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Abstract

Energy of a simple graph G, denoted by £(G), is the sum of the absolute val-
ues of the eigenvalues of G. Two graphs with the same order and energy are
called equienergetic graphs. A graph G with the property G = G is called self-
complementary graph, where G denotes the complement of G. Two non-self-
complementary equienergetic graphs Gy and Gy satisfying the property G = Gy
are called complementary equienergetic graphs. Recently, Ramane et al. [Graphs
equienergetic with their complements, MATCH Commun. Math. Comput. Chem.
82 (2019) 471-480] initiated the study of the complementary equienergetic regu-
lar graphs and they asked to study the complementary equienergetic non-regular
graphs. In this paper, by developing some computer codes and by making use of
some software like Nauty, Maple and GraphTea, all the complementary equiener-
getic graphs with at most 10 vertices as well as all the members of the graph class
Q = {G : EL(G)) = E(L(G)), the order of G is at most 10} are determined,
where L(G) denotes the line graph of G. In the cases where we could not find the
closed forms of the eigenvalues and energies of the obtained graphs, we verify the
graph energies using a high precision computing (2000 decimal places) of Maple. A
result about a pair of complementary equienergetic graphs is also given at the end
of this paper.

*Corresponding author
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1 Introduction

Throughout this paper, by a graph we mean a simple graph (that is, a graph without
loops and multiple edges). Vertex set and edge set of a graph G are denoted by V(G)
and E(G), respectively. Edge connecting the vertices u,v € V(G) is denoted by uv. An
n-vertex graph is a graph with order n. The complement G of a graph G is the graph
with the vertex set V(G) = V(G) and uwv € E(G) if and only if uv € E(G). A graph G
with the property G' = G is called self-complementary graph. The line graph L(G) of a
graph G is a graph whose vertex set is F(G) and two vertices of L(G) are adjacent if and
only if the corresponding edges are adjacent in G. The matrix A(G) = [a; ;]nxn is called

the adjacency matrix of a graph G where

1 if ViU; S E(G)

Qij =
0 otherwise,

and V(G) = {v1,ve, -+ ,v,}. The eigenvalues of a graph G are the eigenvalues of its
adjacency matrix A(G). It needs to be mentioned here that all the eigenvalues of a
graph G are always real because A(G) is a real symmetric matrix. The multiset of the
eigenvalues of a graph G is called the spectrum of G and it is denoted by Spec(G). If

A1, Ag, -+, A\, are distinct eigenvalues of a graph G with multiplicities my, mo, -+, m,,

A A A
Spec(G) = ( ) .

respectively, then we write

my Mo -+ My

The spectrum of the union of two graphs is the union of their spectra. Two graphs with
the same spectra are known as the cospectral graphs. Graph theoretical terminology not
defined here can be found in some standard books of graph theory, like [4].

The energy £(G) of a graph G is the sum of the absolute values of the eigenvalues of G.
This concept of graph energy, originating from HMO (Hiickel molecular orbital) theory,
was firstly introduced by Gutman [7]. The graph energy can be considered as one of the
most studied spectrum-based graph invariants in chemical graph theory. Details about
the graph energy can be found in the books [12,19], book chapters [8,9,13], reviews [10,11]
(it should be mentioned here that scanned copy of the seminal paper [7] on graph energy
is given in [10]), recent papers [1-3,6, 20,21, 23,24, 30,31] and in the related references

