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Abstract

Let G be a simple undirected graph with n vertices, m edges, adjacency matrix
A, largest eigenvalue ρ and nullity κ. The energy of G, E(G) is the sum of its
singular values. In this work lower bounds for E(G) in terms of the coefficient of
µκ in the expansion of characteristic polynomial, p(µ) = det (µI −A) are obtained.
In particular one of the bounds generalizes a lower bound obtained by K. Das, S.
A. Mojallal and I. Gutman in 2013 to the case of graphs with given nullity. The
bipartite case is also studied obtaining in this case, a sufficient condition to improve
the spectral lower bound 2ρ. Considering an increasing sequence convergent to ρ a
convergent increasing sequence of lower bounds for the energy of G is constructed.

1 Preliminaries

This work deals with an (n,m)-graph G which is an undirected simple graph with vertex

and edge set V (G) and E (G) with cardinality n and m, respectively. A matching, say
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W, in G is a subset of E(G) such that any pair of edges in W does not share any vertex.
A perfect matching W is a matching W such that its set of vertices coincides to V (G).

For i ∈ V (G) the set NG(i) = {j ∈ V (G) : ij ∈ E (G)} is called the neighborhood

of the vertex i and its cardinality is the vertex degree i. The vertex degree i is denoted

by d(i), ∀1 ≤ i ≤ n. As usual, the complete graph, the cycle, with n vertices and

the complete bipartite graph with bipartition (X,Y ) are denoted by Kn, Cn and Kx,y,

respectively, where the cardinality of X and Y are x and y. The adjacency matrix, A(G),

is simply denoted by A. The number of walks of length k of G starting at i corresponds

to the i-th row sum of Ak, is referred as the vertex k-degree i and it is denoted by dk(i)

(see [9]). For convenience, we set
d0(i) = 1, d1(i) = d(i), and

dk+1(i) =
∑

j∈NG(i)

dk(j), ∀k ≥ 1.

A graph G with n vertices is called a regular graph (or s-regular) if d(i) = s, ∀ 1 ≤ i ≤ n.

Note that if vk = (dk(1), . . . , dk(n))
T , then v0 = e, the n-dimensional all ones vector and

vk+1 = Avk, ∀k ≥ 0. Moreover, if G is s-regular, then vk = ske and

s =

√
vT
k+2vk+2

vT
k vk

, ∀k ≥ 0.

We establish now some facts from Matrix Theory used throughout the text. During

the paper R and M stands for a Hermitian complex and an arbitrary complex matrix,

respectively, both of order n. The energy of the Hermitian matrix R, denoted by E (R) ,

is the sum of its singular values that is, the sum of the absolute values of its eigenvalues.

The nullity of M, denoted by η(M), corresponds to the multiplicity of the null eigenvalue

of M∗M, where M∗ is the conjugate transpose matrix of M. Thus, M is nonsingular

(detM 6= 0) if and only if η(M) = 0. The rank of a square matrix M of order n is

r(M) = n − η(M), see [17]. On the other hand, the k-th elementary symmetric sum of

the eigenvalues µ1, µ2, . . . , µn of a square matrix M of order n, see [17], is defined as

Υk (M) =
∑

1≤i1<i2<···<ik≤n

µi1µi2 · · ·µik , ∀1 ≤ k ≤ n. (1)

Note that Υn (M) = det(M) and Υ1 (M) = tr(M), with det(.) and tr(.) denoting the deter-

minant and the trace of a square matrix. For a matrix M of order n, let M [i1, i2, . . . , ik] be

the principal submatrix of M whose j-th row and column are labeled by ij, ∀1 ≤ j ≤ k.
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Then, det (M [i1, i2, . . . , ik]) is a principal minor of order k of M. At this point we need to

write the identity matrix of the order t as It, ∀t ≥ 1, and if the order is clear from the

context we simply use I. It follows a known result from linear algebra, (see [17, Ch. 7]).

Lemma 1. [17] Let M be a matrix of order n and let q (µ) = det (µI −M), the charac-

teristic polynomial of M. Let

q (µ) = µn + c1µ
n−1 + c2µ

n−2 + · · ·+ cn−1µ+ cn.

