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Abstract

In this paper, we construct families of graphs that satisfy the conjecture for the
Randić energy RE(G) proposed by Gutman, Furtula and Bozkurt [8] based on the
Randić index R−1(G). More specifically, we provide upper bounds for the energy
and we show how to add edges to TB-graphs that maintain the energy bounded.

1 Introduction

Let G = (V,E) be an undirected graph with vertex set V and edge set E. In 1975 Milan

Randić [11] proposed a molecular structure descriptor under the name “branching index”

defined as

R−1(G) =
∑

{u,v}∈E(G)

1

deg(u) · deg(v)
,

where deg(v) denotes the degree of v. Nowadays this parameter is known as Randić index.

Like other chemical indices, the Randić index has received considerable attention from

mathematicians, see for example [4, 6, 9, 10]. Connected to R−1(G) we have the Randić

matrix R = [rij] of G defined [3, 7, 8] as

rij =

{
1√

deg(u)·deg(v)
if {u, v} ∈ E,

0 otherwise.

Denote the eigenvalues of R by λ1, . . . , λn. The multiset σR = {λ1, . . . , λn} is called the

R-spectrum of the graph G.
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The Randić energy RE(G) of a graph G is

n∑
i=1

|λi|.

The normalized Laplacian matrix, defined by Chung [5], can be written using the

Randić matrix as

L = In −R,

where In is the identity matrix of order n. Thus, the eigenvalues of L are given by

µi = 1− λi

for i = 1, . . . , n. For graphs without isolated vertices Cavers [4] defined the normalized

Laplacian energy as

EL(G) =
n∑

i=1

|µi − 1|.

An interesting fact about EL(G), see [8], is that if G does not have isolated vertices then

RE(G) = EL(G).

Thus, results in this paper on Randić energy apply also to the normalized Laplacian

energy.

In [8] Gutman, Furtula and Bozkurt conjectured that the graphs called sun, denoted

by Sp, and double sun, denoted by DSp,q, have the largest Randić energy depending on

the parity of n. For each p ≥ 0, the p-sun, Sp, is the tree of order n = 2p + 1 formed by

taking the star on p+ 1 vertices and subdividing each edge.

Figure 1. Sun.

For p, q ≥ 0 the (p, q)-double sun, denoted Dp,q, is the tree of order n = 2(p + q + 1)

obtained by connecting the centers of Sp and Sq with an edge. Without loss of generality

we assume p ≥ q. When p− q ≤ 1 the double sun is called balanced.

Figure 2. Double Sun.
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More precisely, they stated the following conjecture.

Conjecture 1 Let G be a connected graph on n vertices. Then

RE(G) ≤

{
RE(Sp) if n = 2p+ 1 is odd,

RE(DSp,q) if n = 2p+ 2q + 2 is even and q ≤ p ≤ q + 1 .

In [1] the authors computed the Randić energy of the sun and the double sun. The

energy of the sun is RE(Sp) = (n− 3)
√
2
2

+ 2 with n = 2p+ 1. The energy of the double

sun depends on whether q = p or q = p− 1. If p = q then

RE(Dp,p) =

√
2(n2 − 4n− 12) + 4

√
n2 + 4n+ 20

2(n+ 2)
.

If q = p− 1 then

RE(Dp,p−1) =

√
2

2n(n+ 4)
(n3 − 2n2 − 24 + 2

√
n(n+ 4)(n2 + 8 +

√
−64n+ n4 + 64)+

2

√
n(n+ 4)(n2 + 8−

√
−64n+ n4 + 64)).

Cavers et al. [4] showed that R−1(G) = 1
2
tr(R2) and RE(G) ≤

√
n · tr(R2), which

implies that the parameters R−1(G) and RE(G) are related by the following inequality

RE(G) ≤
√

2 · n ·R−1(G). (1)

Motivated by (1), in this work we compute bounds for the Randić index. We also

give bounds for R−1 of graphs obtained from TB-graphs by adding edges. A TB-graph

(see [1]) is a bipartite graph with bipartition A,B, such that deg(b) ≤ 2 for every b ∈ B.

As an application, we construct families of graphs that respect the conjecture for graphs

of odd order.

The paper is organized as follows. In section 2, we present upper bounds for the

Randić index. In section 3, we give an upper bound for the R−1 of ATB-graphs, which

are graphs obtained from TB-graphs by adding edges between vertices in A and edges

between a vertex in A and a vertex in B. In section 4, we provide upper bounds for the

Randić energy and we show that some families of graphs satisfy the conjecture proposed

in [8].