listed therein.
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Two n-vertex graphs with the same energy are called equienergetic graphs. Cer-
tainly, cospectral graphs are always equienergetic graphs. Indulal and Vijayakumar
[18] studied the equienergetic self-complementary graphs and showed that there exist
equienergetic self-complementary graphs on n vertices for every n € {8,12,16,20,---} U
{73,97,121,145,- - - }. Does there exists some non-self-complementary graph G with the
property £(G) = £(G)? The answer of this question is yes: Ramane et al. [25] proved that
for an r-regular graph G, with r > 3, the equation E(L(L(G))) = E(L(L(G))) holds if
and only if G is isomorphic to the complete graph of order 6. This result of Ramane et al.
gave a birth to the following definition: two non-self-complementary equienergetic graphs
G4 and Gy satisfying G, = G5 are called complementary equienergetic graphs. Recently,
Ramane et al. [26] established several results concerning the complementary equiener-
getic regular graphs and suggested to study the complementary equienergetic non-regular
graphs. In this paper, we continue the work done in [26]. More precisely, we determine all
the complementary equienergetic graphs with at most 10 vertices as well as all the mem-
bers of the graph class Q = {G : E(L(G)) = £(L(G)), the order of G is at most 10} by
developing some computer codes and by making use of some software.

Firstly, by developing a java code for GraphTea [16,27], we determined all the graphs
G (in graph6 format) of order at most 10 satisfying the equations

£(G) =£(G) (1)

and/or

E(L(G)) = E(L(G)) (2)

up to five decimal places. Then, we made a c-program code and used nauty [15,22]
for converting the graph6 codes into adjacency matrices. Afterwards, we filtered these
adjacency matrices by verifying Equations (1) and (2) up to twelve decimal places — at
this stage we dropped several adjacency matrices because their corresponding graphs do
not satisfy either of (1) and (2) (for example, there are 54 pairs of graphs satisfying (1) up
to five decimal places but there are only 47 pairs of graphs satisfying (1) up to 12 decimal
places). Finally, we verified Equations (1) and (2) for the remaining adjacency matrices
by using a high precision computing (200, 500 and then 2000 decimals) of Maple [17]

no further adjacency matrix was dropped at this stage.
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2 Main results

Firstly, we address the problem of determining all the complementary equienergetic graphs
on at most 10 vertices — certainly such graphs occur in pairs. From the definition of the
complementary equienergetic graphs, it follows that if two graphs are complementary
equienergetic then they are equienergetic as well, however there exist so many pairs of
equienergetic graphs that are not complementary equienergetic. According to Stankovié
et al. [29] there are 14225 equisets of connected graphs on 10 vertices (a set of graphs
is said to be equiset if all graphs in the set have the same energy and there are at least
two non-cospectral graphs in the set) but we will see that there are at most 47 pairs of
complementary equienergetic graphs on 10 vertices.

It can be easily verified that among all the graphs of order at most 5, there is only
one pair of complementary equienergetic graphs and this pair consists of the 4-vertex
cycle graph Cy and its complement. Also, there is exactly one pair of complementary
equienergetic graphs of order n for every n € {6,7}, see Figure 1. Eigenvalues and
energies of the pairs of the graphs (D;, D3) and (E), Es) depicted in Figure 1, are given

in Table 1, from which it follows that each of these two pairs is non-cospectral.

=G QIR

Figure 1. All the pairs of complementary equienergetic graphs on 6 and 7 vertices.

Table 1. Eigenvalues and energies of the graphs shown in Figure 1.

Graph | Eigenvalues Energy
Dy —2,-2,0,0,1,3 8

Do —2,-1,-1,1,1,2

E 0,0,—2,-2,1,3 + Y7 [ 54 /17
B —1,-1,-2,1,8 + VI

There are eight possible pairs of complementary equienergetic graphs of order 8, see
Figure 2. From these eight pairs, exactly two pairs (Fy, Fy) and (Fy5, Fig) are cospectral.
For the remaining six pairs, either their eigenvalues and energies, or just their charac-
teristic polynomials (where we could not find the closed forms of all the eigenvalues and

energies — in that case energies are verified up to 2000 decimal places using Maple [17])
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are given in Table 2.

Fy 2 F Fy 133 Fy
Fr Fy Fy Fip o iz
Fis Fy Fis Fie

Figure 2. All the possible pairs of complementary equienergetic graphs on 8 ver-
tices.

