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Abstract

The energy of a graph is defined as the sum of the absolute values of all eigen-
values of its adjacency matrix. Given p integers n1 ≥ n2 ≥ · · · ≥ np ≥ 0, let
SC(n1, n2, . . . , np) be a tree obtained from a star K1,p with p vertices v1, v2, . . . , vp
of degree one by attaching ni pendent edges to vertex vi for 1 ≤ i ≤ p, which is called
a blossomed star. Let SC(n;n1, n2, . . . , np) = {SC(n1, n2, . . . , np)|

∑p
i=1 ni = n−p−

1}. In this paper, we show that, among all blossomed stars in SC(n;n1, n2, . . . , np),
SC(n − p − 1, 0, . . . , 0) has minimal energy and SC(r + 1, . . . , r + 1︸ ︷︷ ︸

t

, r, . . . , r︸ ︷︷ ︸
p−t

) has

maximal energy, where n− p− 1 = pr + t, 0 ≤ t ≤ r − 1.

1 Introduction

Let G be a simple graph of order n and A(G) the adjacency matrix of G. Denote the char-

acteristic polynomial of A(G) by φ(G;x) = det(xI − A(G)). Assume that λ1, λ2, . . . , λn

are the eigenvalues of G, i.e. the zeros of φ(G;x).

In chemistry, the total energy of HMO π-electron plays an important role as a parame-

ter of conjugated molecule, which is related to the thermodynamic stability of conjugated

structures. And the total energy of HMO π-electron in conjugated hydrocarbons can

be reduced to the sum of absolute values of all eigenvalues of the constructed molecular

graph. In 1977, Gutman [8] first defined the energy of a graph G as

E(G) =
n∑

i=1

|λi|. (1)
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Since then, the graph energy has been widely studied because it can be used to ap-

proximate the total π-electron energy of molecules [8,9,18]. One of the vital problems of

the graph energy is the ordering of graphs with respect to their energies. Until now, nu-

merous results relevant to the maximal or minimal energies of graphs have been obtained,

see for example [1–3,5, 6, 10,11,13–16,19–21,23–25].

It is well known that for an acyclic graph T of order n, the matching polynomial and

the characteristic polynomial are the same. Hence

φ(T ;x) =

bn
2
c∑

i=0

(−1)im(T, i)xn−2i, (2)

where m(T, i) is the number of matchings of size i in T .

The energy of a tree T with n vertices can be expressed as the Coulson integral

formula [12] as follow:

E(T ) =
2

π

∫ +∞

0

1

x2
ln

1 +

bn
2
c∑

i=1

m(T, i)x2i

 dx. (3)

In fact, we can see that E(T ) is a strictly monotonically function in terms of m(T, i). Gut-

man [7] also introduced a quasi-ordering relation which makes great effects on comparing

the energy of acyclic graphs as follows:

If T1 and T2 are both acyclic graphs, then T1 � T2 if and only if for any i ≥ 0,

m(T1, i) ≥ m(T2, i).

If T1 � T2 and for some j ≥ 0 such that m(T1, j) > m(T2, j), then we say T1 � T2.

We thus have

T1 � T2 ⇒ E(T1) ≥ E(T2);

T1 � T2 ⇒ E(T1) > E(T2).

Let T d
n(n1, n2, . . . , nd−1) (ni ≥ 0) denote a caterpillar of order n and diameter d, which

is obtained from a path Pd+1 whose vertices ordered from 0 to d by attaching ni pendent

edges to i-th vertex for i = 1, 2, . . . , d−1. By the quasi-ordering relation above, Zhang and

Guo [22] proved that among all caterpillars of order n and diameter d, T d
n(n1, n2, . . . , nd−1)

satisfying n1 ≥ nd−1 ≥ n2 ≥ nd−2 ≥ · · · ≥ n[ d
2
] and n1−n[ d

2
] ≤ 1 has the maximum energy

for d ≤ 5. Recently, Che [4] extended this result to caterpillars of diameter 6.
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Figure 1. (a) A blossomed star SC(3, 3, 2, 2).

