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Abstract

In this paper, we construct families of graphs that satisfy the conjecture for the
Randi¢ energy RE(G) proposed by Gutman, Furtula and Bozkurt [8] based on the
Randi¢ index R_1(G). More specifically, we provide upper bounds for the energy
and we show how to add edges to T'B-graphs that maintain the energy bounded.

1 Introduction

Let G = (V, E) be an undirected graph with vertex set V' and edge set E. In 1975 Milan
Randi¢ [11] proposed a molecular structure descriptor under the name “branching index”

defined as
1

, deg(u) - deg(v)’

where deg(v) denotes the degree of v. Nowadays this parameter is known as Randic¢ index.

R4(G) =

{uv}eE(G

Like other chemical indices, the Randi¢ index has received considerable attention from
mathematicians, see for example [4,6,9,10]. Connected to R_;(G) we have the Randié
matriz R = [r;;] of G defined [3,7,8] as

1 .
—— i {u,v} €E,
rij = { doa(u)dea(e) | {u,v} ’

0 otherwise.

Denote the eigenvalues of R by Aq, ..., An. The multiset o = {A, ..., An} is called the

R-spectrum of the graph G.
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The Randi¢ energy RE(G) of a graph G is

n
> Al
i=1
The normalized Laplacian matrix, defined by Chung [5], can be written using the
Randi¢ matrix as
L= ['n - R7
where I,, is the identity matrix of order n. Thus, the eigenvalues of £ are given by
i=1-=x
for i = 1,...,n. For graphs without isolated vertices Cavers [4] defined the normalized

Laplacian energy as
Ep(G) = I~ 1.
i=1
An interesting fact about E.(G), see [8], is that if G does not have isolated vertices then

RE(G) = E£(G).
Thus, results in this paper on Randi¢ energy apply also to the normalized Laplacian
energy.
In [8] Gutman, Furtula and Bozkurt conjectured that the graphs called sun, denoted
by SP, and double sun, denoted by DSP4, have the largest Randi¢ energy depending on
the parity of n. For each p > 0, the p-sun, SP, is the tree of order n = 2p + 1 formed by

taking the star on p + 1 vertices and subdividing each edge.

Figure 1. Sun.

For p,q > 0 the (p, q)-double sun, denoted DP9, is the tree of order n = 2(p+ ¢ + 1)
obtained by connecting the centers of S? and S¢ with an edge. Without loss of generality

we assume p > ¢q. When p — ¢ < 1 the double sun is called balanced.

Figure 2. Double Sun.
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More precisely, they stated the following conjecture.
Conjecture 1 Let G be a connected graph on n vertices. Then

RE(SP) ifn=2p+1 is odd,

RE(G) < ; :
RE(DSP?) ifn=2p+2¢+2iseven and q<p<q+1.

In [1] the authors computed the Randi¢ energy of the sun and the double sun. The
energy of the sun is RE(S?) = (n — 3) + 2 with n = 2p + 1. The energy of the double

sun depends on whether ¢ =p or ¢ =p — 1. If p = ¢ then
RE(DP?) = ﬁ(n —dn —12) + 4Vn? + dn £ 20
2(n+2)

If g=p—1 then

2
RE(DPP71) = 5 (;/;4)@ —2n? 24+2\/ n+4)(n?+ 8 + vV—64n + nt + 64)+

2\/n(n+4)(n2 +8— vV —64n + n* + 64)).

Cavers et al. [4] showed that R_;(G) = itr(R*) and RE(G) < \/n-tr(R?), which
implies that the parameters R_;(G) and RE(G) are related by the following inequality

RE(G) < +/2-n-R_1(G). (1)

Motivated by (1), in this work we compute bounds for the Randié¢ index. We also
give bounds for R_; of graphs obtained from TB-graphs by adding edges. A TB-graph
(see [1]) is a bipartite graph with bipartition A, B, such that deg(b) < 2 for every b € B.
As an application, we construct families of graphs that respect the conjecture for graphs
of odd order.