Table 2. Eigenvalues and energies, or just the characteristic polynomials, of the

graphs F3, Fy, ---, Fi4, depicted in Figure 2.
Graph | Eigenvalues / Characteristic polynomial Energy
F3 A% — 16A3 — 24X\ + 16\ + 32)
Fy A8 — 1208 — 85 4+ 2201 + 16)% — 1202 — 8\ + 1
Fs AZ(NE — 16M% — 1203 + 2802 + 16X — 12)
Fs A8 — 1200 — 8A% 4 34X\1 + 4003 — 8\ + 1
Fr 0,0,0,-2,-2,-2,2,4 12
Fy 3,-3,1,1,1,-1, -1, -1
Fy —1,1,2£V5,-1+v2,-1+£V2 2(1+ 5 +2v2)
Fio 0,+£v2,+£v2,-2,1+ 5
Fii |0,0,-2,4,£v2, -1£3 2(3+V2+V3)
Fia —1,-1,+v3,-1++v2,3,1
Fi3 AT = 150° — 1207 4+ 4503 + 4022 — 24) - 8)
Fiy A8 — 1300 — 405 4+ 361 + 803 — 3302 —4) 49

On 9 vertices, there are exactly twenty four pairs of complementary equienergetic
graphs, which are depicted in Figure 3. From these twenty four pairs, exactly nineteen
pairs, namely (Gai—1, Go;) with ¢ = 6,7,---,24, are cospectral. For the remaining five

pairs, their eigenvalues and energies are given in Table 3.

Table 3. Eigenvalues and energies of the graphs Gy, Ga, - -+, G19, shown in Figure
3.
Graph | Eigenvalues Energy
Gy 0,0,0,0,—1,—-1,1,5,—4 12
[ 0,0,—1,—1,—1,—-1,2,4, -2
G3 0,0,0,0,—1,—1,—4,3+ /5 12
Gy 0,0,-1,-1,-1,-1,3,3, -2




All the possible pairs of complementary equienergetic graphs of order 10 (which are
forty seven in total) are shown in Figures 4 and

cospectral. We
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Continuation of Table 3

Graph | Eigenvalues Energy
Gs -3,-3,0,0,0,0,0,0,0,6 12
Gg -1,-1,-1,-1,-1,-1,2,2,2

Gy 0,0,0,—2, -2, +v/2,2 + /10

G~ 0,—1,-1,1,1, -1 £+2,1+ /10 | 2(v/10+v2+2)

Gho 0,-1,-1,-14++2,-1++2,5,1

Gy [0,0,-2,-2,£v2 £/2.4 121 V2)

5. We note that none of these pairs is

give either the eigenvalues and energies, or just the characteristic polyno-

mials (where we could not find the closed forms of the eigenvalues and energies — in that

case energies are verified up to 2000 decimal places using Maple [17]) in Table 4.

Table 4. Eigenvalues and energies, or just the characteristic polynomials of the

graphs depicted in Figures 4 and 5

Graph | Eigenvalues / Characteristic polynomial Energy
H, 0,0,0,0,-3,-1,3 £ Y37 14 VI3 44+ V3T+ V13
H, 0,0,2 if lif “1,-1,-1,-1

Hs (>\+2)(>\3 pRE: 13/\+2)(/\—1)3(/\+1)3

Hy A\ — 1A% — 5X2 — 6A + 12)(A + 2)3

Hs N( A+2)( + DA +2X —4)(N> =527 — 4\ + 12)

Hg AA=1)(A2 —5)(A* —2X2 —1IA + ) (A +1)3

H; N+ 2) A+ 1A% +2X —4)(A* —5X% — 4 + 12)

Hg AA=1)(A2 =5)(A —2X2 —1IA + ) (A +1)3

Hy —2,-2,-2,-2,0,0,0,0,3,5 16

Hio —4,-1,-1,-1,-1,1,1,1,1,4

Hyy N —1DA+2)(AZ —4x — 6)(\ +3X% — 4\ — 10)

Hio AA=1DAN2 =22 - 9N —TA+ (A +1)3

Hys N+ 2)(A = 5XZ =20 + 8)(A° + 3)% —4) - 8)

Hiyy A= DA2 = TA+2)(A3 =222 —9A+2)(A + 1)3

His NOA+F2)A+ DT+ 2 —4) (W —5X% —4) + 16)

Hig AN = 1)(A2 =5)(A% =222 — 11X +8)(A + 1)?