If Υk (M) is the k-th elementary symmetric sum of the the roots of q(µ), then

1. ck = (−1)k
∑

(all k × k principal minors)

2. Υk (M) =
∑

(all k × k principal minors)

Therefore,

|ck| = |Υk (M)| =

∣∣∣∣∣ ∑
1≤i1<i2<···<ik≤n

det (M [i1, i2, . . . , ik])

∣∣∣∣∣ . (2)

As an immediate consequence, we can write the next remark.

Remark 1. Let R be a Hermitian matrix of rank n − κ whose nonzero eigenvalues are

αj1 , . . . , αjn−κ , then its characteristic polynomial, say q(µ), can be factorized as

q(µ) = µκ
(
µn−κ + c1µ

n−1−κ + c2µ
n−2−κ + · · ·+ cn−1µ+ cn−κ

)
= µκ (µ− αj1) (µ− αj2) . . .

(
µ− αjn−κ

)
,

where

|cn−κ| =

∣∣∣∣∣
n−κ∏
l=1

αjl

∣∣∣∣∣ = |Υn−κ (R)| = (3)∣∣∣∣∣∣
∑

1≤i1<i2<···<in−κ≤n

det (R[i1, i2, . . . , in−κ])

∣∣∣∣∣∣ . (4)

For a graph G, its eigenvalues, say λ1 ≥ · · · ≥ λn, are the eigenvalues of A (see e.g. [6,7]).

The singular values of G are the square roots of the eigenvalues of A∗A. Since, A is real

and symmetric the singular values of G are the absolute values of its eigenvalues. If G is a

connected graph, then A is a non-negative symmetric irreducible matrix [6]. The nullity

of A is called the nullity of G and it is denoted by η(G), see [10]. Consequently, a graph
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G is called nonsingular if η(G) = 0, otherwise is called singular. We simply denote the

rank of A, r(A), by r. The paper is organized as follows. At Section 2 some motivation

in connection with Chemistry, known lower bounds for E(G) and three subsections are

presented in which the main results are classified. In section 3, by using the increasing

sequence of lower bounds for ρ given in [5] an increasing sequence of lower bounds for the

energy of graphs with nullity κ, is obtained. Equality cases are studied. Additionally, at

Section 4 some tables, comparing the results, are presented.

2 Main results

The notion of energy of a graph arose in Mathematical Chemistry. Important references

for this definition and its applications are in [12,15]. For a graph G, the following equality.

E(G) =
n∑

i=1

|λi| , (5)

is called the energy of the graph G, ( [11]). The search for upper bounds for this graph

invariant has been intense, see ( [15]). Concerning lower bounds for the energy of a graph

the reader should be referred, for instance, to [2, 3, 16, 19]. For a non-singular connected

(n,m)-graph in [8], Das et al. obtained the following lower bound for E(G)

E(G) ≥ 2m

n
+ (n− 1) + ln | detA| − ln

2m

n
. (6)

Note that if detA = 0, this lower bound can not be applied. The equality holds in (6)

if and only if G is the complete graph Kn. The last lower bound was obtained firstly

considering that, for a connected graph, the following relationship holds.

E(G) ≥ ρ+ (n− 1) + ln | detA| − ln ρ. (7)

In [8] it was shown that the graph that attains equality in (7) is the same graph that

attains equality in (6).

A spectral lower bound for the energy can be seen in [4],

E(G) ≥ 2ρ, (8)

where, if G is connected, the equality holds in (8), for example, if G is a complete graph

and a complete bipartite graph.
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The following simple lower bound for a graph G with m edges was introduced by Caporossi

et al. in [4] and the equality case was discussed. In fact,

E(G) ≥ 2
√
m, (9)

with equality if and only if G consists of a complete bipartite graph Ka,b such that ab = m

and arbitrarily many isolated vertices. In [1] the following lower bounds for E(G) were

introduced.

