) = 0

ord(i1) = 1

Figure 7. Interface orders of the benzenoid B from Fig. 1, as computed in Exam-
ple 14.

Example 15. Another immediate result following from Theorem 11 is an upper bound

for the Clar number of B. The maximum number of aromatic rings that can be placed

in each row of B is given by the interface order, therefore summation over all interface

orders shows that

Cl(B) ≤
∑
k

ord(ik) = 5.

For the structure in Fig. 7, the upper bound is achieved, as can be seen from Fig. 1 (c)

as well as from the ZZ polynomial of this structure

ZZ(B, x) = x5 + 19x4 + 112x3 + 280x2 + 310x + 125. (10)
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However, it is not difficult to find a benzenoid for which the upper bound is not real-

ized. More examples based on the application of Theorem 11, concerning upper limits

for the Clar number, identification of certain non-Kekuléan and essentially disconnected

benzenoids, and the form of ZZ polynomials for some special benzenoid structures is given

in the sequel to this paper [64].

3.3 Second rule of interface theory

While the interface order criterion (Theorem 11) serves as a convenient tool for a number

of purposes, it is not yet sufficient for providing answers to all the relevant questions.

For example, it would be useful to have a method of finding the exact value of the Clar

number instead of an upper bound, or to prove definitively whether or not a benzenoid

is Kekuléan. For such tasks, a more detailed understanding of fragments and interfaces

is necessary, which is provided by the following theorem specifying relative positions of

covered interface bonds (i.e., interface bonds ei for which ord(ei) > 0) within each interface

of some Clar cover C.

Theorem 16. (Second rule of interface theory: Relative location of covered

bonds) Consider a benzenoid B and its Clar cover C. Further, consider a fragment fk

of B with m atoms. The covered interface bonds of C belonging to fk are distributed as

follows.

(a) The first covered interface bond ej occurs for odd j.

(b) The last covered interface bond ej occurs for even m− j.

(c) If ej and ej′ (j′ > j) are two consecutive covered interface bonds, then either

(c′) j′ − j is odd (which signifies that one of the pair (ej, ej′) belongs

to the upper interface, and the other one to the lower interface),

or

(c′′) j′ − j = 2 and ej and ej′ are part of the same aromatic ring

(ej, ej′ ∈ E (C6)) located in the same—upper or lower—interface.

Proof. Since by assumption the interface bonds in question correspond to some Clar cover

C, the necessary condition given by Eq. (4) must be satisfied. For such a set of interface

bonds, the orders of the spine bonds are given by Eq. (6). We show below that violating

-155-



any of the rules (a)–(c) results in a spine bond being assigned an order other than 0, 1/2

or 1, which cannot happen in a well-defined Clar cover.

(a) Assume ej is the first covered interface bond. If j = 1, the statement (a) is

obviously true. Assume therefore that j > 1, which gives ord(ej) > 0 and

ord(ei) = 0 for all i < j. Using Eq. (6) to compute the order of the spine bond

sj−1 results in

ord(sj−1) =

{
0 if j is odd,
1 if j is even.

(11)

Consequently, applying Lemma 5 to the atom vj gives the order of the spine

bond sj

ord(sj) = 1− ord(sj−1)− ord(ej) <

{
1 if j is odd,
0 if j is even.

If condition (a) is violated, meaning that j is even, then the bond order ord(sj)

is smaller than 0, which is ill-defined.

(b) The same reasoning applies to the last covered interface bond ej. If j = m,

the statement (b) is obviously true. Assume therefore that j < m, which gives

ord(ej) > 0 and ord(ei) = 0 for all i > j. Using Eq. (7) to compute the order

of the spine bond sj results in

ord(sj) =

{
1 if m− j is odd,
0 if m− j is even.

(12)

Consequently, applying Lemma 5 to the atom vj gives he order of the spine

bond sj−1

ord(sj−1) = 1− ord(ej)− ord(sj) <

{
0 if m− j is odd,
1 if m− j is even.

If condition (b) is violated, meaning that m − j is odd, then the bond order

ord(sj−1) is smaller than 0, which is ill-defined.

(c) Let ej and ej′ be two consecutive covered interface bonds. Then, for j < i < j′,
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we have ord(ei) = 0, and Eq. (8) can be rewritten in the following form.

