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Abstract

In this work, we present the Chebyshev finite difference method for solving
the nonlinear coupled boundary value system that report the concentrations of
carbon dioxide CO2 and phenyl glycidyl ether in solution. This method is based on
Chebyshev ploynomials approximation and finite difference method. The equations
of this problem with boundary conditions can be reduced to a system of algebraic
equations. We solve this system and compare the new solutions with some well-
known results which show the new scheme is accurate and efficient.

1 Introduction

In practical life, different phenomena in chemistry, mechanics, biology, physics, chemical

engineering and fluid dynamics are descripted by using linear or nonlinear differential

equations. In chemistry for example, a system of nonlinear ordinary differential equations

presented for chemical kinetics problem of carbon dioxide CO2 and phenyl glycidyl ether.

A coupled model of nonlinear differential equations for the steady-state concentrations of

CO2 and PGE is given in [15] as

d2u

dx2
=

α1u(x)v(x)

1 + β1u(x) + β2v(x)
, (1)
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d2v

dx2
=

α2u(x)v(x)

1 + β1u(x) + β2v(x)
, (2)

u(0) = 1, u(1) = k, v′(0) = 0, v(1) = 1. (3)

Here u(x) and v(x) are show the dimensionless concentrations of CO2 and PGE, respec-

tively. The constants αi, βi : i = 1, 2 are some constants, x denote the dimensionless

distance as measured from the center, and the dimensionless concentration of CO2 at the

surface of the catalyst is denoted by k.

Carbon dioxide is a chemical compound made of one carbon and two oxygen atoms. Car-

bon dioxide is coverd at a low concentration in the Earth’s atmosphere and acts as a

greenhouse gas. Also, carbon dioxide gas is used in welding, fire extinguishers, airguns,

oil recovery and decaffeination of coffee. Recently, many authors studied about carbon

dioxide chemical fixation becuse the danger posed by global warming. One of these chem-

ical fixations is the reaction between CO2 and phenyl glycidyl ether (PGE) in solution.

Park et al have investigated the chemical reaction between carbon dioxide and PGE so-

lutions with using TEA-CP-MS41 catalyst in [4, 5]. The literature of numerical analysis

includes a little of the solutions for this problem. In [7, 10], authors applied the Ado-

mian decomposition method to solved this system model and boundary conditions (1-

3). AL-Jawary and Radhi in [2] used the variational iteration method for calculating the

solutions of this problem. Also, the iterative method is presented by AL-Jawary et al.

in [1]. Recently, authors in [15,16] solved this coupled equation and Lane-Emden equation

by optimal homotopy analysis method [16].

In this paper, a different method is used. Our plan is to use Chebyshev finite difference

method to obtain numerical solution of the problem (1-3). In this method, we reduced

the problem to a set of algebraic equations by expanding u(t) in terms of Chebyshev poly-

nomials with unknown coefficients and used the Chebyshev-Gauss-Lobatto points for the

interpolation points [8]. This method can obtain a better solutions than the finite differ-

ence and finite elements methods [3, 11, 12] because the approximation of the derivatives

is defined over the whole domain. Chebyshev finite difference method has been widely

applied to solve many problems in physics and engineering. This method has been used

to obtain numerical solutions of the system arising in wastewater treatment plants [13],

the problem of the steady flow in a porous half space [14], boundary value problems [8]

and laminar flow [9].

The residual part of this paper is systematized as follows: In the next section, Chebyshev

-132-



finite difference method and its properties is reviewed. In section 3, we apply Chebyshev

finite difference method on the studied system. Numerical results for three cases of prob-

lem (1-3) with this method are given in section 4. Also, we have compared the new results

with existing results in the literature to show how accurate our results are. Finally, we

conclude the study in section 5.

2 Chebyshev finite difference method

The first kind of Chebyshev polynomials of degree n for ξ ∈ [−1, 1] are usually given by

this formula

Tn(ξ) = cos(n arccos(ξ)),

and satisfies in the following recurrence relation

T0(ξ) = 1, T0(ξ) = ξ,

Tn+1(ξ) = 2 ξ Tn(ξ)− Tn−1(ξ), n = 1, 2, ....

Futhermore, we consider the famous Chebyshev-Gauss-Lobatto nodes with

ξi = cos(
iπ

N
), i = 0, 1, 2, ..., N.

In fact, all points ξN = −1 < ξN−1 < ... < ξ1 < ξ0 = 1 are obtained of (1 − ξ2)T ′n(ξ) =

0, where T ′n(ξ) is the first derivative of Tn(ξ). The approximation of Chebyshev finite

difference method is introduced in [6] of the function u(ξ),

uN(ξ) =
N∑

n=0

′′anTn(ξ), an =
2

N

N∑
j=0

′′u(ξj)Tn(ξj), (4)

where, the definition of the symbol
∑′′ is a summation with both the first and last terms

divided into two. Also, Elbarbary in [8] denoted the first and second derivatives for the

function u(ξ) at the point ξk with

u
(k)
N (ξi) =

N∑
j=0

d
(k)
i,j u(ξj), k = 1, 2.