1. For an (n,m)-graph G without isolated vertices, with nullity η(G) = κ = n − r,

where 0 ≤ κ ≤ n− 1 (1 ≤ r ≤ n),

E(G) ≥

√
8m+ 4r(r − 1) |Υr(G)|

2
r

2
. (10)

2. For an (n,m) bipartite graph G without isolated vertices, with nullity η(G) = κ =

n− r, where 0 ≤ κ ≤ n− 1 (1 ≤ r ≤ n),

E(G) ≥

√
16m+ 4r(r − 2) |Υr(G)|

2
r

2
. (11)

In both cases equality holds if and only if all the nonzero eigenvalues of G have the same

absolute value. In other words, if and only if G = ∪`
j=1Kaj ,bj , with ajbj = aibi, for i 6= j,

` = n−κ
2

and n =
∑`

j=1(aj + bj). The above lower bounds were obtained as functions of

the nullity of the graph G. The graphs obtained in the equality cases become graphs with

minimum energy within the family of the (n,m)-graphs without isolated vertices with

given nullity κ = n− r. The main results of this work are presented now.

2.1 Lower bounds for the energy of non-negative symmetric ma-
trices with given nullity

In this subsection we present lower bounds for the energy of non-negative symmetric

matrices. Recall that R is a Hermitian matrix. Moreover, if R is a non-negative matrix,

then R is symmetric and its spectral radius, ρ(R), and its largest eigenvalue coincide,

see [18].

Theorem 2. Let R be a non null, non-negative symmetric matrix of order n with spectral

radius ρ(R) such that η(R) = κ. Then

E(R) ≥ ρ(R) + (n− κ− 1) + ln |Υn−κ(R)|+ ln ρ(R)−1. (12)
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The equality holds in (12) if and only if the nonzero eigenvalues of R have all modulus

equal to 1, except maybe for its largest eigenvalue. In consequence, the inequality (12) is

strict if R has null trace and a submatrix of order 3, say R1, where either

1. R1 =

0 a 0
a 0 b
0 b 0

 with
√
a2 + b2 > 1, or

2. R1 =

0 a c
a 0 b
c b 0

 with a vector (α, β, γ)T such that

2(aαβ + bβγ + cαγ)√
α2 + β2 + γ2

< −1.

Proof. Let αj1 ≥ αj2 ≥ · · · ≥ αjn−κ , with αj1 = ρ, be the non-zero eigenvalues of R. In [8]

it was proved that

x ≥ 1 + ln x, ∀x > 0. (13)

Note that the equality holds in (13) if and only x = 1. Using the above result, we get

E(R) = ρ+
n−κ∑
j=2

∣∣αij

∣∣
≥ ρ+ n− κ− 1 +

n−κ∑
j=2

ln
∣∣αij

∣∣
= ρ+ n− κ− 1 + ln

∣∣∣∣∣
n−κ∏
j=2

αij

∣∣∣∣∣
= ρ+ n− κ− 1 + ln |Υn−κ(R)| − ln ρ,

where the equality holds if and only if

1 = |αj2| = |αj3| = · · · =
∣∣αjn−κ

∣∣ .
Now we discuss the case when the inequality (12) is strict. If R is non-negative, non

null and with null trace then its smallest eigenvalue, say α, is negative. Therefore the

sufficient conditions 1. and 2., are obtained from the interlacing of eigenvalues considering

the smallest eigenvalues of R and R1, respectively (see, for instance [13, Corollary 2.2]). In

fact, as the smallest eigenvalue of R1 in 1. is −
√
a2 + b2 and imposing that this eigenvalue

is smaller than −1 (note that, in this case its modulus is greater than 1 and therefore R

doesn’t fulfill the equality condition as
√
a2 + b2 > 1 > −α = |α|). Thus, the sufficient

condition in 1. is obtained. The condition in 2. is obtained from the Rayleigh quotient
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and the fact that the smallest eigenvalue of a symmetric matrix is at most a Rayleigh

quotient of the matrix ( [13, 18]). Now, by noticing that either in 1. or in 2. imposing

that R has the smallest eigenvalue not equal to −1, using the same argument as before,

the sufficient conditions follow.

Remark 2. The coefficient Υn−κ(R) can be obtained by calculating cn−κ, the coefficient

of µκ of the characteristic polynomial of R, q(µ), with the formula in (3) which uses

the principal minors of order n − κ of R. Then by using the formula in (12) one can

approximate the energy of R.

As a consequence of Theorem 2 the following result can be obtained.

