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Abstract

Let G = (V,E) be a simple graph of order n with vertex set V = {v1, v2, . . . , vn}
and edge set E. Denote the sequence of its vertex degrees by d1, d2, . . . , dn. The
arithmetic–geometric matrix AAG(G) = (ai,j) of G is the square matrix of order n,

where ai,j = 1
2

(√
di
dj

+
√

dj
di

)
if vivj ∈ E(G) and 0 otherwise. We give some bounds

for the arithmetic–geometric spectral radius in terms of the maximum degree and
minimum degree of G, the Randić index R−1, and the first Zagreb index M1. We
also obtain some bounds for the arithmetic–geometric energy in terms of ordinary
energy, the sum of 2-degrees of G, symmetric division deg index, the forgotten index,
the second Zagreb index, and so on. Finally, some families of arithmetic–geometric
equienergetic graphs are constructed by graph operations.

1. Introduction

Throughout this paper, let G = (V,E) be a simple graph of order n and size m,

with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G). An edge e ∈ E(G) with end

vertices vi and vj is denoted by vivj. Let di be the degree of a vertex vi. The maximum

and minimum degree of G are denoted by ∆ and δ, respectively. The 2-degree of vi is

denoted by ti, which is defined as the sum of degrees of all vertices adjacent to vi, i.e.,

ti =
∑

vivj∈E(G) dj.

The adjacency matrix A(G) = (ai,j) of G is the matrix of order n, where ai,j = 1 if

vivj ∈ E(G) and 0 otherwise. The eigenvalues of A(G) are denoted by λ1 ≥ λ2 ≥ · · · ≥ λn.
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The energy [11, 15, 16] of G is defined as E(G) =
∑n

i=1 |λi|. In 1975, a so-called Randić

index was proposed, associated with molecular structure [19]. It is defined by

R−1(G) =
∑

vivj∈E(G)

1

didj
.

In [9], Gutman et al. introduced the Randić matrix R(G) = (ri,j) of G, where ri,j = 1√
didj

if vivj ∈ E(G) and 0 otherwise. The eigenvalues of R(G) are denoted by γ1 ≥ γ2 ≥ · · · ≥
γn. Moreover, Gutman et al. [9] also offered some bounds for the Randić spectral radius

and Randić energy. In addition, Cavers et al. [3] obtained a bound on Randić index in

terms of the normalized Laplacian energy of graphs.

In 1994, Yang et al. [28] proposed the extended adjacency matrix of G, denoted by

Aex(G) = (ci,j), where ci,j = 1
2
( di
dj

+
dj
di

) if vivj ∈ E(G) and 0 otherwise. The energy of

extended adjacent matrix Aex(G) was first studied by Yang et al. [28]. The corresponding

topological index is the symmetric division deg index [25], which is written as

SDD(G) =
∑

vivj∈E(G)

(
di
dj

+
dj
di

)
.

Recently, the spectral radius and energy of the extended adjacency matrix were also

studied, see [2, 7, 27] and the references cited therein.

In 2009, Vukičević and Furtula [26] proposed the geometric–arithmetic matrix of G,

denoted by AGA(G) = (gi,j), where gi,j =
2
√
didj

di+dj
if vivj ∈ E(G) and 0 otherwise. The

corresponding topological index is

GA1 =
∑

vivj∈E(G)

2
√
didj

di + dj
.

The spectral properties of the geometric–arithmetic index were considered in [20]. For

more information about the geometric–arithmetic index, see [6, 26].

Recently, Shegehall and Kanabur [23] introduced the arithmetic–geometric index of G.