2 Upper bound for the Randić index

The Randić index of a graph G, R−1(G), can also be defined as

R−1(G) =
∑

{v,w}∈E(G)

1

deg(v) deg(w)
=

1

2

∑
v∈V (G)

∑
w∈N(v)

1

deg(v) deg(w)
,

-613-



where N(v) is the neighbourhood of v, i.e., the set of the vertices of G that are adjacent

to v. Given a vertex v ∈ G, we define the Randić index of v, r−1(v), as

r−1(v) =
∑

w∈N(v)

1

deg(v) deg(w)
.

Thus,

R−1(G) =
1

2

∑
v∈V (G)

r−1(v).

An independent vertex set of a graph G is a subset of vertices such that no two vertices

of G are adjacent.

Lemma 2.1 If B is an independent set of G and A = V (G) \B, then∑
b∈B

r−1(b) ≤
∑
a∈A

r−1(a).

Proof: Notice that ∑
b∈B

r−1(b) =
∑
b∈B

∑
a∈N(b)

1

deg(b) deg(a)
.

Since B is an independent set, N(b) ⊆ A. Thus,∑
b∈B

∑
a∈N(b)

1

deg(b) deg(a)
=
∑
b∈B

∑
a∈N(b)∩A

1

deg(b) deg(a)

=
∑
a∈A

∑
b∈N(a)∩B

1

deg(b) deg(a)

≤
∑
a∈A

∑
v∈N(a)

1

deg(v) deg(a)

=
∑
a∈A

r−1(a).

�

Lemma 2.2 If B is an independent set of G and A = V (G) \B, then

R−1(G) ≤
∑
a∈A

r−1(a).

Proof: Since A and B is a partition of the vertices of G, we have that

R−1(G) =
1

2

∑
v∈V (G)

r−1(v) =
1

2

∑
a∈A

r−1(a) +
1

2

∑
b∈B

r−1(b).
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Applying Lemma 2.1 we obtain

R−1(G) =
1

2

∑
a∈A

r−1(a) +
1

2

∑
b∈B

r−1(b)

≤1

2

∑
a∈A

r−1(a) +
1

2

∑
a∈A

r−1(a)

=
∑
a∈A

r−1(a).

�

A dominant set for a graph G = (V,E) is a subset B of V such that every vertex in

V \B is adjacent to at least one vertex of B.

Lemma 2.3 Let G be a connected graph of order n ≥ 3, B a dominant independent set

of G, B1 the set of vertices in B of degree 1, B≥2 the set of vertices in B with degree

greater or equal to 2, and A the set of vertices of G that are not in B. Then for every

a ∈ A,

r−1(a) ≤ 1

2
+

1

4
|N(a) ∩B1|,

where N(a) is the neighbourhood of a.

Proof: Let a ∈ A. Consider the vertices of degree 1 in N(a). As B is a dominant set,

any such vertex must be in B. This means that b is a neighbour of a with deg(b) = 1 if

and only if b ∈ B1. In other words, every vertex in N(a) ∩ (B≥2 ∪ A) has degree at least

2.

If deg(a) ≥ 2, then

r−1(a) =
∑

b∈N(a)

1

deg(b) deg(a)

=
∑

b∈N(a)∩B1

1

deg(a)
+

∑
b∈N(a)∩(B≥2∪A)

1

deg(b) deg(a)

≤
∑

b∈N(a)∩B1

1

deg(a)
+

∑
b∈N(a)∩(B≥2∪A)

1

2 deg(a)

=
∑

b∈N(a)∩B1

2

2 deg(a)
+

∑
b∈N(a)∩(B≥2∪A)

1

2 deg(a)

=
∑

b∈N(a)∩B1

1

2 deg(a)
+

∑
b∈N(a)∩B1

1

2 deg(a)
+

∑
b∈N(a)∩(B≥2∪A)

1

2 deg(a)
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=
∑

b∈N(a)∩B1

1

2 deg(a)
+
∑

b∈N(a)

1

2 deg(a)

=|N(a) ∩B1|
1

2 deg(a)
+ deg(a)

1

2 deg(a)

=|N(a) ∩B1|
1

2 deg(a)
+

1

2

≤|N(a) ∩B1|
1

4
+

1

2
.

If deg(a) = 1, let b be the only neighbour of a. Since G is a connected graph of order

n ≥ 3, deg(b) ≥ 2, and so N(a) ∩B1 = ∅. Hence,

r−1(a) =
1

deg(b)
≤ 1

2
= |N(a) ∩B1|

1

4
+

1

2
.

�

Combining Lemma 2.2 with Lemma 2.3 we obtain an upper bound for R−1(G) in

terms of |A| and |B≥2|.

Lemma 2.4 Let G be a connected graph of order n ≥ 3, B a dominant independent set

of G, B1 the set of vertices in B of degree 1, B≥2 the set of vertices in B with degree

greater or equal than 2, and A the set of vertices of G that are not in B. Then

R−1(G) ≤ n+ |A| − |B≥2|
4

.