0 =
m∑
i=1

(−1)i (1− ord(ei))

=

j∑
i=1

(−1)i (1− ord(ei))︸ ︷︷ ︸
(−1)jord(sj) by Eq. (6)

+

j′−1∑
i=j+1

(−1)i(1− ord(ei)︸ ︷︷ ︸
0

) +
m∑

i=j′
(−1)i (1− ord(ei))︸ ︷︷ ︸

(−1)j′ord(sj′ ) by Eq. (7)

=

{
ord(sj)− 0− ord(sj′−1) if j′ − j is odd,

(−1)j
(
ord(sj)− 1 + ord(sj′−1)

)
if j′ − j is even.

If j′ − j is odd, then ej and ej′ belong to different interfaces, and the claim

is demonstrated. Assume now that j′ − j is even, i.e.

ord(sj) + ord(sj′−1) = 1. (13)

Since ord(ej) > 0 and ord(ej′) > 0, it follows from Lemma 5 that ord(sj) < 1

and ord(sj′−1) < 1, which leaves only one possible solution of Eq. (13) given by

ord(sj) = ord(sj′−1) = 1/2. Consecutive application of Lemma 5 for the values

i = j + 1, . . . , j′ − 1 shows that also ord(sj) = ord(sj+1) = . . . = ord(sj′−2) =

ord(sj′−1) = 1/2. (A covering of this type for j′− j = 10 is displayed in Fig. 8.)

Clearly, for j′ − j 6= 2, this is a highly unconventional covering which is not

considered in the standard theory of Clar covers, which use only K2 and C6

as the covering components. Therefore, even j′ − j makes sense only when

j′ − j = 2, which proves the claim.

Remark 17. Note that other even values of j′ − j correspond to generalized Clar covers

[70] using covering components such as C10, C14, C18, etc. In particular, the difference

j′ − j = 4 , corresponding to C10, was explicitly considered in an interesting paper by

Žigert Pleteršek [90]. These possibilities are not further pursued in the current paper.

ord(si) =  ⅟₂

ord(ej) =  ⅟₂ ord(ej0) =  ⅟₂

Figure 8. The framework of interface theory technically allows for generalized Clar
covers with larger aromatic circuits [70,90], however in the present paper
we consider only standard Clar covers with aromatic sextets, where j′ =
j + 2.
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In order to simplify formulations, let us introduce a shorthand name for the first

covered interface bond before/after a given bond ej:

Definition 18. Let fk be a a fragment of a benzenoid B with a Clar cover C, and ej

an interface bond of fk. The left (right) neighbour (within fk) of ej is the bond ej′ ∈ fk

with ord(ej′) > 0 and ord(ej′′) = 0 for all j′ < j′′ < j (respectively, j < j′′ < j′) . In the

following, the fragment fk within which the neighbours are determined is not explicitly

stated if it is clear from context.

With this, Theorem 16 can be reformulated in a more geometrical way:

Corollary 19. Consider a benzenoid B and its Clar cover C. Further, consider a frag-

ment fk of B with m atoms. The covered interface bonds of C belonging to fk are

distributed as follows.

(a) The first covered interface bond occurs in the upper (lower) interface of fk

exactly if the first atom v1 is an upper (lower) atom.

(b) The last covered interface bond occurs in the upper (lower) interface of fk

exactly if the last atom vm is an upper (lower) atom.

(c′) If ej is a double bond in the upper (lower) interface of fk, then all neighbours

of ej belong to the lower (upper) interface.

(c′′) If (ej, ej+2) is a pair of aromatic bonds in the upper (lower) interface of fk,

then the left neighbour of ej and the right neighbour of ej+2 (if any) belong to

the lower (upper) interface of fk.

Example 20. Let f be a fragment of a benzenoid B with a Kekulé structure K. Assume

that f has a total of five double interface bonds, and that its first atom v1 is an upper

atom. Then the double interface bonds, from left to right, will belong to the upper, lower,

upper, lower, and upper interface, as for example shown in Fig. 9.