In particular, they studied the arithmetic–geometric indices of path graph with pendent

vertices attached to the middle vertices of path Pn [24]. Motivated by these papers, we

consider the arithmetic–geometric matrix of G, which is defined as AAG = AAG(G) =

(hi,j), where hi,j =
di+dj

2
√
didj

= 1
2

(√
di
dj

+
√

dj
di

)
if vivj ∈ E(G) and 0 otherwise. Denote the

eigenvalues of AAG(G) by η1 ≥ η2 ≥ · · · ≥ ηn, where η1 is called the arithmetic–geometric

spectral radius of G. The arithmetic–geometric energy is defined as

EAG = EAG(G) =
n∑
i=1

|ηi| .
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It is worth noting that some bounds of the arithmetic–geometric energy of graphs have

been offered by Das et al. in [8].

Two non-isomorphic graphs of the same order without identical spectra are said to

be equienergetic if they have the same energy. Similarly, two graphs are said to be

arithmetic–geometric equienergrtic if they have the same arithmetic–geometric graph

energy. More details on equienergetic graphs can be found in [1, 2, 14].

As usual, the isolated vertex, the complete bipartite graph, complete k-partite graph,

the complete graph, and the star on n vertices are denoted by K1, Kp,q, Kn1,n2,...,nk , Kn

and K1,n−1, respectively.

In this paper, we also need the following three degree–based topological indices

• The first Zagreb index [11], M1(G) =
n∑
i=1

d2
i =

∑
vivj∈E(G)

(di + dj),

• The second Zagreb index [10], M2(G) =
∑

vivj∈E(G)

di dj,

• The forgotten index [11], F (G) =
n∑
i=1

d3
i =

∑
vivj∈E(G)

(
d2
i + d2

j

)
.

In the rest of the paper, we obtain some upper and lower bounds for the spectral radius

and energy of the arithmetic–geometric matrix and characterize the extremal graphs.

This paper is organized as follows. In Section 2, we recall some earlier results which will

be used in the later parts of the paper. Section 3 gives some upper and lower bounds

for the spectral radius of the arithmetic–geometric matrix and characterizes the extremal

graphs. Some bounds on the arithmetic–geometric energy are obtained in Section 4. In

Section 5, we construct some pairs of arithmetic–geometric equienergetic graphs on n

vertices for all n ≥ 9.

2. Preliminaries

We recall some known results, which will be used in the next sections.

Lemma 1 [12]. If G is a connected graph of order n with size m, then

λ1 ≤
√

2m− n+ 1 ,

with equality holding if and only if G is isomorphic to Kn or K1,n−1.

Lemma 2 [8]. If G is a graph of order n, then

γ1 ≤
1

n

√
2n(n− 1)R−1 .
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Lemma 3 (Rayleigh-Ritz) [29]. If B is a real symmetric matrix of order n with eigen-

values ρ1 ≥ ρ2 ≥ · · · ≥ ρn, then, for a nonzero vector x,

ρ1 ≥
xTBx

xTx
,

with equality holding if and only if x is an eigenvector of B corresponding to ρ1.

Lemma 4 [30]. Let G be a graph of order n with degree sequence d1, d2, . . . , dn. Then

λ1 ≥

√√√√ n∑
i=1

d2
i

n
.

with equality holding if and only if G is regular or semiregular.

Lemma 5 (Interlacing Lemma) [22]. Let B be a symmetric matrix of order n, and Bk

be its k × k submatrix. Then, for any integer i where 1 ≤ i ≤ k,

ρn−k+i (B) ≤ ρi (Bk) ≤ ρi (B) ,

where ρi(B), ρi(Bk) are the i-th largest eigenvalue of B and Bk, respectively.

Lemma 6 [13]. Suppose that B = (bi,j) and C = (ci,j) are two nonnegative symmetric

matrices of order n. If B ≥ C, i.e., bi,j ≥ ci,j for all i, j, then ρ1 (B) ≥ ρ1 (C).

Lemma 7 [17]. Let B and C be two n× n complex matrices. For any integer k, where

1 ≤ k ≤ n,
k∑
i=1

si(B + C) ≤
k∑
i=1

si(B) +
k∑
i=1

si(C) ,

where si denotes the i-th largest singular value of matrices.