Here, d
(1)
i,j and d

(2)
i,j for i, j = 0, 1, ..., N, are obtained by

d
(1)
i,j =

4θj
N

N∑
n=0

n−1∑
m=0,(n+m) odd

nθn
cm

Tn(ξj)Tm(ξi),

d
(2)
i,j =

2θj
N

N∑
n=0

n−2∑
m=0,(n+m) even

n(n2 −m2)θn
cm

Tn(ξj)Tm(ξi), (5)

with θ0 = θN = 1
2
, θn = 1 for n = 1, 2, ..., N − 1, and c0 = 2, cm = 1, for m = 1, 2, ..., N .
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3 Numerical procedure

In this section, we apply the Chebyshev finite difference (ChFD) method to obtain solu-

tions of Eqs. (1) and (2) with boundary conditions (3). The domain of this problem is

0 ≤ x ≤ 1. The map ξ = 2x− 1 is also found to be of the interval [0, 1] into the interval

[−1, 1] and the Eqs. (1-3) are transformed into an equivalent equations

4u′′(ξ) =
α1u(ξ)v(ξ)

1 + β1u(ξ) + β2v(ξ)
, (6)

4v′′(ξ) =
α2u(ξ)v(ξ)

1 + β1u(ξ) + β2v(ξ)
, (7)

u(−1) = 0, u(1) = k, v′(−1) = 0, v(1) = 1. (8)

Now using Eq. (4) to approximate u(ξ) and v(ξ) as

uN(ξ) =
N∑

n=0

′′λnTn(ξ), vN(ξ) =
N∑

n=0

′′µnTn(ξ), (9)

where

λn =
2

N

N∑
n=0

′′u(ξj)Tn(ξj), µn =
2

N

N∑
n=0

′′v(ξj)Tn(ξj),

Substituting Eq. (9) into Eqs. (6)-(7) and putting ξ = ξi, i = 1, ...N − 1 that are the

Gauss-Lobatto points, we have

N∑
j=0

4d
(2)
i,j u(ξj) =

α1u(ξj)v(ξj)

1 + β1u(ξj) + β2v(ξj)
, (10)

N∑
j=0

4d
(2)
i,j v(ξj) =

α2u(ξj)v(ξj)

1 + β1u(ξj) + β2v(ξj)
, (11)

where d
(2)
i,j is given in Eq. (5). We get ξ = ξ0, ξN in the the boundary conditions (8) and

the following result is obtained

u(ξN) = 0, u(ξ0) = k,

N∑
j=0

d
(1)
i,j v(ξj) = 0, v(ξ0) = 1. (12)

Eqs. (10), (11) and (12) are a system of 2N + 2 nonlinear equations which can be solved

numerically for the unknown parameters u(ξi) and v(ξi) for i = 0, ..., N by Newton’s

method. Consequently uN(ξ) and vN(ξ) given in Eq. (9) can be calculated instead of

u(x) and v(x), respectively.
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4 Results and discussion

Here, we fix the parameters α1, α2, β1, β2 and k in Eqs. (1-3) and calculate the approximate

solutions by applying the Chebyshev finite difference method. We introduce the error

remainder functions in order to evaluate the accuracy of our approximate solutions

Res1,N(x) =
d2u

dx2
− α1u(x)v(x)

1 + β1u(x) + β2v(x)
, (13)

Res2,N(x) =
d2v

dx2
− α2u(x)v(x)

1 + β1u(x) + β2v(x)
, (14)

and the maximal error remainder parameters

MRes1,N = max
0≤x≤1

|Res1,N(x)|, MRes2,N = max
0≤x≤1

|Res2,N(x)|. (15)

Now, we consider the following three cases for the problem variables:

Case 1: α1 = 1, α2 = 2, β1 = 1, β2 = 3, k = 1
2.

In Figure 1, the numerical solutions uN(x) and vN(x) are plotted with N = 12 for this

case. Also, in Figure 4, the graphs of Res1,N(x) and Res2,N(x) are plotted with N = 12

for case 1. To make a comparison, in Table 1, we compare the parameters MRes1,N and

MRes2,N , with different values of N , together with the results obtained by using the

Adomian decomposition method (ADM) and the Duan-Rach modified recursion scheme

given in [7] and the optimal homotopy analysis method (OHAM) in [14] for case 1.

Case 2: α1 = 1, α2 = 2, β1 = 2, β2 = 4, k = 2.