Hy; NOAF2)A+ D(AZ+2) —4) (W —5X% —4) + 16)

His ( —1)(A%2 =5)(A\% = 2A2 — 1IN+ 8)(A + 1)3

Hyg N +2) A+ (A2 +2X — 4 (A% —5)7 — 4\ + 16)

Hy | AA—=1)(A2—5)(A® —2)2 — 11X+ 8)(A + 1)®

Hoy —1,1,0,0,2 £ V10, -1 £ 5, -1 £ 3 2(1+ V10 + /5 +/3)
Hy, —1,-1,0,0, £v/5, £v/3,1 £ V10

Hys —2,1,0,0,+v/2,2 + /10, -2 34 2v2+2V10 + V17
Hy | 0,1,-1,-1,1+ 10,1+ YT 142

Has NA-=DA=5) A+ 1A+ X =1)(AT+43Z —2X —11)

Hag AA=)A+2) N2+ A -1)A3 = X2 —7TA+6) (A +1)2

Hayr AZ(A3 =X =20+ 8)(A° + 5AT+ 207 — 167 — 12X + 4)

Hog (A3 =222 — 9N+ 2)(A° — 8A3 + 222 4+ 11X — 2)(\ + 1)2

Hyg AZ(A3 —B5A7 =20+ 8)(A° + 5AT+ 207 — 1607 — 12X + 4)

Hsy (A3 —2X2 — 9X 4+ 2)(A° — 8A3 + 222 4+ 11X — 2)(\ + 1)?

Hj, A2+ =N =502 —4X + 12)(\ + 2)2

Has A2+ XA =4)(A3 =222 = 1IN+ 4) (A = 1)2(A + 1)3

His —3,0,4,1,1,—1,—1,—1,+/5 124 2v5
Hay —-1,2,5,-2,-2,0,0,0,—1 + /5
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Continuation of Table 4

Graph | Eigenvalues / Characteristic polynomial Energy
Has A =HOT+3N =502 — 11  +4)(A - 1)Z(A + 1)°

Hag A3\ = B)(A* 4+ A3 — 82 — 4\ + 8)(\ + 2)?

Hsy A =5)(A3+3X2 —=5A —11) (A2 + A —1)2

Hig A= 4N =8N+ DA+ 1)2(N2 + X —1)?

Hag N =2)(A+3)(\ =507 —2X + 8)(\ + 2)?

Hyo A =2)A+3)(N =222 —9A +2)(A — 1)2(A + 1)®

Hy NA=5) A+ D2+ X =D\ +3X7 — 637 — 13X+ 11)

Hyo AN =DAZ+ A= DA+ A3 =922 —4X + 16)(\ + 1)2

Hys N =5 A+ DN —4x +2)(\° + 427 — 6)

Hyy AA =N = A2 =X +3) (A3 +3X2 = A= 5) (A + 1)?

Hys MA—5)(A+2)(XF —2)(X® +3)\7 — 41— 10)

Hy A=A =42+ 22 - 1)(A3 = TA+4)(A +1)?

Hyr NA+3)A+2)(AF —2)(\F — 522 74>\+18)

Hyg A=A =2)(A2 +2X = 1)(A3 — 202 — 11X + 10)(A + 1)?