Given p integers n1 ≥ n2 ≥ · · · ≥ np ≥ 0, let SC(n1, n2, . . . , np) be a blossomed star

of order n, which is obtained from a star K1,p (p > 1) with vertices v1, . . . , vp of degree

one by attaching ni pendent edges to vertex vi for i = 1, 2, . . . , p. Figure 1 illustrates

SC(3, 3, 2, 2). Let SC(n;n1, n2, . . . , np) = {SC(n1, n2, . . . , np)|
∑p

i=1 ni = n− p− 1}.

In this paper, we mainly prove the following results.

Theorem 1.1. Among SC(n;n1, n2, . . . , np), the energy of SC(n − p − 1, 0, . . . , 0) is

minimal.

Theorem 1.2. Among SC(n;n1, n2, . . . , np), the energy of SC(r + 1, . . . , r + 1︸ ︷︷ ︸
t

, r, . . . , r︸ ︷︷ ︸
p−t

)

is maximal, where n− p− 1 = pr + t, 0 ≤ t ≤ r − 1.

2 Proofs of main results

We first need to introduce some lemmas.

Lemma 2.1. [17] Let T be a tree and u a vertex of T . Then

φ(T ;x) = xφ(T − u;x)−
∑

v∈NT (u)

φ(T − u− v;x),

where T − u is the subgraph of T by deleting vertex u and NT (u) = {v|(u, v) ∈ E(T )},

E(T ) is the edge set of T .
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Lemma 2.2. Given p integers n1 ≥ n2 ≥ · · · ≥ np ≥ 0, let f(x) =
p∏

i=1

(x2 − ni) and

g(x) =
p∑

i=1

f(x)/(x2 − ni). Then

f(x)− g(x) = x2p +

p∑
i=1

(−1)i[ai + (p− i+ 1)ai−1]x
2(p−i),

where a0 = 1, ai =
∑

1≤s1<···<si≤p
ns1ns2 · · ·nsi , i = 1, 2, . . . , p.

Proof. Note that

f(x) = (x2 − n1)(x
2 − n2) · · · (x2 − np)

= x2p −

(
p∑

i=1

ni

)
x2(p−1) +

( ∑
1≤i<j≤p

ninj

)
x2(p−2) + · · ·+ (−1)p

p∏
i=1

ni

=

p∑
i=0

(−1)iaix
2(p−i).

Let fk(x) = f(x)/(x2 − nk) =
p∏

i=1
i 6=k

(x2 − ni) =
p−1∑
i=0

(−1)ibkix
2(p−1−i), where bk0 = 1 and

for 1 ≤ i ≤ p− 1,

bki =
∑

1≤s1<···<si≤p
sj 6=k,j=1,2,...,i

ns1ns2 · · ·nsi .

Note that
p∑

k=1

bki = b1i + b2i + · · ·+ bpi

= (p− i)
∑

1≤s1<···<si≤p

ns1ns2 · · ·nsi

= (p− i)ai.
Thus,

f(x)− g(x) = f(x)−
p∑

k=1

fk(x)

=

p∑
i=0

(−1)iaix
2(p−i) −

p−1∑
i=0

(−1)i(

p∑
k=1

bki)x
2(p−1−i)

=

p∑
i=0

(−1)iaix
2(p−i) −

p−1∑
i=0

(−1)i(p− i)aix2(p−1−i)

= x2p +

p∑
i=1

(−1)iaix
2(p−i) −

p∑
i=1

(−1)i−1(p− i+ 1)ai−1x
2(p−i)

= x2p +

p∑
i=1

(−1)i[ai + (p− i+ 1)ai−1]x
2(p−i). �
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Lemma 2.3. Let SC(n1, n2, . . . , np) be a blossomed star of order n. Then the character-

istic polynomial of SC(n1, n2, . . . , np) is

φ(SC(n1, n2, . . . , np);x) = xn +

p∑
i=1

(−1)i[ai + (p− i+ 1)ai−1]x
n−2i, (4)

where a0 = 1, ai =
∑

1≤s1<···<si≤p
ns1ns2 · · ·nsi , i = 1, 2, . . . , p.

Proof. It is obvious that

φ(K1,ni
;x) = xni+1 − nix

ni−1.

