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Abstract

Let G be a simple undirected graph with n vertices and m edges. The energy of G, E(G)

corresponds to the sum of its singular values. This work obtains lower bounds for E(G) where

one of them generalizes a lower bound obtained by Mc Clelland in 1971 to the case of graphs

with given nullity. An extension to the bipartite case is given and, in this case, it is shown that

the lower bound 2
√
m is improved. The equality cases are characterized. Moreover, a simple

lower bound that considers the number of edges and the diameter of G is derived. A simple

lower bound, which improves the lower bound 2
√
n− 1, for the energy of trees with n vertices

and diameter d is also obtained.
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1 Notation and Preliminaries

In this work we deal with an (n,m)-graph G which is an undirected simple graph with

vertex set V (G) and edge set E (G) of cardinality n and m, respectively. As usual we

denote the adjacency matrix of G by A = A(G). The eigenvalues of G are the eigenvalues

of A (see e.g. [5, 6]). Its eigenvalues will be denoted (and ordered) by λ1 ≥ · · · ≥ λn. We

denote the spectrum of a graph G by σ(G). The singular values of G are the square roots

of the eigenvalues of A∗A, where A∗ is the conjugate transpose matrix of A. Since, A is

real and symmetric the singular values of G are the absolute values of its eigenvalues. If

G is a connected graph, then A(G) is a nonnegative irreducible matrix [5]. The complete

graph, the cycle, with n vertices and the complete bipartite graph with bipartition (X, Y )

are denoted by Kn, Cn and Kx,y, respectively, where the cardinals of X and Y are x and y.

We recall now some concepts from Matrix Theory used throughout the text. In this paper

R and M stands for a Hermitian complex and an arbitrary complex matrix, respectively,

both of orders n. The energy of R, denoted by E (R) , is the sum of its singular values

that is, the sum of the absolute values of its eigenvalues. If R is a non-negative matrix,

then R is symmetric and its spectral radius, ρ = ρ(R), and its largest eigenvalue coincide,

see [18].

The nullity of M, denoted by η(M), corresponds to the multiplicity of the null eigenvalue

of M∗M, where M∗ is the conjugate transpose matrix of M. Thus, if M is nonsingular then

η(M) = 0. For a graph G, the nullity of A(G) is called the nullity of G and it is denoted

by η(G), see [10]. Consequently, a graph G is called nonsingular if η(G) = 0 otherwise,

G is called singular. The rank of a square matrix M of order n is r(M) = n − η(M),

see [17]. When M = A(G) we simply denote r(A(G)) by r. On the other hand, the k-th

elementary symmetric sum of the eigenvalues µ1, µ2, . . . , µn of a square matrix M of order

n, see [17], is defined as

Υk (M) =
∑

1≤i1<i2<···<ik≤n

µi1µi2 · · ·µik . (1)

Note that Υn (M) = det(M) and Υ1 (M) = tr(M), with tr(.) denoting the trace of a square

matrix. For a matrix M of order n, let M [i1, i2, . . . , ik] be the principal submatrix of M

whose j-th row and column are labeled by ij, for 1 ≤ j ≤ n. Then, det (M [i1, i2, . . . , ik])

is a principal minor of order k of M and it is denoted by ∆M (i1, i2, . . . , ik). A well-known

result of linear algebra is [17] :
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Lemma 1. [17] Let M be a matrix of order n and let p (µ) = det (µI −M), where, I

denotes the identity matrix. Let

p (µ) = λn + c1µ
n−1 + c2µ

n−2 + · · ·+ cn−1µ+ cn = 0.

If Υk (M) is the k-th symmetric function of the eigenvalues µ1, µ2, . . . , µn of M , then

1. ck = (−1)k
∑

(all k × k principal minors) ;

2. Υk (M) =
∑

(all k × k principal minors) ;

3. tr(M) = µ1 + µ2 + · · ·+ µn = −c1;

4. det (M) = µ1µ2 · · ·µn = (−1)n cn.

Therefore,

|ck| = |Υk (M)| =

∣∣∣∣∣ ∑
1≤i1<i2<···<ik≤n

∆M (i1, i2, . . . , ik)

∣∣∣∣∣ . (2)

Remark 1. Let R be a Hermitian of rank n−κ whose nonzero eigenvalues are αj1 , . . . , αjn−κ ,

then ∣∣∣∣∣∣
∑

1≤i1<i2<···<in−κ≤n

∆R(i1, i2, . . . , in−κ)

∣∣∣∣∣∣ =

∣∣∣∣∣
n−κ∏
l=1

αjl

∣∣∣∣∣ = |Υn−κ (R)| .