Hyo MO+ 2)(W 3237 =31 —8)(\° —5X% — 3\ + 14)

Hsp (A=1)(A =202 —10A + 7)(N* — 6A +3)(A + 1)®

Hs, N +2)(A 4+ 327 =30 = 8)(A* —5A\Z =3\ + 14)

Hsy (A=1D(A = 2)02 —10A + 7)(N* — 6A +3)(A + 1)°

Hss NA—5) W+ A7+ 23 —2)(AT+ A° =677 — 41 + 6)

Hs,y A= =N =32+ DA +3X3 =32 —TA+4H(A+1)2
Hys —1,5,0,0,+v2, -1+ 6, -1+ 3 23+ V2 +V5+V3)
Hsg 0,4,—1,—1,£v5,+v/3, -1 £ /2

Hsr —2,5,0,0,+v2,£v2, -3 + YIT T+ VIT+4V2
Hss L,4,-1,-1,1+ Y7 142, -1£2

Hso N = 1)\ =577 — 61 + 28)(\ + 2)°

Hgo (A+2)(A =202 — 13X + 18)(A — 1)’ (A + 1)3

He, N +3)(A2=2)(A + 21 —2)(\° =507 =2\ +8)

Hgy A —2)(A2 = 3)(A2 42X\ — 1)(A> — 202 —9X + 2)(A + 1)?

Hgs NA+2)AZ 220 — 4N+ A - (X =507 =31 + 12)

Hga A =D =5)(A2+ A —1)(A> —2)% — 10X +5)(A + 1)?

Hes NN =5)(A 4+ 207 — 4\ — 6)(ANT + 307 =207 — 6) + 2)

Heg A=4)N+ 22 =X+ DM+ X3 —5X02 —3A +4)(A +1)2
Her NN =5)(AZ+ X — 1)(A° + 42T = 303 — 1907 + 2) + 19)

Heg (A= 4)A2+ X = )N+ M — A3 — 4X% + 20\ — 4) (A +1)2
Heo AN =5)(AZ+ X — 1)(A° + 42T = 333 — 1907 + 2) + 19)

Hyo A= 4N+ = 1A + 2 —9X3 —4X2 4200 — ) (A + 1)2
Hyy A2 =5)(A +2)(A% +3X5 — 6AT — 16A3 + 1207 + 16X — 8)

Hyy (A= 1A —4)(A® +3X% — 6A* — 18M% + 9A2 + 23X —4)(A + 1)?
Hys NA=1D(AZ+2X2—4) (A3 =B Z —2) +8)(\ + 2)?

Hry A+2)(A2 = 5)(A° —2X02 — A +2)(A — 1)2 (A + 1)?

Hrs NA—DZ+20— 4\ =527 —2X + 8)(\ + 2)?

Hyg A+2)(X2 = 5) (X =202 —9A +2)(A — 1)2(A +1)2

Hoy NA=1)AZ+2Xx—4)(A> =5 7 =20 +8)(A + 2)?

Hrg A+2)(X2 = 5) (X3 =202 —9A +2)(A — 1)2(A +1)2

Hrg NA=1)(AZ+2X —4)(A* =5 2 =20 +8)(\ + 2)?

Hygo A+2)(N2 = 5) (X3 =202 —9A +2)(A — 1)2(A + 1)?

Hg; A =5)(A7=2)(A3 + A2 =61+ 2)(A +2)?

Hgo (A= 4)(A2 +2X — 1)(A3 + 222 = 5X — 8)(A — 1)2(A + 1)?

Hgs | 2,5,-2,-2,-2,0,0,0,—1 + Y17 13+ V17
Hga —3,4,-1,-1,-1,1,1,1, -1 + ¥I7

Hgs | —3,-1,1,5,0,0,—3 + Y3 _1 4 VI3 10 +2V/13
Hgg —2,0,2,4,-1,-1, -1+ Y13 14+ VI

Hgr NP AT 50 +2)(NF =507 = 3A + 14) (A + 2)?

Hgs (A2 =202 —10A + 7)(A3 + 202 — AN = )(A = 1)’(A + 1)2
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Continuation of Table 4
Graph | Eigenvalues / Characteristic polynomial Energy
Hgy NP+ 22 =X+ 2) (A% =527 —3x + 14) () + 2)?
Hyg (A3 =222 — 10X+ T)(A® + 202 —4X = T)(A — 1)2(\ + 1)?