In Figure 2, the numerical solutions uN(x) and vN(x) are plotted with N = 12 for case 2.

Also, in Figure 5, the graphs of Res1,N(x) and Res2,N(x) are plotted with N = 12 for case

2. To make a comparison, in Table 2, we compare the parameters MRes1,N and MRes2,N ,

for different values of N , together with the results obtained of ADM and OHAM for case

2.

Case 3: α1 = 2, α2 = 3, β1 = 1, β2 = 3, k = 3.

In Figure 3, the numerical solutions uN(x) and vN(x) are plotted with N = 12 for case 3.

Also, in Figure 6, the graphs of Res1,N(x) and Res2,N(x) are plotted with N = 12 for case

3. To make a comparison, in Table 3, we compare the parameters MRes1,N and MRes2,N ,
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with different values of N , together with the result obtained of ADM and OHAM for case

3.

Figure 1. Plot of the numerical solutions u12(x) (left) and v12(x) (right) for case
1.

Figure 2. Plot of the numerical solutions u12(x) (left) and v12(x) (right) for case
2.
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Figure 3. Plot of the numerical solutions u12(x) (left) and v12(x) (right) for case
3.

Figure 4. Plot of error remainder Res1,12(x) (left) and Res2,12(x) (right) for case
1.

Figure 5. Plot of error remainder Res1,12(x) (left) and Res2,12(x) (right) for case
2.
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Figure 6. Plot of error remainder Res1,12(x) (left) and Res2,12(x) (right) for case
3.

Table 1. The OHAM, ADM and ChFD maximal error remainders for case 1.

x uOHAM vOHAM uADM vADM uChFD vChFD

0 2.85E − 04 3.15E − 04 6.42E − 04 6.31E − 04 6.51E − 04 1.30E − 03
0.2 9.38E − 05 4.90E − 05 3.21E − 05 9.80E − 05 1.04E − 04 2.08E − 04
0.4 4.27E − 04 4.08E − 04 5.85E − 04 8.17E − 04 1.07E − 04 2.14E − 04
0.6 7.10E − 04 7.54E − 04 1.23E − 03 1.50E − 03 1.00E − 04 2.00E − 04
0.8 8.43E − 04 9.81E − 04 1.74E − 03 1.96E − 03 8.51E − 05 1.70E − 04
1 6.32E − 04 8.88E − 04 1.76E − 03 1.77E − 03 4.68E − 04 9.37E − 04

Table 2. The OHAM, ADM and ChFD maximal error remainders for case 2.

x uOHAM vOHAM uADM vADM uChFD vChFD

0 3.44E − 05 2.90E − 04 1.40E − 04 5.80E − 04 9.11E − 04 1.82E − 03
0.2 1.31E − 04 1.53E − 04 5.23E − 04 3.06E − 04 1.50E − 04 3.01E − 04
0.4 3.88E − 04 4.40E − 04 1.17E − 03 8.80E − 04 1.61E − 04 3.23E − 04
0.6 4.16E − 04 1.45E − 03 1.18E − 03 2.90E − 03 1.57E − 04 3.15E − 04
0.8 1.11E − 04 3.41E − 03 5.94E − 06 6.83E − 03 1.40E − 04 2.80E − 04
1 1.44E − 03 6.47E − 03 2.72E − 03 1.29E − 02 8.10E − 04 1.62E − 03

Table 3. The OHAM, ADM and ChFD maximal error remainders for case 3.

x uOHAM vOHAM uADM vADM uChFD vChFD

0 2.41E − 03 4.81E − 03 8.19E − 04 7.22E − 03 1.11E − 02 1.66E − 02
0.2 1.07E − 02 1.70E − 03 1.24E − 02 2.55E − 03 1.81E − 03 2.72E − 03
0.4 1.59E − 02 4.13E − 03 1.87E − 02 6.20E − 03 1.92E − 03 2.89E − 03
0.6 1.34E − 02 1.57E − 02 1.30E − 02 2.36E − 02 1.85E − 03 2.78E − 03
0.8 1.77E − 04 3.87E − 02 9.28E − 03 5.80E − 02 1.62E − 03 2.43E − 03
1 2.63E − 02 7.31E − 02 4.98E − 02 1.09E − 01 9.22E − 03 1.38E − 02
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5 Conclusion

In this article, the Chebyshev finite difference scheme is used to make an approximation

solutions of steady-state concentrations of carbon dioxide absorbed into phenyl glycidyl

ether. Properties of the Chebyshev finite difference method are helped to reduce this

reaction formulas to a system of algebraic equations. The numerical solutions obtained by

the Chebyshev finite difference method are in good agreement with the numerical results

obtained in [7,14], and to show that this method has good convergence and effectiveness.
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