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Abstract

The energy £(G) of a graph G is the sum of the absolute values of all eigenvalues
of G. Zhou in (MATCH Commun. Math. Comput. Chem. 55 (2006) 91-94) studied
the problem of bounding the graph energy in terms of the minimum degree together
with other parameters. He proved his result for quadrangle-free graphs. Recently,
in (MATCH Commun. Math. Comput. Chem. 81 (2019) 393-404) it is shown that
for every graph G, £(G) > 26(G), where §(G) is the minimum degree of G, and the
equality holds if and only if G is a complete multipartite graph with equal size of
parts. Here, we provide a short proof for this result. Also, we give an affirmative
answer to a problem proposed in (MATCH Commun. Math. Comput. Chem. 81
(2019) 393-404).

Let G be a graph with the vertex set and the edge set V(G) and E(G), respectively. The
adjacency matriz of a graph G of order n, A(G) = [a;;], is an n X n matrix, where a;; = 1
if viv; € E(G), and a;; = 0, otherwise. The energy of a graph G, £(G), is defined as

the sum of absolute values of eigenvalues of A(G). The concept of graph energy was first
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introduced by Gutman in 1978, see [3]. For more properties of the energy of graphs we
refer to [4]. There are many lower bounds on the energy of graphs. Zhou studied the
problem of bounding the graph energy in terms of the minimum degree together with
other parameters [7]. In the next theorem, we provide a short elementary proof for a

problem given in [5].

Theorem 1. Let G be a connected graph with average degree d. Then £(G) > 2d and
the equality holds if and only if G is a complete multipartite graph with the equal size of

parts.

Proof. Let Ay > --- > X, be the eigenvalues of A(G). Since Y. ; A\; =0, by the triangle

inequality and [2, Theorem 3.8], we note that \; > d. Now, we have,

>
=2

Also, £(G) = 2d, if and only if all of )y, ..., \, have the same signs and \; = d. Note

EG) =M=+ D N =M+ — 2\ > 2.
i=1 =2

that Ay, ..., A, have the same signs if and only if A\; is the only positive eigenvalue of G
which by [6] (see also [2, Theorem 6.7]) is equivalent to G being a complete multipartite
graph. Moreover, by [1] (see also [2, Theorem 3.8]) A\; = d if and only if G is regular.
Therefore, £(G) = 2d if and only if G is a multipartite graph with equal size of parts. H

As a consequence of Theorem 1, we state the next corollary which was proved in [5].

Corollary 1. Let G be a connected graph with minimum degree 6(G). Then E(G) > 20(G)
and the equality holds if and only if G is a complete multipartite graph with equal size of

parts.
Now, we propose the following conjecture.

Conjecture. For every graph with mazimum degree A(G) whose adjacency matriz is
non-singular, £(G) > A(G) + 6(G) and the equality holds if and only if G is a complete
graph.
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