The paper is organized as follows. In section 2, we present upper bounds for the
Randi¢ index. In section 3, we give an upper bound for the R_; of ATB-graphs, which
are graphs obtained from T B-graphs by adding edges between vertices in A and edges
between a vertex in A and a vertex in B. In section 4, we provide upper bounds for the
Randi¢ energy and we show that some families of graphs satisfy the conjecture proposed

in [8].

2 Upper bound for the Randié¢ index
The Randi¢ index of a graph G, R,l(G), can also be defined as

Ra@= 3 deg(v)deg Z 2 g deg()

{v,w}eE(G) UEV(G) weN (U)
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where N (v) is the neighbourhood of v, i.e., the set of the vertices of G that are adjacent
to v. Given a vertex v € G, we define the Randié index of v, r_1(v), as
1
r1(v) = Z —
weN (v) deg(b) deg(w)

Thus,
R,I(G):% 3 ).

veV(G)

An independent vertex set of a graph G is a subset of vertices such that no two vertices

of G are adjacent.

Lemma 2.1 If B is an independent set of G and A =V (G) \ B, then
D orad) <Y rala).
beB acA

Proof: Notice that

1
D=3 Y i

beB beB aeN(b)

Since B is an independent set, N(b) C A. Thus,

1 1
Z Z deg(b) deg(a) :Z Z deg(b) deg(a)

beB aeN(b) beB aeN(b)NA

1
=2 > deg(b) deg(a)

a€A beN(a)NB

1
<2 2 )@

a€A veN(a)

:Zr,l(a).

acA

Lemma 2.2 If B is an independent set of G and A =V (G) \ B, then

R.4(G) <> rafa).
acA
Proof: Since A and B is a partition of the vertices of G, we have that

R_1(G) = % > () = %Zr,l(a) + % > ra(b).

veV(GQ) acA beB
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Applying Lemma 2.1 we obtain

acA beB
1
§§ Zr,l(a) + 3 Zr,l(a)
acA a€A
Y
acA

A dominant set for a graph G = (V, E) is a subset B of V such that every vertex in

V' \ B is adjacent to at least one vertex of B.

Lemma 2.3 Let G be a connected graph of order n > 3, B a dominant independent set
of G, By the set of vertices in B of degree 1, B>o the set of vertices in B with degree
greater or equal to 2, and A the set of vertices of G that are not in B. Then for every
a €A,

1 1
r_i(a) < 3 + Z|N(a) N By,

where N(a) is the neighbourhood of a.

Proof: Let a € A. Consider the vertices of degree 1 in N(a). As B is a dominant set,
any such vertex must be in B. This means that b is a neighbour of a with deg(b) = 1 if
and only if b € By. In other words, every vertex in N(a) N (B2 U A) has degree at least
2.

If deg(a) > 2, then

1
r_i(a) = Z - -
vone des(b) deg(a)
1 1
- Z dJea(a) Z ool ol
beN (a)NB1 ng a) beN(a)N(BszUA) ng(b) dcg(a)
1 1
< —
= 2 degla) 2 2 deg(a)
beN(a)NB1 bEN (a)N(Bx2UA)

2 1
B Z 2 deg(a) * Z 2 deg(a)

beN(a)NBy bEN (a)N(B>aUA)

1 1 1
B Z 2 deg(a) * Z 2 deg(a) * Z 2 deg(a)

beN (a)NB; beN (a)NB; bEN (a)N(BssUA)
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1 1
B Z 2deﬂ(a)Jr Z 2 deg(a)

(s}

beN (a)NB; beN (a)
1 1
=|N(a) N Bi|=— + d ) ———
V(@) 1‘2(1eg(a) + eg(a)Qdeg(a)
1 1
=|N(a) N By|=——— + =
N (a) 1‘Zdeg(oL) + 2

1 1
<|N(a) N By]= + =.
<|N(a) 1 1 + 5
If deg(a) = 1, let b be the only neighbour of a. Since G is a connected graph of order
n >3, deg(b) > 2, and so N(a) N By = (). Hence,

o
~ deg(b)

1
5"

1
<5 =IN@N Bl +

DO =

r_i(a)

| |

Combining Lemma 2.2 with Lemma 2.3 we obtain an upper bound for R_;(G) in
terms of |A| and |Bss.