Ho: ~2,5,0,0,+v2, -1 + V1T 1+ 3 74+2V3+ V1T +2V2
Hyp [ 1,4,-1,-1,4V3, -1+ Y7 142
Hos 5,—-2,—2,1,1,1, -1 £ 2, -1 £ V2 12442

Hos | 1,-2,-2,-2,4/2,+v2, 3+ ¥

Next, we determine all the possible members of the graph class
QO ={G : E(L(G)) = £(L(G)), the order of G is at most 10},
see Figure 6. In what follows, we prove a result, which guaranties that the graph LG?
(shown in Figure 6) belongs to the class 2.
Proposition 2.1. For p > 4, it holds that & (L (KIS?QZ)) -y (L (KIS?QZ)), where K7
is the graph obtained from the complete graphs K, and K, by identifying one of their

vertices.

Proof. The result follows from the following facts

2 p—3 p—1 4p717%/W 21 4p71+;/8pﬂr725
see(1(12)) =
(

p+1) p—1 p 1 1 1
and
—— 1 -p+2 —-p —2p-1) —2p pp+1)
Spec (L (K;(;I-:-)z)) = .
plp+1) p—1 p+1 1 1 1

It is clear that LG = Ké4) and hence by using Proposition 2.1, we deduce that
LGY € Q. Also, the next proposition (Proposition 2.2) ensures that the graphs LG,
LGS, LG, LGS, LGS, LG8, LGY, LGS, LGY, LGI°, LGY, LG}® and LG belong to the

class €.

Proposition 2.2. [26] For p,q > 2, it holds that £ (L (K,,)) =& (L (Kp,q)>, where K, ,

is the complete bipartite graph of order p + q.

The energies or the characteristic polynomials of the line graphs and complements of
the line graphs, of those graphs of Figure 6 which are different from LG}, LGS, LGY, LG},
LGS, LGS, LGS, LGS, LGS, LGY, LG, LGY°, LGY® and LGY, are specified in Table 5.
We remark that the equations € (L(LGY’)) = & <m>7 E(L(LGY) =€ <m>
and £ (L(LG19)) = & (m) are verified up to 2000 decimal places using Maple [17].
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LGy LGY

LGT

LGY LG

LG

Figure 6. All the possible members of the graph class Q.

Table 5. Energies or the characteristic polynomials of the line graphs and comple-
ments of the line graphs, of some graphs of Figure 6.

Graph LG* | BEigenvalues or Characteristic Polynomials of L(LG‘L‘) and L(LGF) | Energies of L(LG’;) and L(LGF)
LGS —2,—1,-1,1,1,2 8
—2,-2,0,0,1,3
LG L+v2, 42, -2, -2, -2, =T 12 +4v2
5,1,1,1,-2, -2, -1+ 2, -1+ V2
LGS 0,-2,1+£5,+v2,£V2 2426 +4V2
1,-1,2+ V5, -1+ 2, -1+ /2
LGY 0,6,2,2,2,2, -2, -2, — 2 30 + 25
9,1,1,1,1,1,1,1,1,—1, —
LGY 3, 32
9,
LGY 9, 48
= - °
12 times
,—1,-1,-3,-3,-3,-3,—4,—6
12 times
LGP0 1£2v3,-2,--,-2,—1,-1,2,2,2,2,4,4 13
= - Z
11 times
13,-2,0,0,1,---,1,-3,-3,-3,-3, -5, -5
N
11 times
LGI0 5++/21,6,0,—2,---,-2,1,1,2,2,4,4 60
= 7
15 times
15, —7,—1,1,--- ,1,-2,—2, -2, 3,3, —5, —5
N
15 times
LG} EEVIT § 1 _2...,-2,3,3,3,3,3,3 2
N

15 times

STENT 46,0,1, -+, 1, —4, —4, —4, —4, —4, —4
o

15 times
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Continuation of Table 5