Figure 9. A possible distribution of five double interface bonds on a fragment of
shape N.
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3.4 Third rule of interface theory

In the previous two subsections we have derived two important necessary conditions,

given by Theorems 11 and 16, that need to be satisfied by the covering characters of the

interface bonds within a Clar cover. Theorem 21 gives a sufficient condition for a collection

of interface bond coverings to define a Clar cover. Later, this theorem is reformulated in

a more transparent way as a recipe (Algorithm 1 on page 24) for practical construction

of Clar covers.

Theorem 21. (Third rule of interface theory: Construction of Clar covers)

Assume that covering orders for all interface bonds in a benzenoid B have been assigned

in such a way that:

(a) The set of aromatic interface bonds can be written as a union of disjoint pairs

(ej, ej+2). Moreover, for each pair (ej, ej+2) the condition ord(ej+1) = 0 needs

to be satisfied.

(b) The orders of the interfaces satisfy the conditions (a), (b) and (c) of Theo-

rem 11.

(c) The orders of the interface bonds satisfy the conditions (a) and (b) of Theo-

rem 16.

(d) If ej and ej′ (j′ > j) are two consecutive covered interface bonds, then either

• j′ − j is odd, or

• j′ − j = 2 and (ej, ej′) is one of the pairs of aromatic bonds specified in

(a).

Then, there is exactly one Clar cover with the specified interface bonds.

In order to simplify the proof of Theorem 21, we first prove the following technical

lemma.

Lemma 22. Consider a fragment fk of B with interface covering orders assigned in

agreement with Theorem 21 and one of its interface bonds ej. Then, the quantity

Oj :=

j∑
i=1

(−1)iord(ei)

takes the following values:
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(a) If ej is a double bond, then Oj =

{
0 if j is even,
−1 if j is odd.

(b) If ej is the second bond in a pair of aromatic bonds, then

Oj =

{
0 if j is even,
−1 if j is odd.

(c) If ej is the first bond in a pair of aromatic bonds, then Oj = −1/2.

(d) If ej is a single bond which has no left neighbour, then Oj = 0.

(e) If ej is a single bond with a left neighbour ej′, then Oj = Oj′.

Proof. Note that, according to the condition (a) of Theorem 21, aromatic bonds always

appear in distinct pairs, therefore statements (b) and (c) are well-defined. Furthermore,

whenever (ej, ej+2) is a pair of aromatic bonds, condition (a) of Theorem 21 ensures that

ej+1 is a single bond. This fact will be implicitly used in the following considerations.

Statements (d) and (e) are obvious from Definition 18 of a left neighbour: If ej is a

single bond and has no left neighbour, then all interface bonds ei with i ≤ j are single

bonds, meaning that ord(ei) = 0. Consequently,

Oj =

j∑
i=1

(−1)i ord(ei)︸ ︷︷ ︸
0

= 0.

If ej is a single bond with a left neighbour ej′ , then all interface bonds ei with j′ < i ≤ j

are single bonds, meaning that ord(ei) = 0. Consequently,

Oj =

j′∑
i=1

(−1)iord(ei)︸ ︷︷ ︸
Oj′

+

j∑
i=j′+1

(−1)i ord(ei)︸ ︷︷ ︸
0

= Oj′ .

The statements (a) and (b) can be shown by induction with respect to the consecutive

members of the sequence (ej1 , ej2 , ..., ejN ), where N = ord(ik−1) + ord(ik) is the total

number of double bonds and aromatic pairs in the interfaces ik−1 and ik of the fragmentfk,

and every element ejn of the sequence denotes either a double interface bond or the second

member of a pair of aromatic interface bonds.

Base case:

If the first sequence element ej1 is a double bond, it is clear that for 0 < i < j1, every

interface bond ei is a single bond, meaning that ord(ei) = 0. In this case, the value of Oj1
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can be determined as

Oj1 =

j1−1∑
i=1

(−1)i ord(ei)︸ ︷︷ ︸
0

+(−1)j1 ord(ej1)︸ ︷︷ ︸
1

= (−1)j1 .