Corollary 3. Let R be a be a non null, non-negative symmetric matrix of order n with

largest eigenvalue ρ(R), η(R) = κ and such that x is a vector with the Rayleigh quotient

φ =
xTRx

xTx
≥ 1, (14)

then

E(R) ≥ φ+ (n− κ− 1) + ln |Υn−κ(R)|+ lnφ−1. (15)

The equality holds in (15) if and only if x is an eigenvector of R associated to ρ(R) (or

equivalently φ = ρ(R)) and all the nonzero eigenvalues of R have absolute values equal to

1, except maybe for its largest eigenvalue.

Proof. Recall that from the Rayleigh quotient ρ(R) ≥ xTRx
xTx

= φ, with equality if and only

if (ρ(R),x) is an eigenpair of R (see e.g. [18]). Taking into account that the real functions

f(x) = x− 1− lnx and g(x) = x+ n− κ+ ln |Υn−κ(R)| are strictly increasing functions,

for x ≥ 1, we conclude that the function h = g ◦ f, where

h(x) = x+ (n− κ− 1) + ln |Υn−κ(R)| − lnx, ∀x > 0, (16)

is strictly increasing for x ≥ 1. Since,

E(R) ≥ h(ρ(R)) ≥ h

(
xTRx

xTx

)
= h(φ), (17)

the inequality in (15) follows. If equality holds then all the inequalities in (17) become

equalities and then by using the equality case in Theorem 2, for all nonzero eigenvalue of R

(except maybe ρ(R)) say α, we have |α| = 1 implying that α = ±1 and ρ(R) = xTRx
xTx

= φ,

as h is strictly increasing.
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Remark 3. If R is partitioned into irreducible blocks with one principal main block, say

Q, whose spectral radius is the spectral radius of R, ρ(R) such that Qy = ρ(R)y, for

a non null eigenvector y, then reorganizing the diagonal blocks of R using permutation

matrices, if necessary, one can see that either R or a similar to R matrix has an associated

eigenvector by blocks, x = (y,0, . . . ,0)T such that the condition (14) is valid and if all

the nonzero eigenvalues of R have absolute values equal to 1, except maybe for its largest

eigenvalue, the equality in (15) is also obtained.

2.2 Lower bounds for the energy of general graphs with given
nullity

In this subsection the results for an (n,m)-graph G with nullity κ, are obtained. In order

to simplify the notation, sometimes we will set

n− κ = r, Υr (A(G)) = Υr(G) and

ρ(A(G)) = ρ, ∀ graph G.

Note that, if in Theorem 2 the Hermitian matrix R is replaced by the adjacency matrix

of a graph G the inequality (18) in Theorem 4 below is obtained. The result in (12), can

be generalized for all graphs, including singular graphs as Υr(G) can be obtained by a

result in [6, Theorem 1.3] which obtains the coefficients of the characteristic polynomial

in terms of the so called “elementary figures”.

Theorem 4. Let G be a graph with n vertices, largest eigenvalue ρ and η(G) = κ. Then

E(G) ≥ ρ+ (n− κ− 1) + ln |Υn−κ(G)|+ ln ρ−1 (18)

The equality holds in (18) if and only if the nonzero eigenvalues of G, except maybe for its

largest eigenvalue, have all modulus equal to 1. In consequence, if the largest eigenvalue

of G is 1 then the equality holds for G = bn−κ
2
cK2 ∪ κK1. On the contrary, if ρ > 1 then

the equality holds if and only if G = Kn−` ∪ κK1 ∪ b `−κ
2
cK2 with κ ≤ ` ≤ n− 3.

Proof. The proof of the inequality follows straightforward from the arguments used in

the proof of Theorem 2 replacing the non-negative symmetric matrix R by the adjacency

matrix of the graph G. For the equality case, and when ρ = 1, by an argument given

in [1, Theorem 2] (attending that all the eigenvalues are of equal modulus) any connected

component of G has nonzero eigenvalues 1 and −1 implying that they are isolated edges
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and therefore G is the union of isolated edges and isolated vertices, that is G = bn−κ
2
cK2∪

κK1. On the other hand, if ρ > 1 then G must have a connected component with at least

three vertices and one can see that any induced subgraph with three vertices of this

component must be a cycle otherwise it would be a path and then from Theorem 2,

A(G) would have a submatrix of the form R1 as in 1. In consequence, using interlacing,

the smallest eigenvalue of G would not be −1. Therefore, if there exists a connected

component of G with at least three vertices, it must be a complete graph, and then

G = Kn−` ∪ κK1 ∪ b `−κ
2
cK2 with κ ≤ ` ≤ n− 3. Conversely, it is not difficult to see that

for the graphs in the statement the equality holds.