Graph LG¥ | Eigenvalues or Characteristic Polynomials of L(LGf) and L(LGF) | Energies of L(LG’f) and L(LGF)
LGIO 3233 8 1,-2,.--,—2,3,3,3,3,3,3 57+ /33
[

15 times
=5EY88 16 1, 1, —4, —4, —4, —4, —4,—4
—
15 times
LG (A —2)Z(Z\Z 10X + 8)(A° — 10AZ + 20X — 22)Z(A + 2)T
(A= 17)( A +2)(A + 3)2(A3 + 1302 4+ 521 + 62)2(\ — 1)17
(A =2)(A3 = 10A% + 31X — 29)(AZ — 10X + 8)
X (AT = 12X3 + 4702 — 67X + 30) (A + 2)17
(A= 17)(A+ 3)(A + 2)(A% + 132 + 54X + 71)
X (A% 4 1623 + 89A2 4 201 + 157)(A — )17
LG —2,--,-2,4,3,3,2,5 £ /17, 2217 TE/IT 68
—

L6

17 times

17.—5,_37_2,_4,_4,%,%,1,“_ 1
-

17 times
LGl A —2)(AZ 10X+ 8)(A° —8XZ + 17A — 8)

12 X (A = 4)(A% — 10A2 4+ 29X — 22)(A +2)'7

A +5) (A4 3) (A +2)(A3 4+ 1122 4 36X + 34)

X (A — 17)(A% + 1322 + 521 + 62)(A — )7
LGYY —2,---,-2,5,4,4,3,2,1,5 £ 17, 2517 68

17 times

17,6, 5, =5, —4, —3,~2,~2, =T | ... g

17 times

LG —2,...,-2,4,3,3,2,5+ 17, 5247 TE/T 68
N

17 times
17, -5, —4, —4, -3, -2, %ﬁ %\/ﬁ,l'... 1

17 times

We end this article by giving a result about a pair of complementary equienergetic
graphs. For this, following Haemers [14], we firstly state some definitions concerning
designs. A 2-(v, k, A) design, with parameters v, k and A, consists of a finite point set P
of cardinality v and a collection B of subsets (called blocks) of P, such that:

(i) each block has cardinality & with the constraint 2 < k <wv —1,

(ii) each (unordered) pair of points occurs in exactly A blocks.

A design in which number of blocks and number of points are same is called symmetric.
The incidence matrix N of a 2-(v, k, A) design is the (0, 1) matrix with rows indexed by
the points, and columns indexed by the blocks, such that N;; = 1 if the point i belongs

to the block j, and N;; = 0 otherwise. The incidence graph of a design with incidence
0

N
matrix N is the bipartite graph with the adjacency matrix <NT O) . We also need the

following two results.
Theorem 2.3. [5] If IG(v, k, \) is the incidence graph of the symmetric 2-(v, k, \) design
then

k vVk—A -k —vVk—=\
Spec (IG(v,k,\)) = ( ) .

1 v-1 1 v—1
Theorem 2.4. [28] If G is an r-reqular graph of order n with the eigenvalues v, Ag, -+, A,

then the eigenvalues of G aren —r — 1, =Xy — 1,-++ =X, — 1.
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We are now in position to state and prove the final result of this paper.

Proposition 2.5. Forl >4, IG(l,l—1,1—2) and IG(l,l — 1,1 — 2) are complementary
equienergetic graphs where IG(l,1 — 1,1 — 2) is the incidence graph of the symmetric 2-
(1,1 — 1,1 —2) design.

Proof. By Theorem 2.3, it holds that
-1 1 1-1 -1
Spec (IG(l,1 — 1,1 —2)) = .
1 I-1 1 1-1

Also, by using Theorem 2.3, we get

S I -2 1-2 0
Spec (IG(l,lfl,172)> = ]
1 1-1 1 [—1

and hence it holds that £ (IG(l,1 — 1,1 —2)) =& (IG(l,l —-1,1— 2)) =4(1-1).
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