Lemma 8 [17]. Let B1, B2, . . . , Bm be n× n complex matrices. For any integer k where

1 ≤ k ≤ n,
k∑
i=1

si(B1B2 · · ·Bm) ≤
k∑
i=1

si(B1)si(B2) · · · si(Bm) .

In the next lemmas, we state some inequalities, that are needed in seeking bounds for

the arithmetic–geometric energy.

Lemma 9 [18]. For positive numbers x1, x2, . . . , xn,

n
1
x1

+ · · ·+ 1
xn

≤ n
√
x1x2 · · ·xn .

Lemma 10 (Chebyshev’s inequality) [5]. For real numbers a1 ≤ a2 ≤ · · · ≤ an and

b1 ≤ b2 ≤ · · · ≤ bn, (
n∑
i=1

ai

)(
n∑
i=1

bi

)
≤ n

n∑
i=1

aibi
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with equality holding if and only if a1 = a2 = · · · = an or b1 = b2 = · · · = bn.

Lemma 11 [18]. For non-negative numbers x1, x2, . . . , xn and k ≥ 2,

n∑
i=1

(xi)
k ≤

(
n∑
i=1

x2
i

)k/2

.

Lemma 12 [4]. Let G be a graph of order n ≥ 2. Then the multiplicity of the eigenvalue

zero in its adjacency spectrum equals to n − 2 if and only if G is isomorphic to Kp,q ∪
(n− p− q)K1, where p+ q ≤ n.

Lemma 13 [21]. A connected graph G of order n has only one positive eigenvalue in its

adjacency spectrum if and only if G is a complete k-partite graph Kn1,n2,...,nk .

3. On arithmetic–geometric spectral radius

In this section, we obtain some lower and upper bounds on the spectral radius η1 of

the arithmetic–geometric matrix. First, we give two lower bounds in terms of the first

Zagreb index M1.

Theorem 1. Let G be a graph of order n with maximum degree ∆. Then

η1 ≥
M1

n∆
, (1)

where the equality holds if and only if G is a regular graph.

Proof. Let x = (x1, x2, . . . , xn)T be a unit vector in Rn. Then,

xTAAGx =
∑

vivj∈E(G)

(√
di
dj

+

√
dj
di

)
xi xj ≥

∑
vivj∈E(G)

(
di + dj

∆

)
xi xj . (2)

Set x =
(

1√
n
, 1√

n
, . . . , 1√

n

)T
. Then from Lemma 3, we have

η1 ≥ xTAAGx ≥

∑
vivj∈E(G)

(di + dj)

n∆
=

n∑
i=1

d2
i

n∆
=
M1

n∆
.

Now suppose that the equality holds in (1). Then all the inequalities in the proof

must be equalities. From (2), we have d1 = d2 = · · · = dn = ∆. Furthermore, from η1 =

xTAAGx, we have that the vector x =
(

1√
n
, 1√

n
, . . . , 1√

n

)T
is an eigenvector corresponding

to η1. Hence, G is a regular graph.

Conversely, if G is a regular graph, it is easy to check that the equality holds in (1).
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Theorem 2. Let G be a graph of order n. Then

η1 ≥
√
M1

n
, (3)

where the equality holds if and only if G is a regular graph.

Proof. Since 1
2

(√
di
dj

+
√

dj
di

)
≥ 1, then AAG ≥ A(G). Furthermore, by Lemmas 4 and 6,

η1 ≥ λ1 ≥

√√√√ n∑
i=1

d2
i

n
=

√
M1

n
.

Finally, by the equality condition of Lemma 4 and 1
2

(√
di
dj

+
√

dj
di

)
= 1, we can get

that the equality holds if and only if G is regular graph.

Note that the lower bound of η1 in (3) is better than that in (1) as

M2
1

n2∆2
− M1

n
=
M2

1 − nM1∆2

n2∆2
=

M1

n2∆2

(
M1 − n∆2

)
=

M1

n2∆2

(
n∑
i=1

d2
i − n∆2

)
≤ 0 .

