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Abstract

The energy E(G) of a graph G is defined as the sum of the absolute values of the
eigenvalues of its adjacency matrix. If a graph G of order n has the same energy as
the complete graph Kn, i.e., if E(G) = 2(n−1), then G is said to be borderenergetic.
In this note, we investigate the girth of a borderenergetic graph G in the case that
G is a dense graph, and get the result that the girth is 3.

1 Introduction

All graphs appeared in this note are simple and undirected. Let G be a graph with order

n and size m. The complete graph of order n is denoted by Kn. The degree of vertex vi

in a graph G is denoted by di(G), i = 1, 2, · · · , n. The minimum degree of graph G is

denoted by δ(G). For terminology and notation not given here, we refer to [1, 2].

Let A(G) be the adjacency matrix of G and set λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues

of the adjacency matrix A(G). If D(G) is the diagonal matrix of the vertex degrees of

G, then L(G) = D(G) − A(G) and Q(G) = D(G) + A(G) are the Laplacian matrix

and signless Laplacian matrix of G, respectively. Let µ1 ≥ µ2 ≥ · · · ≥ µn = 0 and
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q1 ≥ q2 ≥ · · · ≥ qn be the eigenvalues of L(G) and Q(G), respectively. The energy of a

graph G [12, 13], denoted by E(G), is defined as

E(G) =
n∑

i=1

|λi| .

For additional information on the graph energy and its applications in chemistry, we refer

to [4, 11,13,14,16].

Gong et al. in [10] proposed the concept of borderenergetic graphs, namely, graphs of

order n satisfying E(G) = 2(n− 1). The corresponding results on borderenergetic graphs

can be seen in [5, 15,17,18,20].

Similarly, the concept of Laplacian borderenergetic, i.e., L-borderenergetic graphs was

proposed in [23], that is, a graph G of order n is L-borderenergetic if LE(G) = LE(Kn),

where LE(G) =
∑n

i=1 |µi − d(G)| and d(G) is the average degree of G. More results on

L-borderenergetic graphs can be referred to [6–9, 19, 21, 23, 24]. Analogously, Tao and

Hou [22] extended this concept to signless Laplacian energy QE(G) of a graph G. If a

graph G of order n has the same signless Laplacian energy as the complete graph Kn, i.e.,

QE(G) = QE(Kn) = 2(n− 1), then it is called Q-borderenergetic.

Although the borderenergetic graphs of any order n ≥ 7 were constructed in [10],

bearing in mind that the smallest borderenergetic graph has an order 7, there are very

few results on the properties of the structures of borderenergetic graphs. Depending

on the searching by computer, the borderenergetic graphs with order 7 ≤ n ≤ 11 were

depicted in [10, 17, 20], which are all not bipartite. Then there exits at least one odd

cycle contained in each one borderenergetic graph found ahead. Especially, by observing

these borderenergetic graphs, we can find that the girths of them are coincidentally the

same and equal to 3, which means that these graphs are not bipartite. In [6], the authors

proved that a borderenergetic graph G is not bipartite when G is a sparse graph.

Theorem 1. [6] Let G be a borderenergetic graph of order n and size m. If m < 2(n−1)2
n

,

then G is not bipartite.

In this note, we will consider borderenergetic graphs in the case that they are dense

graphs, and prove that they are not bipartite and their girths are all equal to 3.
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2 Main results

An asymptotically tight lower bound on the size m of a borderenergetic graph of order n

is presented as follows.

Lemma 2. [5] Let G be a borderenergetic graph of order n and size m. Then

m ≥


[
2(n− 1)−

√
1
n

∑n
i=1 d

2
i

]2
2(n− 1)

+

∑n
i=1 d

2
i

2n

 . (1)

If G is (n− 3)-regular, then the bound in (1) is asymptotically tight.

The following result(Lemma 3) is famous in extremal graph theory., originally due to

Turán [25] and can be easilly found in [3].

Lemma 3. A graph G with n vertices and more than
[
n2

4

]
edges contains at least one

triangle. The only graphs without triangles having n vertices and
[
n2

4

]
edges are Kl,l for

n = 2l and Kl+1,l for n = 2l + 1.

Indeed, Lemma 3 shows that the girth of graph G is 3 if it satisfies m >
[
n2

4

]
, which

means that the graph G is rather dense. By using above lemmas, we now study the girth

of borderenergetic graphs and obtain the following main result.

Theorem 4. Let G be a 2-connected noncomplete borderenergetic graph. If it satisfies

1

n

n∑
i=1

d2i (G) ≥ 1

2n2

(
4
√

2
√
n6 − 11n5 + 44n4 − 84n3 + 83n2 − 41n+ 8 (2)

+ n4 − 9n3 + 33n2 − 41n+ 16
)
,

then the girth of the borderenergetic graph G is 3.