Lemma 2.4 Let G be a connected graph of order n > 3, B a dominant independent set
of G, By the set of vertices in B of degree 1, B>o the set of vertices in B with degree
greater or equal than 2, and A the set of vertices of G that are not in B. Then

< n+ ‘A| - |B22|.

R(G) < 1

Proof: By Lemma 2.2,

By Lemma 2.3

Since the vertices in B; have degree 1, each vertex b € B; appears in exactly one

subset N(a) N By, for a € A. Hence

1 1 | By

acA beBy
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Then
AL, 1B

R <
1(G) D)
| | ‘ 1‘

4 4
AL+ 14+ B
1 .
Since n = |A| + |Bsa| + | By|, we have

RA(G) < 0

3 Adding edges to TB graphs

A TB-graph (see [1]) is a bipartite graph with bipartition A, B, such that deg(b) < 2 for
every b € B.
In [1], while studying the Randi¢ energy of T'B-graphs, the authors showed that if G

is a T'B-graph of order n, then

n+1
R(G) <22
4
To do this, they partitioned B into By and By, where By is the set of the vertices in B of
degree 1 and B, is the set of the vertices in B of degree 2. Then, they showed that
_ 241418

R,1(G) =~ 4 and ‘A| S |Bz| + 1.

And, as an application they obtained the following result. We denote nuff (R) the
nullity of the matrix R.

Theorem 3.1 [1, Theorem 5.5] Let G be a connected TB graph. Then

RE(G) <vVn—2vn— 3? +2.

Even more, if null (R) > 1, then
2
RE(G) < (n— 3)% +2.

In this section we study graphs obtained from 7' B-graphs by adding edges.
Let G be a T'B-graph. Let G’ be a graph obtained from G by adding edges between

vertices in A or adding edges between a vertex in A and a vertex in B. That is, V(G') =
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V(G), E(G) C E(G") and if e € E(G')\ E(G), then |[en B| < 1. If G’ can be obtained in
such way from a T'B-graph G, we say that G’ is an AT B-graph (Augmented T B-graph)
of G, and in general we say that G’ is an AT B-graph.

Denoting by Bso(G) the set of the vertices in B whose degree is at least 2, since G is
a TB-graph and G’ is an AT B-graph of G, then By(G) = B>2(G) C Bx2(G'). Applying

Lemma 2.4, we have
< n+ ‘A| — |BZQ(G’)‘

R (G) < 1
Using that |4] < |B2(G)| + 1 < |Bs2(G")| + 1,
L+ 1
R(G) < ”I ,

Hence, we have the following result.
Theorem 3.2 If G is a connected AT B-graph with order n > 3, then

RA(G) < ”Zl.

4 Applications to Randié energy

In [1], the authors provided bounds for the Randi¢ energy in terms of the number of

vertices, the nullity of the graph and the Randi¢ index as follows.

Theorem 4.1 [1, Corollary 3.4] If G is a graph of order n, then

RE(G) < v/(n =1 —null(R))2R_1(G) — 1) + 1.

Furthermore, if G is bipartite, then

RE(G) < \/(n —2 — null (R))(2R_1(G) — 2) + 2.
Theorem 4.1 and Theorem 3.2 yield the following result.

Theorem 4.2 If G is an ATB connected graph with n > 3, then

RE(G) < \/(n 1 — null (R)) ("; L 1) ¥,

and

RE(G) < \/(n ~ 9~ wull(R)) (”;1 - 2) 42

if G is bipartite.
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In particular, if G is bipartite and has an odd number of vertices, then nufl (R) > 1.
Corollary 4.3 If G is a connected bipartite AT B-graph with an odd number of vertices
n > 3, then

RE(G) < \/(n—3)

- p)
7123+2:(n—3)§+2.

For AT B-graphs in general we can obtain a similar upper bound when nufl (R) > 2, using
that (n —3)(n — 1) < (n — 2)? and that % <1
Corollary 4.4 If G is a connected AT B-graph with n > 3 vertices and null (R) > 2, then

RE(G) < (nfS)g +o.