The Frobenius matrix norm of a square complex matrix M , denoted by |M | , is defined

as the square root of the sum of the squares of its singular values. In consequence, if R is

a Hermitian matrix of order n with eigenvalues α1, α2, . . . , αn,

|R|2 =
n∑
i=1

|αi|2 .

The paper is organized as follows. At Section 2 the definition of energy of a graph

is recalled and known lower bounds for E(G) and the main results without proof are

introduced.

At Section 3, the proofs of the results introduced in the previous section are done. In

particular, some lower bounds for E(G) are given where one of them generalizes a lower

bound obtained by Mc Clelland in 1971 to the case of graphs with given nullity. An

extension to the bipartite case is given and, in this case, it is shown that the lower

bound 2
√
m introduced by Caporossi et al. in [4] is improved. The equality cases are

characterized. Moreover, a simple lower bound that considers the number of edges and
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the diameter of G is derived. A simple lower bound, which improves the lower bound

2
√
n− 1, for the energy of trees with n vertices and diameter d is obtained. Additionally,

at Section 4 some tables, comparing the results, are presented.

2 Motivation and the main results

The concept of energy of a graph appeared in Mathematical Chemistry and we briefly

refer in this section its importance. The reader should refer to [12,14] (and the references

therein) where more details can be found.

Therefore, for a graph G, the expression in Eq. (3)

E(G) =
n∑
i=1

|λi| , (3)

where λ1, . . . , λn are the eigenvalues of the graph, is called the energy of the graph G,

( [11]). It is worth to be mentioned that in the recent literature this graph invariant

has been extensively studied, namely the search for its upper bounds. Concerning lower

bounds for the energy of a graph the reader should be referred, for instance, to [1–3,15,20].

For an arbitrary graph G, in [16] McClelland’s obtained the following lower bound for

E(G):

E(G) ≥
√

2m+ n(n− 1) |det(A)|2/n. (4)

where det(A) denotes the determinant of the matrix A = A(G). A lower bound for

the energy of a graph in terms of the number of vertices, edges and determinant of the

adjacency matrix that, under certain conditions improved the classical Mc Clelland’s lower

bound can be seen in [7, 8].

The following simple lower bound for a graph G with m edges was introduced by Caporossi

et al. in [4] and the equality case was discussed. In fact,

E(G) ≥ 2
√
m, (5)

with equality if and only if G consists of a complete bipartite graph Ka,b such that ab = m

and arbitrarily many isolated vertices. A lower bound for the energy of symmetric matrices

and graphs was introduced in [1]. A spectral lower bound for the energy can be seen in [4],

following directly from the fact that tr(A(G)) = 0 and it is:

E(G) ≥ 2λ1, (6)
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where, if G is connected, the equality holds in (6), for example, if G is a complete graph

and a complete bipartite graph.

Next we present the results of this work. Their proofs are presented at Section 3. The

following theorem generalizes the lower bound in (4) for Hermitian matrices R, such that

η(R) = κ. Some equality cases are discussed.

Theorem 2. Let R be a Hermitian matrix with nullity η(R) = κ, where 0 ≤ κ ≤ n− 1.

Then

E(R) ≥

√
4 |R|2 + (2(n− κ)− 1)2 − 1) |Υn−κ(R)|

2
n−κ

2
. (7)

The equality holds in (7) if and only if the nonzero eigenvalues of R have the same absolute

value. Moreover, if R is a nonnegative irreducible matrix the equality holds if and only if

R is permutationally equivalent to a block matrix of the form,(
0 S
ST 0

)
(8)

where κ = n− 2 and S is a rank one matrix.

Remark 2. Note that the list of eigenvalues of a matrix R can be unknown and, therefore,

its not possible to calculate directly the energy of R. However, knowing Υn−κ(R), and one

way to obtain it without knowing the eigenvalues is calculating cn−κ, the coefficient of xκ

of the characteristic polynomial of R, with the formula in (7) one can approximate the

energy. If R is the adjacency matrix of a graph G the expression can be obtained by a

result in [5] which obtains the coefficients of the characteristic polynomial in terms of the

so called “elementary figures”.