Next we give an upper bound on η1 in terms of the number of vertices and edges.

Theorem 3. Let G be a graph of order n and size m. Then

η1 ≤
1

2

(√
n− 1 +

1√
n− 1

)√
2m− n+ 1 , (4)

where the equality holds if and only if G is isomorphic to K1,n−1.

Proof. Since f(x) = x+ 1
x

is an increasing function in the variable x ∈ [1,+∞), for any

edge vivj ∈ E (G), √
di
dj

+

√
dj
di
≤
√

∆

δ
+

√
δ

∆
≤
√
n− 1 +

1√
n− 1

. (5)

Let ρ1 be the spectral radius of the matrix 1
2

(√
∆
δ

+
√

δ
∆

)
A(G). Then, from Lemmas 6

and 1, we have

η1 ≤ ρ1 =
1

2

(√
∆

δ
+

√
δ

∆

)
λ1 ≤

1

2

(√
n− 1 +

1√
n− 1

)√
2m− n+ 1 . (6)

We now consider the sharpness of (4). Suppose that the equality holds in (4). Then

all the inequalities in the proof must be equalities. From the equality in (5), we have

di = 1, dj = n − 1 or di = 1, dj = n − 1 for any edge vivj ∈ E (G). From the equality

in (6), we get λ1 =
√

2m− n+ 1. Then by Lemma 1, G is isomorphic to Kn or K1,n−1.

Hence, G must be isomorphic to K1,n−1.

Conversely, it is easy to check that the equality holds in (4) if G is isomorphic to

K1,n−1.
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In a similar way as in Theorem 3, we can obtain an upper bound on η1 in terms of

Randić index R−1.

Theorem 4. Let G be a graph of order n and size m with maximum degree ∆. Then

η1 ≤
∆

n

√
2n(n− 1)R−1 . (7)

Equality in (7) holds if and only if G is isomorphic to Kn.

Proof. For any edge vivj ∈ E (G),

1

2

(√
di
dj

+

√
dj
di

)
≤ ∆

1√
di dj

. (8)

Then, by Lemmas 6 and 2, we have

η1 ≤ ∆γ1 ≤
∆

n

√
n(n− 1)tr(R2) =

∆

n

√
2n(n− 1)R−1 . (9)

We next consider the sharpness of (7). Suppose that the equality holds in (7). Then

all the inequalities in the proof must be equalities. From the equality in (8), we have

d1 = d2 = · · · = dn = ∆, i.e., G is a regular graph. Since G is a regular graph, then

η1 = λ1 = r ,γ1 = 1
r
λ1 = 1, and R−1 =

∑
vivj∈E(G)

(
1

didj

)
= m

r2
= n

2r
, where r is the regular

degree of G. From the equality in (9), we get

r =
∆

n

√
2n(n− 1)R−1 =

√
n2 r2 (n− 1)

n2 r
=
√
r(n− 1) ,

which implies that n− 1 = r. Hence G is a complete graph Kn.

Conversely, it is easy to check that the equality holds in (7) for Kn.

Theorem 5. Let G be a connected graph of order n with maximum degree ∆ and

minimum degree δ. Then

η1 ≤

1 +

(√
∆−

√
δ
)2

2δ

λ1 , (10)

with the equality holding if and only if G is a regular graph.

Proof. Let x = (x1, x2, . . . , xn)T be the unit eigenvector corresponding to the eigenvalue

η1. Then η1 = xTAAGx. By Lemma 3,

λ1 ≥ xTAx = 2
∑

vivj∈E(G)

xi xj . (11)

-641-



By (2), we get

xTAAGx =
∑

vivj∈E(G)

(
di + dj√
di dj

)
xi xj =

∑
vivj∈E(G)

((√
di −

√
dj
)2

+ 2
√
di dj√

di dj

)
xixj

≤ 2
∑

vivj∈E(G)

xi xj +

(√
∆−

√
δ
)

δ

2 ∑
vivj∈E(G)

xi xj (12)

= 2

1+

(√
∆−

√
δ
)

2δ

2
 ∑
vivj∈E(G)

xi xj ≤

1 +

(√
∆−

√
δ
)2

2δ

λ1 .