If the first sequence element ej1 is an aromatic bond, we know from the definition of

the sequence that ej1 is the second member of a pair (ej1−2, ej1), which implies that

ord(ej1−2) = ord(ej1) = 1/2 and ord(ej1−1) = 0. It is clear that for 0 < i < j1 − 2, every

interface bond ei is a single bond, meaning that ord(ei) = 0. Therefore, in this case, the

value of Oj1 can be determined as

Oj1 =

j1−3∑
i=1

(−1)i ord(ei)︸ ︷︷ ︸
0

+(−1)j1−2 ord(ej1−2)︸ ︷︷ ︸
1/2

+(−1)j1−1 ord(ej1−1)︸ ︷︷ ︸
0

+(−1)j1 ord(ej1)︸ ︷︷ ︸
1/2

= (−1)j1 · (1/2 + 1/2) = (−1)j1 .

Theorem 21 ensures that condition (a) of Theorem 16 is satisfied, i.e. that j1 is odd.

Therefore, in either case, Oj1 = (−1)j1 = −1. In other words, statements (a) and (b) hold

for ej1 .

Step case:

Consider now a sequence element ejn with n > 1 and assume that statements (a) and (b)

hold for ejn−1 . If ejn is a double bond, then its left neighbour is ejn−1 , which means that

all interface bonds ei with jn−1 < i < jn are single bonds, i.e. ord(ei) = 0. Therefore, in

this case, the value of Ojn can be determined as

Ojn =

jn−1∑
i=1

(−1)iord(ei)︸ ︷︷ ︸
Ojn−1

+

jn−1∑
i=jn−1+1

(−1)i ord(ei)︸ ︷︷ ︸
0

+(−1)jn ord(ejn)︸ ︷︷ ︸
1

= Ojn−1 + (−1)jn .

If the sequence element ejn is an aromatic bond, we know from the definition of the se-

quence that ejn is the second member of a pair (ejn−2, ejn), which implies that ord(ejn−2) =

ord(ejn) = 1/2 and ord(ejn−1) = 0. The left neighbour of ejn−2 is ejn−1 , which means that

all interface bonds ei with jn−1 < i < jn− 2 are single bonds. Therefore, in this case, the

-161-



value of Ojn can be determined as

Ojn =

jn−1∑
i=1

(−1)iord(ei)︸ ︷︷ ︸
Ojn−1

+

jn−3∑
i=jn−1+1

(−1)i ord(ei)︸ ︷︷ ︸
0

+(−1)jn−2 ord(ejn−2)︸ ︷︷ ︸
1/2

+(−1)jn−1 ord(ejn−1)︸ ︷︷ ︸
0

+(−1)jn ord(ejn)︸ ︷︷ ︸
1/2

= Ojn−1 + (−1)jn · (1/2 + 1/2) = Ojn−1 + (−1)jn .

In either case, Theorem 21 ensures that condition (c) of Theorem 16 is satisfied, i.e., that

jn − jn−1 is odd.
If jn−1 is odd, jn is even and Ojn−1 = −1. Thus, Ojn = Ojn−1︸ ︷︷ ︸

−1

+ (−1)jn︸ ︷︷ ︸
1

= 0.

If jn−1 is even, jn is odd and Ojn−1 = 0. Thus, Ojn = Ojn−1︸ ︷︷ ︸
0

+ (−1)jn︸ ︷︷ ︸
−1

= −1.

Therefore, statements (a) and (b) hold also for ejn . By induction, this proves statements

(a) and (b) for all relevant interface bonds in fk.

Finally, statement (c) follows from statement (b): Consider a covered interface bond

ej which is the first bond in a pair of aromatic bonds (ej, ej+2). Noting that

Oj = Oj+2 − (−1)j+2 ord(ej+2)︸ ︷︷ ︸
1/2

−(−1)j+1 ord(ej+1)︸ ︷︷ ︸
0

= Oj+2 − (−1)j · 1/2,

we arrive at the following facts.
If j is odd, then by (b) Oj+2 = −1. Thus, Oj = Oj+2︸︷︷︸

−1

− (−1)j︸ ︷︷ ︸
−1

·1/2 = −1/2.

If j is even, then by (b) Oj+2 = 0. Thus, Oj = Oj+2︸︷︷︸
0

− (−1)j︸ ︷︷ ︸
1

·1/2 = −1/2.

With this, all statements of the Lemma have been demonstrated.