2.1 Results for general graphs

In this subsection the results for general graphs are presented. In order to proceed,

and to simplify the notation, sometimes we will set n − κ = r and, for any graph G,

Υr(G) = Υr (A(G)) .

Note that, if in Theorem 2 the Hermitian matrix R is replaced by the adjacency matrix of

a graph G the inequality (9) in Theorem 3 below is obtained. The proof of the inequality

in (10) is given in Section 3.

Theorem 3. Let G be an (n,m)-graph without isolated vertices, with nullity η(G) = κ =

n− r, where 0 ≤ κ ≤ n− 1 (1 ≤ r ≤ n). Then
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1.

E(G) ≥

√
8m+ 4r(r − 1) |Υr(G)|

2
r

2
. (9)

2.

E(G) ≥ r |Υr(G)|
1
r . (10)

The equalities hold in (9) and in (10) if and only if the nonzero eigenvalues of G have

the same absolute value. Note that if G is connected the equality holds if and only if

G = Ka,b the complete bipartite graph, with a + b = κ + 2. Otherwise G = ∪`j=1Kaj ,bj ,

with ajbj = aibi, for i 6= j, ` = n−κ
2

and n =
∑`

j=1(aj + bj).

Remark 3. Recalling the equation in (2) one can see that |Υr(G)| corresponds to |cr| .

Since all the entries of A(G) are integers, from item 1. in Lemma 1, and taking into

account that it is considered the absolute value of the product of the nonzero eigenvalues

of G, it follows that the coefficient cr is a nonzero integer. In consequence,

|Υr(G)| ≥ 1, ∀ 1 ≤ r ≤ n. (11)

Remark 4. Recalling that a graph G is called hypoenergetic if its energy is less than the

number of vertices of G, see [14]. The inequalities in (10) and (11) show directly a known

result, namely, that if η(G) = 0 then G is not hypoenergetic. This remark will be referred

in the last section of conclusions.

From inequalities (9) and (11), we derive the following result.

Corollary 4. Let G be an (n,m)-graph without isolated vertices, with nullity η(G) = κ =

n− r with 0 ≤ κ ≤ n− 1 (1 ≤ r ≤ n). Then

E(G) ≥
√

8m+ 4r(r − 1)

2
. (12)

The equality holds in (12) if and only if G = K2.

Remark 5. If r(r− 1) > 2m, for example, for G = Cn, see [10], then the lower bound in

(12) improves the lower bound in (5).
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Recall that the diameter of a connected graph G, denoted by diam(G), is the maximum

distance between two vertices of G.

In [6, Theorem 3.3.5] it was proven that if G is a connected graph with precisely β distinct

eigenvalues then

diam(G) + 1 ≤ β. (13)

Taking into account Theorem 3 and the inequality in (13) the following results are ob-

tained.

Corollary 5. Let G be an (n,m) connected graph, with nullity η(G) = κ, where 0 ≤ κ ≤

n− 1. Then

1. If κ > 0 then

E(G) ≥

√
8m+ 4diam(G)(diam(G)− 1) |Υn−κ(G)|

2
n−κ

2
, (14)

2. If κ = 0, then

E(G) ≥

√
8m+ 4diam(G)(diam(G) + 1) |det(A(G))|

2
n

2
. (15)

Taking into account Corollary 5 and (11) the next corollary is obtained.

Corollary 6. Let G be an (n,m) connected graph, with nullity η(G) = κ, where 0 ≤ κ ≤

n− 1. Then

1. If κ > 0, then

E(G) ≥
√

8m+ 4diam(G)(diam(G)− 1)

2
, (16)

2. If κ = 0, then

E(G) ≥
√

8m+ 4diam(G)(diam(G) + 1)

2
. (17)

2.2 Results for bipartite and tree graphs

In this subsection the results valid for bipartite graphs and trees are presented. Recall

that r = n− κ.
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Theorem 7. Let G be an (n,m) bipartite graph without isolated vertices, with η(G) =

κ = n− r, where 0 ≤ κ ≤ n− 1 (1 ≤ r ≤ n). Then

E(G) ≥

√
16m+ 4r(r − 2) |Υr(G)|

2
r

2
. (18)

with equality if and only if all the nonzero eigenvalues of G have the same absolute value

in other words, if and only if G = ∪`j=1Kaj ,bj , with ajbj = aibi, for i 6= j, ` = n−κ
2

and

n =
∑`

j=1(aj + bj).