Suppose now that the equality holds in (10). Then all the inequalities in the proof

must be equalities. From (11) and (12), we get d1 = d2 = · · · = dn = δ and λ1 = η1.

Hence G is a regular graph.

Conversely, it is easy to check that the equality holds in (10) for a regular graph G.

4. On arithmetic–geometric energy

In this section, we mainly use some fundamental inequalities to obtain upper and

lower bounds of the arithmetic–geometric energy. First, we give some upper bounds in

terms of the maximum degree and the minimum degree and some topological indices.

Theorem 6. Let G be a graph of order n and size m, with maximum degree ∆ and

minimum degree δ (δ ≥ 1). Then

EAG ≤
√

2n∆2R−1 (13)

EAG ≤ 1

2

√
2mn

(√
∆

δ
+

√
δ

∆

)
(14)

EAG ≤
√

n

2δ2
(F+2M2) (15)

EAG ≤

√
n

(
F

2δ2
+m

)
(16)

EAG ≤

√√√√n

(
1

2δ

n∑
i=1

ti +m

)
(17)

where the equalities hold in (13)–(17) if and only if G is isomorphic to n
2
K2.
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Proof. Remark that these bounds are direct consequences of Corollary 2 in [8], in order

to obtain the equalities’ condition, we here give a new proof. By the Cauchy–Schwarz

inequality,

EAG =
n∑
i=1

|ηi| ≤

√√√√n

n∑
i=1

ηi2 =

√√√√√n

2

∑
vivj∈E(G)

(√
di
dj

+

√
dj
di

)2

. (18)

Since√
di
dj

+

√
dj
di
≤
√

∆

δ
+

√
δ

∆
,

√
di
dj

+

√
dj
di
≤ 2∆√

di dj
,

√
di
dj

+

√
dj
di
≤ di + dj

δ
, (19)

from (18) and (19), we arrive at (13)–(15) directly.

On the other hand, from (18) it follows

EAG ≤

√√√√n

n∑
i=1

ηi2 =

√√√√√n

2

∑
vivj∈E(G)

(√
di
dj

+

√
dj
di

)2

=

√√√√n

2

∑
vivj∈E(G)

(
di
dj

+
dj
di

)
+mn (20)

≤

√√√√n

2

∑
vivj∈E(G)

(
d2
i + d2

j

δ2

)
+mn =

√(
F

2δ2
+m

)
n . (21)

Then, we arrive at (16).

From (20), we have

EAG ≤

√√√√√n

2

 ∑
vi∈V (G)

(
1

di

) ∑
vivj∈E(G)

(dj)

+mn

≤

√√√√√ n

2δ

 ∑
vi∈V (G)

 ∑
vivj∈E(G)

(dj)

+mn =

√√√√ n

2δ

n∑
i=1

ti +mn , (22)

implying that the (17) follows.

We now examine the sharpness of (13)–(17). Suppose that the equalities hold in (13)–

(17). Then all the inequalities in the proof must be equalities. From the equalities in

(19), (21), and (22), we conclude that G is a regular graph. From the equality in (18),

we get |η1| = |η2| = · · · = |ηn|. If di = 1 for any 1 ≤ i ≤ n, then G is isomorphic to n
2
K2.

Otherwise, di ≥ 2 for any 1 ≤ i ≤ n. Then G contains a connected component H with at
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least 3 vertices. If H is the complete graph of order p (p ≥ 3), then |η1| = p−1 > 1 = |η2|,
a contradiction. So H is not a complete graph. On the other hand, since the arithmetic–

geometric matrix is a nonnegative irreducible matrix, then η1 (H) > η2 (H). By Lemma

5, η2 (H) ≥ 0, which leads to a contradiction. Hence, |η1| = |η2| = · · · = |ηn| holds only

if G is isomorphic to n
2
K2.