Remark 4. Recalling the equation in (2) one can see that |Υn−κ(G)| corresponds to |cn−κ| .

Since all the entries of A(G) are integers, from item 1. in Lemma 1, and taking into

account that it is considered the absolute value of the product of the nonzero eigenvalues

of G, it follows that the coefficient cn−κ is a nonzero integer. In consequence,

|Υn−κ(G)| ≥ 1, ∀ 0 ≤ κ ≤ n− 1. (19)

From inequalities (18) and (19), we derive the following result.

Theorem 5. Let G be a graph with n vertices with largest eigenvalue ρ and η(G) = κ.

Then

E(G) ≥ ρ+ (n− κ− 1) + ln ρ−1. (20)

The equality holds in (20) if and only if G = bn−κ
2
cK2 ∪ κK1.

Remark 5. Recalling that a graph G is called hypoenergetic if its energy is strictly less

than the number of its vertices, (see [15, Ch. 9]) one can see that the inequalities in (13)

and in (20) show directly a known result, namely, that if G is non-singular ( κ = η(G) = 0)

then G is not hypoenergetic, (see [15, Ch. 9]).

As a consequence of Corollary 3 the following result can be obtained.

Corollary 6. Let G be an (n,m)-graph with largest eigenvalue ρ and let G1 be an (n1,m1)

component such that n1 ≥ 2, 2m1

n1
≥ 1 and whose largest eigenvalues is equal to ρ.

Therefore

E(G) ≥ 2m1

n1

+ (n− κ− 1) + ln |Υn−κ(G)|+ ln

(
2m1

n1

)−1

. (21)

In particular, if
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• G1 is s1-regular, then

E(G) ≥ s1 + (n− κ− 1) + ln |Υn−κ(G)|+ ln s−1
1 . (22)

• G is a connected (n,m)-graph with n ≥ 2 and 2m
n

≥ 1, then

E(G) ≥ 2m

n
+ (n− κ− 1) + ln |Υn−κ(G)|+ ln

(
2m

n

)−1

. (23)

If ρ = 1 then equalities in (21) and (22) hold if and only if G = bn−κ
2
cK2 ∪ κK1.

On the contrary, if ρ > 1 then equalities in (21) and (22) hold if and only if G =

Kn−` ∪ κK1 ∪ b `−κ
2
cK2 with κ ≤ ` ≤ n − 3, taken G1 = Kn−`. The inequality in (23)

becomes equality if and only if G = Kn, see [8].

Proof. Let G1 be an induced (n1,m1)-subgraph of G with n1 ≥ 1 and ρ(G1) = ρ. The

proof of the inequality follows directly from the proof of Corollary 3 changing the non-

negative symmetric matrix R by the adjacency matrix of the graph G and by considering

the vector x such as it was exhibited in Remark 3. At this point recall that, if x and y,

are as in Remark 3 being y = e, the all ones vector of appropriate order, then xTA(G)x
xTx

=

2m1

n1
≤ ρ(G1) = ρ, with equality if and only if G1 is a regular graph (see [6], for example).

Recall that the real function h(x) defined in (16) is strictly increasing for x ≥ 1. From

the condition 2m1

n1
≥ 1 we have

E(G) ≥ h(ρ) = h(ρ(G1)) ≥ h

(
2m1

n1

)
. (24)

Thus, the inequality in (21) follows. If equality holds in (21) then all the inequalities

in (24) become equalities and then the nonzero eigenvalue, λ, different from the largest

eigenvalue, ρ verifies |λ| = 1 implying that λ = ±1 and ρ = ρ(G1) =
2m1

n1
as h is a strict

increasing function, thus, G1 is a regular component with largest eigenvalue equal to ρ.