Taking into account Theorem 7 and inequality in (11), we obtain

Corollary 8. Let G be an (n,m) bipartite graph without isolated vertices, with η(G) =

κ = n− r, where 0 ≤ κ ≤ n− 1 (1 ≤ r ≤ n). Then

E(G) ≥
√

16m+ 4r(r − 2)

2
. (19)

Remark 6. If r = n− κ > 2, then the lower bound in (19) improves the lower bound in

(5).

Attending to Theorem 7 and inequality in (13), the next corollary follows.

Corollary 9. Let G be an (n,m) connected bipartite graph, with nullity η(G) = κ, where

0 ≤ κ ≤ n− 1.

1. If κ > 0, then

E(G) ≥

√
16m+ 4diam(G)(diam(G)− 2) |Υn−κ(G)|

2
n−κ

2
, (20)

2. If κ = 0, then

E(G) ≥

√
16m+ 4(diam(G)2 − 1) |det(A(G))|

2
n

2
. (21)

Taking into account Corollary 9 and (11) the next corollary is obtained.

Corollary 10. Let G be an (n,m) bipartite connected graph, with nullity η(G) = κ, where

0 ≤ κ ≤ n− 1.

1. If κ > 0, then

E(G) ≥
√

16m+ 4diam(G)(diam(G)− 2)

2
, (22)
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2. If κ = 0, then

E(G) ≥
√

16m+ 4(diam(G)2 − 1)

2
, (23)

3. In particular, if G is a tree of diameter d, and nullity κ > 0, then

E(G) ≥
√

4(n− 1) + d2 − 2d. (24)

Remark 7. Since the rank of a bipartite graph is an even number all the trees with an

odd number of vertices have nullity κ > 0. In consequence, the inequality in (24) holds

for this type of trees.

3 Proof of the main results

In this section the proofs of Theorems 2 and 7 and Corollaries 5 and 9 described at Section

2 are presented.

Proof. of Theorem 2 Let αj1 ≥ αj2 ≥ · · · ≥ αjn−κ be the nonzero eigenvalues of R. It is

clear that

E (R) = |αj1|+ |αj2|+ · · ·+
∣∣αjn−κ∣∣ .

Thus

E (R)2 =
(
|αj1|+ |αj2 |+ · · ·+

∣∣αjn−κ∣∣)2
=

n−κ∑
`=1

|αj` |
2 +

∑
`1 6=`2

∣∣∣αj`1 ∣∣∣ ∣∣∣αj`2 ∣∣∣ .
Since the geometric mean of a set of positive numbers is not greater than the arithmetic

mean, and the equality holds if and only if all of them are equal, we have:

∑
`1 6=`2

∣∣∣αj`1 ∣∣∣ ∣∣∣αj`2 ∣∣∣ ≥ r (r − 1)

(∏
`1 6=`2

∣∣∣αj`1 ∣∣∣ ∣∣∣αj`2 ∣∣∣
) 1

r(r−1)

= r (r − 1) |Υr (R)|
2
r .

Then the form given in (7) is obtained from the inequality

E(R) ≥
√
|R|2 + r(r − 1) |Υr(R)|

2
r . (25)

Finally, the equality holds if and only if

|αj1| = |αj2| = · · · = |αjr | . (26)
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From (26), attending to the definition of imprimitivity h in [18, Section III], we have h =

n−κ. Additionally, if R is nonnegative irreducible and symmetric, its imprimitivity index

must be h = 2. Therefore κ = n − 2. Moreover R is cogredient (that is, permutationally

similar), to a matrix of the form in (8) and as κ = n−2, the block S is a rank one matrix.

By [18, Theorem 4.2] it is clear that, in this case, ρ(R), (the spectral radius of R), and

−ρ(R) are the only nonzero eigenvalues of R. The proof of the inequality in (10) is a

direct application of the geometric-arithmetic mean of a set of positive numbers and its

equality case.

Note that the inequality in (25) is the inequality in (4) whenever κ = 0. Moreover, By the

equality in (2), the term |Υr (R)|
2
r is a matrix invariant that can be replaced, for instance,

by det(R).

Proof. of the inequality in (10) The proof of the inequality in (10) is a direct application

of the geometric-arithmetic mean on a set of r positive numbers and its equality case.