Conversely, it is easy to check that the equalities hold in (13)–(17) if G is isomorphic

to n
2
K2.

We now offer some other upper bound on the arithmetic–geometric energy in terms

of the energy E(G) of graphs.

Theorem 7. Let G be a graph of order n and size m, with maximum degree ∆ and

minimum degree δ. Then

EAG ≤
√

∆

δ
E(G) .

Proof. Let A,B,C be n × n matrices, where A is the adjacency matrix of G and C =

diag( 1√
d1
, 1√

d2
, . . . , 1√

dn
). Then by the definition of the arithmetic-geometric matrix, we

have

AAG =
B +BT

2
, B = C−1AC .

From Lemmas 7 and 8, we obtain

EAG =
n∑
i=1

si (AAG) =
n∑
i=1

si

(
B +BT

2

)
≤

n∑
i=1

si

(
B

2

)
+

n∑
i=1

si

(
BT

2

)
=

n∑
i=1

si (B)

=
n∑
i=1

si
(
C−1AC

)
≤

n∑
i=1

si
(
C−1

)
si (A) si (C)

=
n∑
i=1

√
di

dn−i+1

si (A) ≤
√

∆

δ

n∑
i=1

si (A) =

√
∆

δ
E (G) ,

implying the required result.

In what follows, we obtain two lower bounds for EAG in terms of the first Zagreb index,

the number of vertices, and the number of edges.

Theorem 8. Let G be a connected graph of order n. Then

EAG ≥ 2

√
M1

n
,

with the equality holding if and only if G is isomorphic to the complete k-partite graph

Gr1,r2,...,rk , where |r1| = |r2| = · · · = |rk|.
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Proof. Applying Theorem 2, we have

EAG =
n∑
i=1

|ηi| = 2
n∑

i=1,ηi≥0

ηi ≥ 2η1 ≥ 2

√
M1

n
,

where the second equality holds if and only if G is a regular graph. So ηi = λi for any

1 ≤ i ≤ n. From Lemma 13, the equality holds if and only if G is isomorphic to Gr1,r2,...,rk ,

where |r1| = |r2| = · · · = |rk|.

Theorem 9. If G is a graph of order n with m edges, then

EAG ≥ 2
√
m, (23)

with the equality holding if and only if G is isomorphic to Kp,p ∪ (n− 2p)K1, where

p = 1, 2, . . . ,
⌊
n
2

⌋
.

Proof. For m = 0, the equality holds obviously. For m ≥ 1, let p be the number of

isolated vertices and k be the number of connected components. In addition, let Gi be

the i-th connected component of G with order ni ≥ 2 and mi ≥ 1 edges. Then we have

n = p+
k∑
i=1

ni, m =
k∑
i=1

mi.

Consider first the connected component Gi with vertex set V (Gi) = {vi1, . . . , vini}
and edge set E(Gi). Let di1, . . . , dini be the degree sequence of Gi. And let ηi1, . . . , ηini

be the eigenvalues of AAG (Gi). Then, by Theorem 4 in [8], we have

EAG(Gi) ≥

√√√√2

ni∑
j=1

η2
ij

=

√√√√√ ∑
vijvik∈E(Gi)

(√
dij
dik

+

√
dik
dij

)2

≥ 2
√
mi. (24)

Notice that, for real numbers a ≥ b > 0,

√
a+
√
b ≥
√
a+ b , (25)

with equality holding if and only if b = 0. From this inequality, we have

EAG (G) =
k∑
i=1

EAG (Gi) ≥ 2
√
m1 + 2

√
m2 + · · ·+ 2

√
mk

≥ 2
√
m1 +m2 + · · ·+ 2

√
mk ≥ · · · ≥ 2

√
m1 + · · ·+mk = 2

√
m.