By lemma 2.1,

φ(SC(n1, n2, . . . , np);x) = x

p∏
i=1

φ(K1,ni
;x)−

p∑
i=1

xni
∏p

i=1 φ(K1,ni
;x)

φ(K1,ni
;x)

= x

p∏
i=1

xni−1(x2 − ni)−
p∑

i=1

xni
∏p

i=1 x
ni−1(x2 − ni)

xni−1(x2 − ni)

= xn−2p

 p∏
i=1

(x2 − ni)−
p∑

i=1

p∏
j=1
j 6=i

(x2 − nj)

 .
Therefore, by Lemma 2.2, the result is proved. �

Lemma 2.4. Given p integers n1 ≥ n2 ≥ · · · ≥ np ≥ 0 satisfying ni − nj ≥ 2 for some

i and j (1 ≤ i < j ≤ p), define p integers m1,m2, . . . ,mp such that ms = ns if s 6= i, j

and mi = ni − 1, mj = nj + 1. For any 1 ≤ k ≤ p, let ak =
∑

1≤s1<···<sk≤p
ns1ns2 · · ·nsk and

bk =
∑

1≤s1<···<sk≤p
ms1ms2 · · ·msk . Then

ak < bk, if 2 ≤ k ≤ α ; ak = bk = 0, if α < k ≤ p,

where α = |{ms|ms 6= 0, 1 ≤ s ≤ p}|.

Proof. Obviously, if k > α then ak = bk = 0.

For fixed 1 ≤ i < j ≤ p, let

∆k =
∑

1≤s1<···<sk≤p
sh /∈{i,j},h=1,2,...,k

ns1ns2 · · ·nsk .

Note that ni + nj −mi −mj = 0 and ninj −mimj = −(ni − nj − 1) < 0. Thus, if k = 2,

then a2 − c2 = (ni + nj −mi −mj)∆1 + (ninj −mimj) < 0.

-627-



For 2 < k ≤ α,

ak − ck = (ni + nj −mi −mj)∆k−1 + (ninj −mimj)∆k−2

= −(ni − nj − 1)∆k−2.

Since ∆k−2 > 0, ak < ck.

Hence, the result follows. �

Moreover, by Lemmas 2.3, 2.4 and the quasi-ordering relation, we have the following

helpful lemma directly.

Lemma 2.5. Let SC(m1,m2, . . . ,mp) be a blossomed star of order n. If mi −mj ≥ 2

for fixed 1 ≤ i < j ≤ p, then the energies of SC(m1,m2, . . . ,mp) and SC(m1, . . . ,mi −

1, . . . ,mj + 1, . . . ,mp) satisfying

E(SC(m1,m2, . . . ,mp)) < E(SC(m1, . . . ,mi − 1, . . . ,mj + 1, . . . ,mp)).

Now, we can prove our results.

Proof of Theorem 1.1. Assume that SC(m1,m2, . . . ,mp) is the blossomed star whose

energy is minimal. If there exists 1 ≤ i < j ≤ p such that mi ≥ mj ≥ 1, then (mi + 1)−

(mj − 1) ≥ 2. By Lemma 2.5,

E(SC(m1, . . . ,mi + 1, . . . ,mj − 1, . . . ,mp)) < E(SC(m1, . . . ,mi, . . . ,mj, . . . ,mp))

contradicting the choice of SC(m1,m2, . . . ,mp). Note that m1 ≥ m2 ≥ · · · ≥ mp ≥ 0,

thus m2 = m3 = · · · = mp = 0, i.e. SC(n− p− 1, 0, . . . , 0) has the minimal energy among

SC(n;n1, n2, . . . , np).

Proof of Theorem 1.2. Similarly, assume that SC(m1,m2, . . . ,mp) is the blossomed

star whose energy is maximal. By Lemma 2.5, |mi − mj| ≤ 1 for any i 6= j, imply-

ing that all the values of mi equal to bn−p−1
p
c or dn−p−1

p
e, i.e. SC(m1,m2, . . . ,mp) =

SC(r + 1, . . . , r + 1︸ ︷︷ ︸
t

, r, . . . , r︸ ︷︷ ︸
p−t

), where n− p− 1 = pr + t, 0 ≤ t ≤ r − 1.
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