Proof: Since nufl (R) > 2,

RE(G) <\/(n — 1~ mll(R)) (”;1 - 1) ‘1

<y[(n—3) (n;1)+1.

Notice that (n —3)(n — 1) =n? —4n + 3 < (n — 2)2. Hence,

RE(G) < (”_22)2 +1
:(n72)§+1
:(n_3)§+§+1
<(n—3)§+2.

5 Examples
In this section, we give examples of families of graphs that satisfy Conjecture 1.

Example 1 A starlike is a tree that has exactly one vertex of degree greater than 2. As
an example, consider the starlike G in Figure 3. Notice that G is a T B-graph where
B = {2,4,5,7}, By = {4,7}, By = {2,5} and A = {1,3,6}. Since n = 7 is odd, by
Theorem 3.1, we have that RE(G) < RE(S?).
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Figure 3. Starlike G.

Notice that, we can add edges to G from A to B, as shown in Figure 4, to generate
bipartite AT B-graphs. From Corollary 4.3, we have that RE(G') < RE(S®) for each
possible AT B-graph G’ of G.. Notice that this process can be done for any starlike of odd

order.

@
&)
@9

Figure 4. AT B-graph of G.

©

O3

Example 2 Consider now a connected bipartite TB-graph G with bipartition
A ={ay,...,a;} and B = {by,... b}, with s > t and n = s+t odd. The edges of
G are {a;, b}, fori=1,...,t, {bic1,a;}, fori =2,...,t and {bj,a;}, fori=t+1,...,s.
Figure 5 illustrates such graph. Using Theorem 3.1, we know that RE(G) < RE(SP) with
n =2+ 1. We can add edges from A to B until we have the complete bipartite graph
K, ;. According to Corollary 4.3, RE(G') < RE(SP) for any ATB-graph G’ of G.

B

& @ O=

Q)
&
&)
&y
(s)

Figure 5. TB-graph.
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Example 3 A Threshold graph on n vertices is defined by a binary sequence of length n,
where a vertex v;, for i =1,...,n, corresponds to digit 0, if an isolated vertezx v; is added
and v; corresponds to digit 1 if v; is added as a dominating vertex (see for example [2]
for more details). If G is a Threshold graph with binary sequence 0111510%2152 ,  (tw 15w
then null(G) = (t1 — 1) 4+ -+ + (tw — 1) [2, Theorem 3]. We show that any connected
Threshold graph G with binary sequence 0°11°10%21%2 .. .0°* 1% where s; > 3 for some
1 <4 < w or where ewist s;, s; > 2 for some 1 < i < j < w is an ATB-graph and
RE(G) < (n— 3)% +2, wheren =2% " s;.

B
A
©
©
O
O
O
©
O
@

Figure 6. TB-graph.

For instance, consider the T B-graph G depicted in Figure 6. G is a connected bipartite
graph with bipartition A, B, where the vertices in B are labeled with digit 0 and the vertices
in A are labeled with digit 1. Now, we can add edges to G from A to A and from A to
B until we construct the Threshold graph G with binary sequence 021202120212, Since
null(R(G")) = 3 and G’ is an AT B-graph, then, by Corollary 4.4, RE(G') < (n—3)§+2
where n = 12. Following the argument above, we see that any Threshold graph with binary
sequence 0°11°10%21%2 .. 05w 1% 4s an ATB-graph, since this graph can be obtained adding
edges to a T B-graph in the same way as it was done for the graph of Figure 6. In addition,
the fact that s; > 3 for some 1 <i <w ors;, s; > 2 for some 1 <i < j < w implies that
null(R(0°11510%21%2 ... 05v1%*)) > 2. Thus, in this case, by Corollary 4.4, we have that
RE(0%1510%21%2 ... 0% 1%) < (n — 3)% +2, wheren =2% " s;.

Using the same argument above, we see that any connected Threshold graph with binary
sequence 0°11%10°21%2 . 0% 1%«~! 4s an ATB-graph with odd order n = 2(2;;1 si)—1. By
Corollary 4.3, RE(0°11510%21%2 ... 0% 1*»~1) < RE(S?), where p = (31, s;) — 1 and
n=2p+1.
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