The first part of the proof is done.

Now suppose that the equality holds for m ≥ 1. Then all the above inequalities must

be equalities. By the equality condition in Theorem 4 of [8], the first equality in (24)

holds if and only if ηi1 = −ηini , ηij = 0 for 2 ≤ j ≤ ni − 1. The second equality in (24)
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holds if and only if Gi is a regular graph. Since Gi is a regular graph, then ηij = λij

for 1 ≤ j ≤ ni, where λij is the adjacency eigenvalue of Gi. Then by Lemma 12, Gi is

isomorphic to Kp,p as Gi is regular. From the equality in (25), we have k = 1. Hence G

is isomorphic to Kp,p ∪ (n− 2p)K1, where p = 1, 2, . . . ,
⌊
n
2

⌋
.

Conversely, it is easy to check that the equality holds in (23) if G is isomorphic to

Kp,p ∪ (n− 2p)K1.

Given a graph G, if all eigenvalues in its adjacency spectrum are nonzero, then G is

said to be nonsingular. Similarly, if all eigenvalues of the arithmetic–geometric matrix of

G are nonzero, then G is called AG nonsingular. Next we give a lower bound on EAG for

an AG nonsingular connected graph G.

Theorem 10. If G is an AG nonsingular connected graph of order n, then

EAG ≥
√
M1

n
− ln

√
M1

n
+ ln |detAAG|+ n− 1 .

Proof. Since x ≥ 1 + ln x for any x > 0, we have

EAG =
n∑
i=1

|ηi| = η1 +
n∑
i=2

|ηi| ≥ n− 1 +
n∑
i=2

ln |ηi|+ η1

= n− 1 + η1+ln
n∏
i=2

|ηi| = n− 1+η1+ln |detAAG| − ln η1 .

Since h(x) = n − 1 + x+ln |det AAG| − lnx is an increasing function in the variable

x ∈ [1,+∞), by Theorem 2 we obtain

h(x) ≥ h

(√
M1

n

)
=

√
M1

n
− ln

√
M1

n
+ ln |det AAG|+ n− 1 .

Thus the proof is completed.

Theorem 11. If G is a graph of order n with m edges, then

e−
√

1
2
SDD+m < EAG < e

√
1
2
SDD+m .

Proof. First, we prove the right part of the result by using fundamental inequality and

power series expansion method. Since x < ex for any real number x, it follows

EAG =
n∑
i=1

|ηi| <
n∑
i=1

e|ηi| =
n∑
i=1

∑
k≥0

(|ηi|)k

k!
=
∑
k≥0

1

k!

n∑
i=1

(|ηi|)k .

Note that
n∑
i=1

η2
i = 1

2

∑
vivj∈E(G)

(
di
dj

+
dj
di

)
+m = 1

2
SDD +m. From Lemma 11, we have

EAG <
∑
k≥0

1

k!

n∑
i=1

(|ηi|)k ≤
∑
k≥0

1

k!

(
n∑
i=1

(|ηi|)2

)k/2

-646-



=
∑
k≥0

1

k!

(√
1

2
SDD +m

)k

= e
√

1
2
SDD+m .

The right part of the proof is done.

Let σ be the number of the nonzero eigenvalues of the matrix AAG, and let ξ1 ≥ ξ2 ≥
· · · ≥ ξσ be the absolute values of all these nonzero eigenvalues, given in a non-increasing

order. By Lemma 5,

ηn ≤ ρ2[AAG] ≤ −1

2

(
di
dj

+
dj
di

)
≤ −1 ,

where [AAG] is the leading 2× 2 submatrix of AAG. Therefore, |ηn| ≥ 1. Hence,

σ∑
i=1

ξi =
n∑
i=1

|ηi| ≥ |ηn| ≥ 1 . (26)

Using the arithmetic–geometric mean inequality, we have

EAG =
n∑
i=1

|ηi| =
σ∑
i=1

ξi = σ

(
σ∑
i=1

1

σ
ξi

)
≥ σ

(
σ
√
ξ1ξ2 · · · ξσ

)
.