Proof. ( of Theorem 21) Two points need to be proved here. The first claim to be demon-

strated is that a set of covered interface bonds satisfying the conditions (a)–(d) of The-

orem 21 define a valid Clar cover. The second claim concerns uniqueness of such a Clar

cover.

Existence: All the necessary and sufficient conditions that need to be satisfied in order

that an assignment of interface and spine bond orders defines a valid Clar cover can be

expressed in a short statement: Such an assignment should define a perfect covering of

B, i.e., each atom v in B should participate either in exactly one double bond K2 or in

-162-



exactly one aromatic ring C6. In order to demonstrate this, we need to show first that

an assignment of covering orders for all interface bonds in B satisfying the conditions

of Theorem 21 defines uniquely a valid assignment of covering orders for all spine bonds

in B. Further, we need to demonstrate that these combined assignments of interface

and spine bond orders define a perfect covering of B, which in practice signifies that the

covering order of every atom v is 1 and that the covering objects are either K2 or C6.

Consider any fragment fk of B. Since the interface orders satisfy the conditions (a),

(b), and (c) of Theorem 11, according to Corollary 12 the spine bond orders are uniquely

determined and given by Eq. (6). This ensures that every atom has order 1 as required by

Lemma 5; it remains to be demonstrated that all spine bond orders are well-defined—i.e.,

have the value 0, 1/2 or 1—and that aromatic bonds appear only within complete aromatic

rings. Eq. (6) may be rewritten as

ord(sj) =

j∑
i=1

(−1)(i+j)

︸ ︷︷ ︸
(1−(−1)j)/2

−(−1)j
j∑

i=1

(−1)iord(ei)︸ ︷︷ ︸
Oj

=

{
−Oj if j is even,

1 + Oj if j is odd.
(14)

It was shown in Lemma 22 that Oj can only have the values 0, −1/2 or −1. Together

with Eq. (14), it follows that the spine bond orders ord(sj) can only take the values 0, 1/2

or 1, and therefore are well-defined.

Let us now show that aromatic spine bonds appear inside a fragment only between

a pair of two aromatic interface bonds. Consider an aromatic spine bond sj. According

to Eq. (14) it follows from ord(sj) = 1/2 that Oj = −1/2. Lemma 22 shows that this is

possible only in two cases:

• If ej is a covered interface bond, one of the cases (a), (b) or (c) of Lemma 22 must

apply, out of which only case (c) results in Oj = −1/2. Thus, in this case, ej must

be the first bond in a pair of aromatic interface bonds (ej, ej+2).

• If ej is a single interface bond, one of the cases (d) or (e) of Lemma 22 must apply,

out of which only case (e) results in Oj = −1/2, provided that the left neighbour ej′

of ej satisfies Oj′ = −1/2, i.e. is the first bond in a pair of aromatic interface bonds

(ej′ , ej′+2). Note now that, if j = j′ + 2, then ej would not be a single bond; and if
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j > j′ + 2, its left neighbour would not be ej′ . It directly follows that j = j′ + 1,

meaning that ej is the single bond between a pair of aromatic bonds (ej−1, ej+1).

In either case, the spine bond sj is located between a pair of aromatic bonds, (ej−1, ej+1)

or (ej, ej+2).

Consider now on the other hand a pair of aromatic interface bonds (ej, ej+2) and the

spine bonds sj and sj+1 between ej and ej+2. It follows directly from Lemma 22 that

Oj = Oj+1 = −1/2 and consequently (because of Eq. (14)) that ord(sj) = ord(sj+1) = 1/2,

i.e. the spine bonds between a pair of aromatic interface bonds must be aromatic. Note

that this statement is true for spine bonds in both fragments flanking the interface in

which the aromatic interface bonds (ej, ej+2) are located. The pair of aromatic spine

bonds between ej and ej+2 in each of these fragments together with the pair of the

aromatic interface bonds (ej, ej+2) form an aromatic ring C6.

We have shown that every pair of aromatic interface bonds induces an aromatic ring

C6, and that aromatic spine bonds can only appear within these rings. With this, we

have completed the demonstration that an assignment of covering orders to all interface

bonds satisfying the conditions (a)–(d) of Theorem 21 defines a valid Clar cover.