In consequence, if n1 = 2 then G1 = K2, and G is a union of graphs K2 and κ isolated

vertices. If n1 ≥ 2, by the item 1. in Theorem 2 each subset of three vertices of V (G) are

the vertices of a complete subgraph of G. In consequence G1 = Kn−` with n−` ≥ 3. Since

the other non null eigenvalues have absolute values equal to 1, the other components of G

must be isolated edges and κ isolated vertices. Thus the graphs in the statement proceed.

If G is a connected graph, then considering G1 = G, and from the cases n1 = n = 2 and

n1 = n ≥ 3 of the above reasoning, we conclude that G = Kn. Conversely, one can see

that the equalities hold for the graphs in the statement.
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From inequalities (21) and (19), we derive the following result.

Corollary 7. Let G be an (n,m)-graph without isolated vertices, with largest eigenvalue

ρ, η(G) = κ with 0 ≤ κ ≤ n − 1 and let G1 be an (n1,m1) component of G such that

n1 ≥ 2, 2m1

n1
≥ 1 and whose largest eigenvalue is equal to ρ. Therefore

E(G) ≥ 2m1

n1

+ (n− κ− 1) + ln

(
2m1

n1

)−1

. (25)

Equality in (25) holds if and only if G = bn−κ
2
cK2 ∪ κK1. In particular, if

• G1 is s1-regular, then

E(G) ≥ s1 + (n− κ− 1) + ln s−1
1 . (26)

Equality in (26) holds if and only if G = bn−κ
2
cK2 ∪ κK1.

• G is a connected (n,m)-graph, then

E(G) ≥ 2m

n
+ (n− κ− 1) + ln

(
2m

n

)−1

. (27)

Equality holds, if and only if G = K2.

2.3 Lower bounds for the energy of bipartite graphs with given
nullity

In this subsection we deal with bipartite graphs. Recall that if G is bipartite and λ is

a nonzero eigenvalue of G, then −λ is also an eigenvalue of G, thus, we conclude that

the rank of a bipartite graph must be even. In consequence, for the rank r of G we set

r = n− κ = 2t.

Theorem 8. Let G be a bipartite (n,m)-graph of rank r = 2t = n − κ, with t ≥ 2, and

largest eigenvalue ρ then

E (G) ≥ 2ρ+ (n− κ− 2) + ln |Υn−κ(G)|+ 2 ln ρ−1. (28)

The equality holds in (28) if and only if G has the eigenvalues,

ρ, 1 . . . 1︸ ︷︷ ︸
t−1 times

, 0 . . . , 0︸ ︷︷ ︸
κ times

,−1 . . .− 1︸ ︷︷ ︸
t−1 times

,−ρ. (29)

That is the case, for instance, if G = bn−κ
2
cK2 ∪ κK1, or H = (Kt,t \W ) ∪ κK1, where

W is a perfect matching.
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Proof. Let G be a bipartite (n,m)-graph of rank n− κ = r = 2t, t ≥ 2, then

E (G) = 2
t∑

j=1

|λj| ≥ 2

(
ρ+ t− 1 +

t∑
j=2

ln |λj|

)

= 2

(
ρ+ t− 1 + ln

∣∣∣∣∣
t∏

j=2

λj

∣∣∣∣∣
)

= 2

(
ρ+ t− 1 +

1

2
ln

∣∣∣∣∣
r∏

j=2

λj

∣∣∣∣∣
)

= 2

(
ρ+ t− 1 +

1

2
ln |Υn−κ(G)| − ln ρ

)
= 2ρ+ r − 2 + ln |Υn−κ(G)| − 2 ln ρ.

Equality holds if and only if |λj| = 1, ∀2 ≤ j ≤ t. By an appropriate labeling of the

vertices of H = (Kt,t \W ) ∪ κK1, its adjacency matrix becomes, 0 A(Kt) 0
A(Kt) 0 0

0 0 0


and (

0 A(Kt)
A(Kt) 0

)
=

1√
2

(
It It
It −It

)(
A(Kt) 0

0 −A(Kt)

)
1√
2

(
It It
It −It

)
.