Proof: By Lemma 2.2,

R−1(G) ≤
∑
a∈A

r−1(a).

By Lemma 2.3 ∑
a∈A

r−1(a) ≤
∑
a∈A

(
|N(a) ∩B1|

1

4
+

1

2

)
=
∑
a∈A

|N(a) ∩B1|
1

4
+
∑
a∈A

1

2

=
∑
a∈A

|N(a) ∩B1|
1

4
+
|A|
2
.

Since the vertices in B1 have degree 1, each vertex b ∈ B1 appears in exactly one

subset N(a) ∩B1, for a ∈ A. Hence∑
a∈A

1

4
|N(a) ∩B1| =

∑
b∈B1

1

4
=
|B1|

4
.
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Then

R−1(G) ≤|A|
2

+
|B1|

4

=
2|A|

4
+
|B1|

4

=
|A|+ |A|+ |B1|

4
.

Since n = |A|+ |B≥2|+ |B1|, we have

R−1(G) ≤ n+ |A| − |B≥2|
4

.

�

3 Adding edges to TB graphs

A TB-graph (see [1]) is a bipartite graph with bipartition A,B, such that deg(b) ≤ 2 for

every b ∈ B.

In [1], while studying the Randić energy of TB-graphs, the authors showed that if G

is a TB-graph of order n, then

R−1(G) ≤ n+ 1

4
.

To do this, they partitioned B into B1 and B2, where B1 is the set of the vertices in B of

degree 1 and B2 is the set of the vertices in B of degree 2. Then, they showed that

R−1(G) ≤ 2|A|+ |B1|
4

and |A| ≤ |B2|+ 1.

And, as an application they obtained the following result. We denote null (R) the

nullity of the matrix R.

Theorem 3.1 [1, Theorem 5.5] Let G be a connected TB graph. Then

RE(G) ≤
√
n− 2

√
n− 3

√
2

2
+ 2.

Even more, if null (R) ≥ 1, then

RE(G) ≤ (n− 3)

√
2

2
+ 2.

In this section we study graphs obtained from TB-graphs by adding edges.

Let G be a TB-graph. Let G′ be a graph obtained from G by adding edges between

vertices in A or adding edges between a vertex in A and a vertex in B. That is, V (G′) =
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V (G), E(G) ⊂ E(G′) and if e ∈ E(G′) \E(G), then |e∩B| ≤ 1. If G′ can be obtained in

such way from a TB-graph G, we say that G′ is an ATB-graph (Augmented TB-graph)

of G, and in general we say that G′ is an ATB-graph.

Denoting by B≥2(G) the set of the vertices in B whose degree is at least 2, since G is

a TB-graph and G′ is an ATB-graph of G, then B2(G) = B≥2(G) ⊂ B≥2(G
′). Applying

Lemma 2.4, we have

R−1(G
′) ≤ n+ |A| − |B≥2(G′)|

4
.

Using that |A| ≤ |B2(G)|+ 1 ≤ |B≥2(G′)|+ 1,

R−1(G
′) ≤ n+ 1

4
.

Hence, we have the following result.

Theorem 3.2 If G is a connected ATB-graph with order n ≥ 3, then

R−1(G) ≤ n+ 1

4
.

4 Applications to Randić energy

In [1], the authors provided bounds for the Randić energy in terms of the number of

vertices, the nullity of the graph and the Randić index as follows.

Theorem 4.1 [1, Corollary 3.4] If G is a graph of order n, then

RE(G) ≤
√

(n− 1− null (R))(2R−1(G)− 1) + 1.

Furthermore, if G is bipartite, then

RE(G) ≤
√

(n− 2− null (R))(2R−1(G)− 2) + 2.

Theorem 4.1 and Theorem 3.2 yield the following result.

Theorem 4.2 If G is an ATB connected graph with n ≥ 3, then

RE(G) ≤

√
(n− 1− null (R))

(
n+ 1

2
− 1

)
+ 1,

and

RE(G) ≤

√
(n− 2− null (R))

(
n+ 1

2
− 2

)
+ 2

if G is bipartite.
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In particular, if G is bipartite and has an odd number of vertices, then null (R) ≥ 1.

Corollary 4.3 If G is a connected bipartite ATB-graph with an odd number of vertices

n ≥ 3, then

RE(G) ≤
√

(n− 3)
n− 3

2
+ 2 = (n− 3)

√
2

2
+ 2.

For ATB-graphs in general we can obtain a similar upper bound when null (R) ≥ 2, using

that (n− 3)(n− 1) < (n− 2)2 and that
√
2
2
< 1.

Corollary 4.4 If G is a connected ATB-graph with n ≥ 3 vertices and null (R) ≥ 2, then

RE(G) < (n− 3)

√
2

2
+ 2.