Uniqueness: By the assumption of Theorem 21, all interface bonds have been assigned

a covering order; this assignment is obviously unique. According to Corollary 12, the spine

bond orders are uniquely determined by the covering orders of the interface bonds. Thus,

the Clar cover defined above is unique.

It is easy to see that the conditions of Theorem 21 are not only sufficient, but also

necessary.

Corollary 23. Consider a benzenoid B and its Clar cover C. The interface bond orders

of C satisfy the conditions of Theorem 21.

Proof. Conditions (b) and (c) of Theorem 21 are satisfied because of Theorems 11 and 16.

Take now an aromatic interface bond ej, which belongs to some unique aromatic ring

C6 in C together with its partner aromatic interface bond ej′′ (with j′′ = j ± 2). This

(equivalence) relation partitions the set of aromatic interface bonds into a union of disjoint

pairs (ej, ej′′); furthermore, any interface bond ej′ (with, respectively, j′ = j±1) connected

from the top or bottom to an aromatic ring must be a single bond in order to preserve

the order of the carbon atoms. This shows that condition (a) of Theorem 21 is satisfied.
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To demonstrate that condition (d) of Theorem 21 is satisfied, note that any Clar cover

(including the Clar cover C considered here) must satisfy the condition (c) of Theorem 16

and that these two conditions are equivalent, as the (equivalence) relation mentioned

above indicates.

Corollary 23 can be equivalently stated in the following way.

Corollary 24. Any conceivable Clar cover of B can be constructed by assigning orders

to the interface bonds in a way that satisfies the conditions of Theorem 21 and then

assigning the spine bond orders using Eq. (14). If, on the other hand, it is not possible

to assign interface bond orders in agreement with Theorem 21, then the benzenoid B is

non-Kekuléan and has no Clar covers.

Remark 25. It is quite interesting to observe that the covering characters of the spine

bonds are governed by simple rules. Clearly, the spine bonds between any pair of aro-

matic interface bonds must be aromatic. All other spine bonds are single or double. All

double spine bonds located between two consecutive covered interface bonds have the

same orientation. Double spine bonds located on either side of a double interface bond

(or a pair of aromatic interface bonds) have opposite orientations. These sequences of

parallel double spine bonds are well visible in the example given in Fig. 10. This fact in

simple geometric terms illustrates why double interface bonds (or pairs of aromatic in-

terface bonds) must alternate between the upper and lower interfaces. Note for example

that a double upper-interface bond determines the covering characters of all neighbouring

spine bonds and forces all upper interface bonds to be single, until a covered interface

bond appears in the lower interface.

ord(sj) = 1

if j is odd

ord(sj) =  ⅟₂ ord(sj) = 1

if j is even

ord(sj) = 1

if j is even

ord(sj) = 1

if j is odd

Figure 10. The distribution of the interface bonds in a fragment, which follows
Theorem 21, uniquely determines covering orders of the spine bonds as
indicated. Note the alternating character of the positions of the covered
interface bonds as well as the orientation of the double spine bonds.
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Algorithm 1: Construction of an arbitrary Clar cover for a Kekuléan benzenoid
B is performed by assigning covering characters to interface bonds located in con-
secutive fragments. Progressively, for each consecutive fragment, a set of interface
bond coverings is selected, which satisfies all the conditions of Theorem 21.

Data: Benzenoid B with fragments f1, . . . , fK and interfaces i0, . . . , iK consisting of bonds
ik =

{
ekj
}mk

j=1
.

Result: A Clar cover expressed via a set of bond covering orders ord(ekj ) for all interface bonds.

ord(i0) := 0; // Start from empty interface
for k = 1, ...,K do // Loop over interfaces

switch shape(fk) do // Determine ord(ik)

case W do ord(ik) := ord(ik−1) + 1;
case N do ord(ik) := ord(ik−1)− 1;
otherwise do ord(ik) := ord(ik−1);

end

forall ekj ∈ ik do ord(ekj ) := 0; // Initialize bond orders in ik

n := 0; // Count covered interface bonds

if shape(fk) = W or L then // First covered interface bond
n := n + 1;
either select bond ekj1 ∈ ik with no left neighbour;

ord(ekj1) := 1; // Assign a double bond
or select bonds ekj1−2, e

k
j1
∈ ik with no left neighbour;