Then, considering ρ = t− 1 the eigenvalues of H are the elements in the list (29).

The following result is an immediate consequence of the previous one, the increasing

function in (16) and the Rayleigh quotient theory, (see [13]).

Corollary 9. Let G be a bipartite (n,m)-graph of rank r = 2t = n−κ, t ≥ 2 and 2m
n

≥ 1.

then

E (G) ≥ 4m

n
+ (n− κ− 2) + ln |Υn−κ(G)|+ 2 ln

(
2m

n

)−1

. (30)

The equality holds in (30) if G has the list of eigenvalues,

2m

n
, 1 . . . 1︸ ︷︷ ︸
t−1 times

, 0 . . . , 0︸ ︷︷ ︸
κ times

,−1 . . .− 1︸ ︷︷ ︸
t−1 times

,−2m

n
.

That is the case, for instance, if κ = 0 and G = Kt,t \W where W is a perfect matching.

Taking into account Theorem 8 and inequality (19) another lower bound is presented in

the next corollary.
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Corollary 10. Let G be a bipartite (n,m)-graph of rank r = 2t = n−κ, t ≥ 2 and largest

eigenvalue ρ, then

E (G) ≥ 2ρ+ (n− κ− 2) + 2 ln ρ−1. (31)

The equality holds in (31) if G = bn−κ
2
cK2 ∪ κK1.

The proof of the following corollary is direct and uses the statement in (13).

Corollary 11. If n− κ = r > 2+ 2 ln ρ, then the lower bound in (31) improves the lower

bound in (8).

Proof. If the inequality in the statement holds by considering the lower bound in (31) we

have

2ρ+ r − 2 + 2 ln ρ−1 > 2ρ+ (2 + 2 ln ρ)− 2 + 2 ln ρ−1

= 2ρ.

Thus, the result follows.

Example 1. Let t ≥ 2 and consider (Kt,t \W ) ∪ κK1. Therefore, n = 2t + κ, r = 2t,

and ρ = t − 1. Therefore, the condition in Corollary 11 holds. In fact, the real function

F (x) = x − 1 − ln(x − 1), ∀x > 1 has a minimum in x = 2. Thus F (x) ≥ F (2) = 1,

which implies that 2t − 2 + 2 ln (t− 1)−1 = 2(t − 1 − ln (t− 1)) ≥ 2 > 0. Thus r = 2t >

2+2 ln (t− 1) which is the sufficient condition in Corollary 11. Moreover, it is immediate

to obtain that E (H) = 4t− 4 > 2(t− 1) = 2ρ.

Using Corollary 9 and Rayleigh quotient the next corollary is obtained.

Corollary 12. Let G be a bipartite (n,m)-graph of rank r = 2t, t ≥ 2, then

E (G) ≥ 4m

n
+ (n− κ− 2) + 2 ln

(
2m

n

)−1

. (32)
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3 An increasing sequence of lower bounds for the
graph energy

In this section we obtain an increasing sequence of lower bounds for the energy of graphs.

In [5], the authors built an increasing sequence, {γ(k)}k≥0 of lower bounds for ρ, where,

γ(0) =

√√√√√
∑

i∈V (G)

d2(i)

n
,

γ(1) =

√√√√√√√
∑

i∈V (G)

d22(i)∑
i∈V (G)

d2(i)
,

...

γ(k) =

√√√√√√√
∑

i∈V (G)

d2k+1(i)∑
i∈V (G)

d2k(i)
, ∀k ≥ 2.

(33)

Then the following results were obtained.

Theorem 13. [5] Let G be a connected graph with largest eigenvalue ρ. Then

ρ ≥ γ(k+1) ≥ γ(k), ∀k ≥ 0,

with equality if Ak+2(G)e = ρ2Ak(G)e, ∀k ≥ 0.

Theorem 14. [5] Let G be a connected graph, then {γ(k)}k≥0 is an increasing sequence

and

lim
k→∞

γ(k) = ρ.

In this work we achieved to the following results.