Proof. Observing the lower bound in Lemma 2, suppose x = 1
n

∑n
i=1 d

2
i and define a

function f(x) on x below.

f(x) =
[2(n− 1)−

√
x]2

2(n− 1)
+
x

2
.

Then the derivative of the function f(x) on x is

∂f(x)

∂x
=
n(
√
x− 2) + 2

2(n− 1)
√
x
.
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Since G is a 2-connected graph, we have δ(G) ≥ 2. Then it arrives at

x =
1

n

n∑
i=1

d2i (G) ≥ 4 and
√
x ≥ 2.

In this case, we have ∂f(x)
∂x
≥ 0, which shows that f(x) is increasing for x ≥ 4.

Let

f(x) =
n2 + 1

4
. (3)

By direct computation, we obtain an approximate solution x0 for the equation (3). That

is,

x0 =
1

2n2

(
4
√

2
√
n6 − 11n5 + 44n4 − 84n3 + 83n2 − 41n+ 8

+ n4 − 9n3 + 33n2 − 41n+ 16
)
.

Thus, we have

f(x0) ≈
n2 + 1

4
. (4)

Since f(x) is increasing for x ≥ 4, by x ≥ x0, i.e., the inequality (2), we obtain

f(x) ≥ f(x0).

Thus, by (1) and (4), we have

m ≥ df(x)e ≥ f(x) ≥ f(x0) ≈
n2 + 1

4
>
n2

4
≥
[
n2

4

]
.

Hence, from Lemma 3 we know that a borderenergetic graph has at least one triangle,

i.e., its girth is 3.

A natural corollary from Theorem 4 is that such a 2-connected noncomplete borderen-

ergetic graph satisfying the condition (2) is not bipartite. In fact, the rationality of the

conditions in Theorem 4 can partly be checked from borderenergetic graphs with order

7 ≤ n ≤ 9 depicted in [10], which are all 2-connected. Assume

x =
1

n

n∑
i=1

d2i (G),

and

x0 =
1

2n2
(4
√

2
√
n6 − 11n5 + 44n4 − 84n3 + 83n2 − 41n+ 8
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+n4 − 9n3 + 33n2 − 41n+ 16).

Let Gi
n be the i-th borderenergetic graph of order n, where 7 ≤ n ≤ 9. The following

Table 1 presents the values of x and x0 for these borderenergetic graphs.

Graph G1
7 G1

8 G2
8 G3

8 G4
8 G5

8 G6
8 G1

9

x 24.57 24.25 29 24.25 25 20.5 40 26.22
x0 13.41 19.32 19.32 19.32 19.32 19.32 19.32 26.20

Graph G2
9 G3

9 G4
9 G5

9 G6
9 G7

9 G8
9 G9

9

x 26.22 32.89 35.11 16 16 32.89 31.56 35.11
x0 26.20 26.20 26.20 26.20 26.20 26.20 26.20 26.20

Graph G10
9 G11

9 G12
9 G13

9 G14
9 G15

9 G16
9 G17

9

x 43.56 32.89 31.56 36.22 45.78 39.56 49.56 57.56
x0 26.20 26.20 26.20 26.20 26.20 26.20 26.20 26.20

Table 1. The values of x and x0 for the borderenergetic graph Gi
n,

where 7 ≤ n ≤ 9, 1 ≤ i ≤ 17.

Furthermore, we consider the girth of a borderenergetic graph G of order n when the

order n of G is large enough. Using Theorem 4, we derive a result below.

Theorem 5. Let G be a 2-connected noncomplete borderenergetic graph of order n. If the

order n of G is large enough and G satisfies

d2i (G) ≥ O(2
√

2n), 1 ≤ i ≤ n, (5)

then the girth of the borderenergetic graph G is 3.

Proof. Since n is large enough, the inequality (2) for the graph G can be derived from

d2i (G) ≥ O(2
√

2n), 1 ≤ i ≤ n. From Theorem 4, we can see that the girth of the

borderenergetic graph G is 3.

Obviously, the borderenergetic graph G appeared in Theorem 5 is not bipartite. By

the inequality 5, we get

di(G) ≥ O(

√
2
√

2n),

2m =
n∑

i=1

di(G) ≥ O(

√
2
√

2n3/2),

m ≥ O(

√
2
√

2

2
n3/2).

And what’s more important, comparing with Lemma 3, in the case that G is bor-

derenergetic and its order is large enough, G only satisfies m ≥ O(

√
2
√
2

2
n3/2) and then it

contains at least one triangle.
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