ord(ekj1−2) := 1/2;
ord(ekj1) := 1/2; // Assign an aromatic pair

end
end

while n < ord(ik) do // Assign interface bonds
n := n + 1;
either select bond ekjn ∈ ik with both neighbours in ik−1

and the neighbours not forming an aromatic pair;
ord(ekjn) := 1; // Assign a double bond

or select bonds ekjn−2, e
k
jn
∈ ik with both neighbours in ik−1

and ord(ekjn−1) = 0;
ord(ekjn−2) := 1/2;
ord(ekjn) := 1/2; // Assign an aromatic pair

end
end

if shape(fk) = W or R then // Last covered interface bond
n := n + 1;
either select bond ekjn ∈ ik with no right neighbour;

ord(ekjn) := 1; // Assign a double bond
or select bonds ekjn , e

k
jn+2 ∈ ik with no right neighbour;

ord(ekjn) := 1/2;
ord(ekjn+2) := 1/2; // Assign an aromatic pair

end
end

end
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3.5 Structures with holes

As so far, we have restricted our considerations to benzenoids without holes, i.e., to

benzenoids without missing spine bonds. With this in mind, Theorems 7, 11 and 16

have been formulated for fragments in which all spine bonds exist. Note that all these

theorems remain valid for structures with missing spine bonds, such as fenestrenes (see

Example 27 below), only with a slight modification of the definition of a fragment. The

modified Theorems 7, 11 and 16, in which the notion of a fragment fk accompanied by

its upper interface ik−1 and its lower interface ik is replaced by a notion of an elementary

fragment f ′k accompanied by its upper interface i′k−1 and its lower interface i′k, can be now

used to describe also benzenoids with holes.

Definition 26. A connected component f ′ of a fragment f will be referred to as an

elementary fragment. The set of upper (lower) interface bonds in f ′ are referred to as the

upper (lower) interface of the elementary fragment f ′. A fragment consisting of multiple

elementary fragments will be referred to as a combined fragment.

It is easy to see that a fragment f with m atoms is elementary if and only if it contains

all spine bonds s1, s2, . . . , sm−1. If one of these spine bonds would be missing, the fragment

f would split into two elementary fragments f ′ and f ′′.

Example 27. Consider a fenestrene F (5, 5) shown in Fig. 11 [23,25]. The fragments f1,

f2, f5, and f6 are elementary fragments. The fragments f3 and f4 are combined fragments,

each consisting of two elementary fragments: f3 = f ′3∪f ′′3 and f4 = f ′4∪f ′′4 . The interface

orders behave as follows.

• Fragments f1 and f2 behave as usual: shape(f1) = shape(f2) = W, and therefore by

Theorem 11 ord(i0) = 0, ord(i1) = 1, and ord(i2) = 2.

• Let us denote the upper interfaces of f ′3 and f ′′3 by i′2 and i′′2, respectively. Since

i′2 ∪ i′′2 = i2, the total order of the interface i2, ord(i2) = 2, can be partitioned into

ord(i′2) + ord(i′′2) only in three feasible ways:

ord(i′2) = 2, ord(i′′2) = 0, signifying two double bonds in i′2,

ord(i′2) = 0, ord(i′′2) = 2, signifying two double bonds in i′′2,

ord(i′2) = 1, ord(i′′2) = 1, signifying one double bond or one aromatic ring in both

i′2 and i′′2.
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• Let us denote the lower interfaces of f ′3 and f ′′3 by i′3 and i′′3, respectively. We find

that shape(f ′3) = R and shape(f ′′3 ) = L, and therefore according to Theorem 11

ord(i′3) = ord(i′2) and ord(i′′3) = ord(i′′2). Since i3 = i′3 ∪ i′′3, it follows that ord(i3) =

ord(i′3) + ord(i′′3) = 2.