Proof: Since null (R) ≥ 2,

RE(G) ≤

√
(n− 1− null (R))

(
n+ 1

2
− 1

)
+ 1

≤

√
(n− 3)

(
n− 1

2

)
+ 1.

Notice that (n− 3)(n− 1) = n2 − 4n+ 3 < (n− 2)2. Hence,

RE(G) <

√
(n− 2)2

2
+ 1

=(n− 2)

√
2

2
+ 1

=(n− 3)

√
2

2
+

√
2

2
+ 1

<(n− 3)

√
2

2
+ 2.

�

5 Examples

In this section, we give examples of families of graphs that satisfy Conjecture 1.

Example 1 A starlike is a tree that has exactly one vertex of degree greater than 2. As

an example, consider the starlike G in Figure 3. Notice that G is a TB-graph where

B = {2, 4, 5, 7}, B1 = {4, 7}, B2 = {2, 5} and A = {1, 3, 6}. Since n = 7 is odd, by

Theorem 3.1, we have that RE(G) ≤ RE(S3).
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v4

v3

v2

v1

v5

v6

v7

Figure 3. Starlike G.

Notice that, we can add edges to G from A to B, as shown in Figure 4, to generate

bipartite ATB-graphs. From Corollary 4.3, we have that RE(G
′
) ≤ RE(S3) for each

possible ATB-graph G′ of G. Notice that this process can be done for any starlike of odd

order.

v4

v3

v2

v1

v5

v6

v7

Figure 4. ATB-graph of G.

Example 2 Consider now a connected bipartite TB-graph G with bipartition

A = {a1, . . . , at} and B = {b1, . . . , bs}, with s ≥ t and n = s + t odd. The edges of

G are {ai, bi}, for i = 1, . . . , t, {bi−1, ai}, for i = 2, . . . , t and {bi, at}, for i = t+ 1, . . . , s.

Figure 5 illustrates such graph. Using Theorem 3.1, we know that RE(G) ≤ RE(Sp) with

n = 2p + 1. We can add edges from A to B until we have the complete bipartite graph

Ks,t. According to Corollary 4.3, RE(G
′
) ≤ RE(Sp) for any ATB-graph G

′
of G.

b5

b4

a3 b3

a2 b2

a1
A

b1

B

Figure 5. TB-graph.
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Example 3 A Threshold graph on n vertices is defined by a binary sequence of length n,

where a vertex vi, for i = 1, ..., n, corresponds to digit 0, if an isolated vertex vi is added

and vi corresponds to digit 1 if vi is added as a dominating vertex (see for example [2]

for more details). If G is a Threshold graph with binary sequence 0t11s10t21s2 . . . 0tw1sw ,

then null(G) = (t1 − 1) + · · · + (tw − 1) [2, Theorem 3]. We show that any connected

Threshold graph G with binary sequence 0s11s10s21s2 . . . 0sw1sw where si ≥ 3 for some

1 ≤ i ≤ w or where exist si, sj ≥ 2 for some 1 ≤ i < j ≤ w is an ATB-graph and

RE(G) < (n− 3)
√
2
2

+ 2, where n = 2
∑w

i=1 si.

1
1

0
0

1
1

0
0

1
1
A0

0
B

Figure 6. TB-graph.

For instance, consider the TB-graph G depicted in Figure 6. G is a connected bipartite

graph with bipartition A,B, where the vertices in B are labeled with digit 0 and the vertices

in A are labeled with digit 1. Now, we can add edges to G from A to A and from A to

B until we construct the Threshold graph G
′

with binary sequence 021202120212. Since

null(R(G
′
)) = 3 and G′ is an ATB-graph, then, by Corollary 4.4, RE(G

′
) < (n−3)

√
2
2

+2

where n = 12. Following the argument above, we see that any Threshold graph with binary

sequence 0s11s10s21s2 . . . 0sw1sw is an ATB-graph, since this graph can be obtained adding

edges to a TB-graph in the same way as it was done for the graph of Figure 6. In addition,

the fact that si ≥ 3 for some 1 ≤ i ≤ w or si, sj ≥ 2 for some 1 ≤ i < j ≤ w implies that

null(R(0s11s10s21s2 . . . 0sw1sw)) ≥ 2. Thus, in this case, by Corollary 4.4, we have that

RE(0s11s10s21s2 . . . 0sw1sw) < (n− 3)
√
2
2

+ 2, where n = 2
∑w

i=1 si.

Using the same argument above, we see that any connected Threshold graph with binary

sequence 0s11s10s21s2 . . . 0sw1sw−1 is an ATB-graph with odd order n = 2(
∑w

i=1 si)− 1. By

Corollary 4.3, RE(0s11s10s21s2 . . . 0sw1sw−1) ≤ RE(Sp), where p = (
∑w

i=1 si) − 1 and

n = 2p+ 1.
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