It follows from Lemmas 9, 10 and (26) that

σ
(

σ
√
ξ1ξ2 · · · ξσ

)
≥ σ

 σ
σ∑
i=1

1
ξi

 ≥ σ

 σ
σ∑
i=1

1
ξi

σ∑
i=1

ξi

 ≥ σ

 σ

σ
σ∑
i=1

1
ξi
ξi

 .

Applying power series expansion of ex, we obtain

σ

 σ

σ
σ∑
i=1

1
ξi
ξi

 ≥ σ

 σ

σ2
σ∑
i=1

ξi

 >
1

σ∑
i=1

eξi
=

1
σ∑
i=1

∑
k≥0

(ξi)
k

k!

=
1∑

k≥0

1
k!

σ∑
i=1

(ξi)
k
.

It follows from Lemma 11 that

1∑
k≥0

1
k!

σ∑
i=1

(ξi)
k
≥ 1∑

k≥0

1
k!

σ∑
i=1

(ξ2
i )

k
2

=
1∑

k≥0

1
k!

(√
1
2
SDD +m

)k = e−
√

1
2
SDD+m ,

implying the required lower bound.

5. Arithmetic–geometric equienergetic graphs

In this section, we consider constructions of arithmetic–geometric equienergetic non-

regular graphs. Clearly, the energy is equal to arithmetic–geometric energy for a regular
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graph. Hence, if two regular graphs are equienergetic, then they are also arithmetic–

geometric equienergetic.

We first recall the join operation on graphs. Let G and H be two graphs. The join

G ∨ H of G and H is the graph obtained by the vertex set V (G) of G and V (H) of H

and then joining each of the vertices of V (G) to all the vertices of V (H).

Theorem 12. Let Gi be an ri regular graph of order ni for i = 1, 2. Then the arithmetic–

geometric energy of G1 ∨G2 is

EAG = E(G1)+E(G2)−(r1+r2)+

√
(r1+r2)2 − 4r1 r2 + n1 n2

(√
r1+n2

r2+n1

+

√
r2+n1

r1+n2

)2

.

Proof. Since Gi is an ri regular graph of order ni for i = 1, 2, it follows

AAG(G1 ∨G2) =

 AAG(G1) 1
2

(√
r1+n2

r2+n1
+
√

r2+n1

r1+n2

)
Jn1×n2

1
2

(√
r1+n2

r2+n1
+
√

r2+n1

r1+n2

)
Jn2×n1 AAG(G2)

.
Then, the eigenvalues of the arithmetic–geometric matrix of G1 ∨ G2 are λj(Gi), where

j = 2, 3, . . . ni for i = 1, 2, and

1

2

(r1 + r2)±

√
(r1 + r2)2 − 4r1r2+n1n2

(√
r1 + n2

r2 + n1

+

√
r2 + n1

r1 + n2

)2
 ,

which implies the required result.

Theorem 13. For all n ≥ 9, there exists a pair of arithmetic–geometric equienergetic

graphs of order n.

Proof. Let G1 and G2 be two graphs as shown in Figure 1. From the Example 4.1 in [16],

G1 and G2 are 4-regular equienergetic graphs. Moreover, EAG(G1) = EAG(G2) = E(G1) =

16.

Figure 1: Two equienergetic 4-regular graphs used for constructing pairs of arithmetic–
geometric equienergetic species.

Then, by Theorem 12, we have

EAG (G1 ∨Kt) = EAG (G2 ∨Kt)
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= t+ 11 +

√√√√(t+ 3)2 − 16(t− 1) + 9t

(√
4 + t

8 + t
+

√
8 + t

4 + t

)2

.

Hence, G1 ∨Kt and G2 ∨Kt are two arithmetic–geometric equienergetic graphs for all

n ≥ 9.
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