• Let us denote the lower interfaces of f ′4 and f ′′4 by i′4 and i′′4. The upper interfaces

of f ′4 and f ′′4 are i′3 and i′′3, respectively. We have shape(f ′4) = L and shape(f ′′4 ) = R,

therefore according to Theorem 11 ord(i′4) = ord(i′3) and ord(i′′4) = ord(i′′3). Since

i4 = i′4 ∪ i′′4, we have ord(i4) = ord(i′4) + ord(i′′4) = 2. Note that the actual partition

of ord(i4) into ord(i′4) and ord(i′′4) [as well as the partition of ord(i3) into ord(i′3)

and ord(i′′3)] is fully determined by the choice made above for ord(i′2) and ord(i′′2).

• The fragment f5 has i4 as its upper interface with ord(i4) = 2. Since shape(f5) = N,

we have ord(i5) = 1.

• The fragment f6 behaves as usual: since shape(f6) = N and ord(i5) = 1, we have

ord(i6) = 0, as required by the fact that i6 is empty.

ord(i3) = 2

ord(i4) = 2

ord(i5) = 1

ord(i1) = 1

ord(i2) = 2

shape(f2) = W

shape(f3) = R,L

shape(f4) = L,R

shape(f5) = N

ord(i0) = 0

ord(i6) = 0

shape(f1) = W

shape(f6) = N

Figure 11. The fenestrene F (5, 5) contains two combined fragments: f3 = f ′3 ∪ f ′′3
and f4 = f ′4 ∪ f ′′4 . The Theorems 7, 11 and 16 apply to the elementary
fragments f1, f2, f ′3, f ′′3 , f ′4, f ′′4 , f5 and f6.

4 Conclusion

We have developed an interface theory of benzenoids that can be used for determining

whether a given benzenoid is Kekuléan, for finding its Clar covers and Kekulé structures,

for computing its ZZ polynomials, as well as deriving closed forms of ZZ polynomials for

whole families of structurally related benzenoids, and for many other interesting appli-

cations. The presented here interface theory of benzenoids is based on novel concepts of
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fragments and interfaces between the fragments [62, 63]. We derive and demonstrate a

number of fundamental theorems pertinent to the interface theory, which show that the

theory is internally consistent and in a natural way can be employed for constructing

perfect coverings of benzenoid structures using double bonds K2 and aromatic rings C6 as

the covering components. In particular, we are able to establish necessary and sufficient

conditions required for the existence and uniqueness of a Clar cover in terms of interface

bond coverings. Lemma 7 states that a Clar cover of a benzenoid is completely determined

by just the covering of its interface bonds. Theorem 11 gives a necessary criterion for the

total number of double and aromatic bonds in each interface of a Clar cover. Theorem 16

is another necessary criterion describing the distribution of double and/or aromatic inter-

face bonds in each fragment. Finally, Theorem 21 crowns the presented here development

by stating a set of conditions that is both necessary and sufficient. As a result, the con-

struction of Clar covers becomes simply an exercise of assigning the interface bond orders

in agreement with the theorem, as the presented Algorithm 1 clearly demonstrates. The

presented Algorithm 1 is fairly efficient with complexity of O (K ·M), where K denotes

the number of fragments in the benzenoid B and M is the maximal interface order of

B. Every benzenoid B can be analyzed in three distinct orientations, so it is important

to select the orientation which gives the minimal value of K ·M , which in most cases

corresponds to the orientation in which B is wider than taller. Note finally, that since K

can be bounded by the height of B and M , by the width of B, their product is bounded

by the area of B proportional to the number of vertices in B.

We believe that the presented interface theory of benzenoids is an important new tool

for characterization of benzenoid structures and for studying their perfect coverings. We

feel that the presented theorems open up new vistas in chemical graph theory and once

popularized may constitute an important research methodology in this field. For this

reason, we have decided to accompany this theory paper by an application paper [64],

where we give numerous examples of some of the most straightforward applications of the

interface theory developed here to basic problems in chemical graph theory, including the

demonstration of non-Kekuléan character for some non-Kekuléan benzenoids, detection of

essentially disconnected components of benzenoid structures, as well as the determination

of Clar numbers and the calculation of ZZ polynomials. In the near future, we are planning

to demonstrate how to utilize the theorems of interface theory to determine closed-form
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formulas for the ZZ polynomials of regular benzenoid strips and hexagons, and how to

efficiently calculate ZZ polynomials of arbitrary benzenoids. Moreover, a rather straight-

forward extension of the interface theory to nanotubes and other non-planar structures is

planned.
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