Proof. of Corollary 5 If λi1 , . . . , λiβ are the distinct eigenvalues of G and κ ≥ 1, then

there is only one eigenvalue, say λi` such that λi` = 0 and we have r = n− κ ≥ β − 1 ≥

diam(G) + 1 − 1 = diam(G). On the contrary case, if κ = 0 we have r = n − κ = n ≥

β ≥ diam(G) + 1.

Proof. of Theorem 7 Since λ ∈ σ (G)− {0} if only if −λ ∈ σ (G)− {0}, there exists an

integer t such tha n− κ = 2t. Moreover

E (G) = 2
t∑

`=1

|λi` | .

In consequence,

E (G)2 = 4

(
t∑

`=1

|λi`|

)2

= 4

[
t∑

`=1

|λi` |
2 + 2

t∑
1≤`1<`2≤t

∣∣∣λi`1 ∣∣∣ ∣∣∣λi`2 ∣∣∣
]

≥ 4

 t∑
`=1

|λi` |
2 + t (t− 1)

(
t∏

`=1

|λi`|
t−1

) 2
t(t−1)


= 4m+ (n− κ) (n− κ− 2) |Υn−κ (G)|

2
n−κ .

The equality holds if and only if all the nonzero eigenvalues of G have the same absolute

value. In order to simplify the notation we write Γ = |Υn−κ (G)|
2

n−κ . Therefore, the
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previous inequality is equivalent to:

(n− κ)2 Γ− 2 (n− κ) Γ + 4m− E (G)2 ≤ 0.

Reading the latter inequality as a quadratic inequality in the variable n− κ, we obtain√
16m+

(
(2 (n− κ)− 2)2 − 4

)
Γ

2
≤ E (G) ,

which (except by an algebraic step) proves (18).

4 Computational experiments

Next some comparatives examples for different values of n are presented.

Using different graphs the lower bounds in the paper are compared. In order to control

the differences among the lower bound (4) and the new lower bound in (9) the rank r is

given. The energies E and the lower bounds in (5), (6), (9), (10) and (12), are compared.

Only the last 3 columns are the lower bounds found in the present work. We begin with

n = 3 :

Adjacency E r (5) (6) (9) (10) (12)

K1,2 2.8284 2 2.8284 2.8284 2.8284 2.8284 2.4495
K3 4 3 3.7798 4 3.9401 3.7798 3.4641

n = 4 :

Adjacency E r (5) (6) (9) (10) (12)
0 0 0 1
0 0 1 1
0 1 0 0
1 1 0 0

 4.4721 4 3.4641 3.2361 4.2426 4.0000 4.2426


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 4 2 4 4 4 4 3.1623


0 1 0 1
1 0 0 1
0 0 0 0
1 1 0 0

 4 3 3.4641 4 3.9401 3.7798 3.4641
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n = 5 :

Adjacency E r (5) (6) (9) (10) (12)

0 1 1 1 1
1 0 0 0 0
1 0 0 0 1
1 0 0 0 0
1 0 1 0 0



5.6272 4 4.4721 4.6858 5.1933 4.7568 4.6904



0 1 0 0 0
1 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 1 0 1 0



5.4641 4 4 3.4641 5.3651 5.2643 4.4721



0 0 1 0 1
0 0 1 0 0
1 1 0 1 0
0 0 1 0 1
1 0 0 1 0



5.5959 4 4.4721 4.2716 5.1933 4.7568 4.6904

.

5 Conclusions

In order to conclude this work we would like to refer the importance of the study of these

subjects. By one hand, some results on literature for instance, the authors in [9] say that

“in general the rank of the adjacency matrix of a graph can be computed in polynomial

time but we do not have a simple combinatorial expression for it”. The authors in [10]

claim that “the nullity of a molecular graph has a far-reaching inference on the expected

stability of unsaturated conjugated hydrocarbons”. On the other hand the definition of

hypoenergetic graphs, (see [14]), suggests that there are many graphs (chemical or not)

with nullity greater than zero as following Remark 4, one can say that hypoenergetic

graphs with nullity zero do not exist. Another thing that justifies the present study is

that many chemical trees have 0 as an eigenvalue, see, for instance, [13,19]. Moreover, in

this work, a new lower bound for the energy of non-singular graphs and some properties

of the lower bound in (4) are recalled and studied. Additionally, for the bipartite case

the lower bounds given in this work improve the known lower bound in (5) in both cases

that is, they are valid for graphs with zero or non zero nullity. We also believe that the

relation between the nullity of a graph and its energy deserves to be studied.
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