Theorem 15. Let G be an (n,m)-graph with largest eigenvalue ρ and η(G) = κ. Let G1

be an (n1,m1) component with spectral radius ρ and such that 2m1

n1
≥ 1. Let {γ(k)

1 }∞k=0 be

the increasing sequence defined in (33) for G1 and h the real continuous function defined

in (16). Then {h(γ(k)
1 )}∞k=0 is an increasing sequence of lower bounds for E(G) converging

to h(ρ) and

E(G) ≥ h(ρ) ≥ h(γ
(k+1)
1 ) ≥ h(γ

(k)
1 ), ∀k ≥ 0. (34)
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If ρ = 1 then equality holds for some k ≥ 0 if and only if G = bn−κ
2
cK2 ∪ κK1. On the

contrary, if ρ > 1 then equality holds for some k ≥ 0 if and only if G = Kn−` ∪ κK1 ∪

b `−κ
2
cK2, κ ≤ ` ≤ n− 3 with G1 = Kn−`.

Proof. Observe that γ
(k)
1 ≥ 1, ∀k ≥ 0. This is an immediate consequence of Theorem

14 and the fact that

γ
(0)
1 =

√∑
i∈V (G1)

d21(i)

n1

≥
√

2m1

n1

≥ 1.

Since {γ(k)
1 }∞k=0 is an increasing sequence and converges to ρ(G1) = ρ then, the first

statement follows from the continuity and the strict increasing of h. If all inequalities in

(34) are equalities, for some k then E(G) = h(ρ) = h(γ
(k)
1 ) and we are in the conditions

of Theorem 5. Therefore G is as in the statement.

Recalling the result in (7) obtained in [8], the result given in [14] is here re-obtained

considering κ = 0.

Corollary 16. Let G be a non-singular graph of order n. Define the sequence {γ(k)}∞k=0

as in (33). Then

E(G) ≥ γ(k) + (n− 1) + ln | detA| − ln γ(k), (35)

∀k ≥ 0. Equality holds, for some k ≥ 0, if and only if G = Kn−` ∪ b `
2
cK2, 0 ≤ ` ≤ n− 2.

4 Computational experiments

Next some comparatives examples for different values of n are presented.

Using different graphs the lower bounds in the paper are compared. In order to control

the differences among the lower bound (6) and the new lower bound in (18) the rank r

is given. The energies E, the rank, and the lower bounds in (8), (9), (18), (20), (23) and

(27), are compared.

Only the last 4 columns are the lower bounds found in the present work. We begin with

n = 3 :

Adjacency E r (8) (9) (18) (20) (23) (27)

K3 4 3 4 3.4641 4 3.3069 4 3.3069
K1,2 2.8284 2 2.8284 2.8284 2.7608 2.0676 2.7388 2.0457
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n = 4 :

Adjacency E r (8) (9) (18) (20) (23) (27)

K4 6 4 6 4.8990 6 4.9014 6 4.9014
0 1 1 1
1 0 1 1
1 1 0 0
1 1 0 0

 5.1231 3 5.1231 4.4721 5.0072 3.6209 4.9700 3.5837


0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

 4.9624 4 4.3402 4 4.3953 4.3953 4.3069 4.3069

n = 5 :

Adjacency E r (8) (9) (18) (20) (23) (27)
0 0 1 1 1
0 0 1 0 1
1 1 0 0 1
1 0 0 0 0
1 1 1 0 0

 6.7299 5 5.2824 4.8990 6.3631 5.6700 6.2177 5.5245


0 1 1 1 0
1 0 0 1 0
1 0 0 1 0
1 1 1 0 1
0 0 0 1 0

 6.0409 4 5.3711 4.8990 5.3908 4.6977 5.2177 4.5245

C5 6.4721 5 4 4.4721 6 5.3069 5.3069 5.3069

5 Conclusions

The present work continues the idea of determining lower bounds for the energy of a graph

considering the nullity of its adjacency matrix. In this way, it is possible to increase the

set of lower bounds for the energy, obtaining together with these lower bounds the (n,m)-

graphs with given nullity and minimum energy. When we compare the lower bound in

(18) with the lower bound in (28), the arithmetic difference of the second one minus the

first one gives ρ− 1+ ln ρ−1 ≥ 0, ∀ρ ≥ 1. The above fact allows us to conclude that the

lower bound obtained for bipartite graphs is more efficient.
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