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Abstract

The energy of a graph G, denoted by E(G), is the sum of the absolute values
of all the eigenvalues of its adjacency matrix A(G). In this paper, we give the
upper bounds of graph energy in terms of matching number and characterize all
the extremal graphs achieving the upper bounds.

1 Introduction

Graphs considered in this paper are simple and undirected. For a graph G, let V (G)

and E(G) denote the vertex set and edge set of G, respectively. For an edge e of G, the

edge degree d(e) is the number of edges incident with e. The maximum edge degree of G

is denoted by ∆e(G). Without confusion, we denote ∆e(G) by ∆e. An edge set M of G

is called a matching if any two edges in M have no common vertices. If a matching M

of G contains k edges, then it is called a k-matching. Given an n-vertex graph G, the

number of k-matchings in G is denoted by m(G, k) and in particular m(G, 0) = 1. If each

vertex of G is incident with exactly one edge of M , then M is called a perfect matching

of G. The matching number of a graph G, denoted by µ(G), is the number of edges in
∗Corresponding author. E-mail address: chenjing827@126.com
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a maximum matching. For any two vertex-disjoint graphs G and H, the union G ∪H is

the graph with vertex set V (G)∪ V (H) and edge set E(G)∪E(H). The complete graph

of order n is denoted by Kn, and in particular, K1 denotes the trivial graph with exactly

one vertex. In this paper, tG denotes the union of t graph G.

The graph energy E(G) of G, proposed by Gutman [9], is the sum of the absolute

values of all the eigenvalues of the adjacency matrix A(G), i.e. E(G) =
∑n

i=1 |λi|, where

λ1, λ2, . . . , λn are the eigenvalues of A(G). Obviously, isolated vertices have no influence

on the energy of a graph.

The theory of graph energy is well developed nowadays. For detailed results on graph

energy, we refer the reader to the book [14]. In this article, we are interested in the

upper bounds of the graph energy of G. McClelland [15] proved that E(G) ≤
√
2mn for

any graph G with n vertices and m edges, moreover, if G is a connected non-singular

graph, Das and Gutman [5] proved that E(G) ≤ 2m − 2m
n
(2m

n
− 1) − ln(n| detA|

2m
), where

detA is the determinant of the adjacency matrix A(G). For a graph G with vertex cover

number τ and maximum degree ∆, Wang and Ma [20] proved that E(G) ≤ 2τ
√
∆. Das

and Mojallal [4] presented some new upper bounds for E(G) in terms of the number of

vertices or edges, clique number, minimum degree, and the first Zagreb index. Rada and

Tineo [16] gave the upper bounds of the energy of a bipartite graph using the graph order,

size and the spectral moment of fourth order. Hou et al. [11] established a upper bound

for the energy of a graph by considering a new lower bound of spectral radius. Alawiah et

al. [1] obtained various new upper bounds for the energy of graphs in terms of the graph

order, size, maximum degree, and the first Zagreb index, which improved several previous

bounds given in [12, 13, 15].

Recently, many researchers pay attention to the relation between the energy of a graph

G and the matching number µ(G) of G. Ashraf [2] investigated the energy of trees with

perfect matching. Wong et al. [19] gave lower bounds of graph energy in terms of matching

number such that E(G) ≥ 2µ(G). Tian and Wong [18] established the upper bounds of

the energy for triangle-free graphs in terms of matching number. Thus, it makes sense to

give the upper bounds of the energy of general graphs in terms of matching number.

In this paper, we investigate the upper bounds of graph energy in terms of matching

number in Section 3 and determine the corresponding extremal graphs attaining the upper

bound in Section 4.
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Theorem 1. Let G be an n-vertex graph with matching number µ(G) and maximum edge

degree ∆e.

(i) If ∆e is even, then E(G) ≤ 2µ(G)
√
2∆e + 1 and equality holds if and only if G ∼=

µ(G)P2 ∪ (n− 2µ(G))K1.

(ii) If ∆e is odd, then E(G) ≤ µ(G)(
√

a+ 2
√
a +

√
a− 2

√
a) with a = 2(∆e + 1) and

equality holds if and only if G ∼= µ(G)P3 ∪ (n− 3µ(G))K1.

2 Preliminaries

Let G be a simple n-vertex graph. The characteristic polynomial φ(G) of G is defined

as φ(G) = det(xI − A(G)), where I is an identity matrix of order n. The matching

polynomial α(G) of G is defined as

α(G) =

bn
2
c∑

k=0

(−1)km(G, k)xn−2k.

Godsil and Gutman [8] determined the relation between the matching polynomial α(G)

and the characteristic polynomial φ(G) of a graph G as follows.

Lemma 2. [8] Let φ(G) denote the characteristic polynomial of G. Then φ(G) = α(G)+∑
C(−2)t(C)α(G−C), where the summation is over all nontrivial subgraphs C of G which

are unions of vertex-disjoint cycles and t(C) is the number of components of C, where

G− C denotes the graph by deleting the vertices in C from G.

Lemma 3. [8] The matching polynomial of a graph coincides with the characteristic

polynomial if and only if the graph is a forest.

Coulson [3] studied the energy of chemical molecules and obtained a classical Coulson

integral formula which presents the relation between the energy and the characteristic

polynomial of graphs. The graph energy E(G) can be expressed as the Coulson integral

formula (see [10])

E(G) =
1

2π

∫ +∞

−∞

1

x2
ln

[( dn
2
e∑

j=0

(−1)ja2jx
2j

)2

+

( dn
2
e∑

j=0

(−1)ja2j+1x
2j+1

)2]
dx, (1)

where the characteristic polynomial of G is φ(G) = a0x
n + a1x

n−1 + · · ·+ an.
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Figure 1. Graph T1

Figure 2. Graphs G(k, n1, n2) and T (k + n1, k + n2).

Let T∆e,3 denote the set of trees with diameter 3 and maximum edge degree ∆e. Denote

the tree shown in Figure 1 by T1, which is a graph in T∆e,3. Renqian et al. [17] considered

the energy of the trees in T∆e,3 and obtained the following result.

Lemma 4. [17] For any tree T ∈ T∆e,3, E(T ) ≤ E(T1) and equality holds if and only if

T = T1.

In order to calculate the energy for triangle-free graphs, Tian and Wong [18] gave the

exact value of E(T1) as follows.

Lemma 5. [18] For any positive integer ∆e, E(T1) = 2
√
2∆e + 1 if ∆e is even; E(T1) =√

a+ 2
√
a+

√
a− 2

√
a with a = 2(∆e + 1) if ∆e is odd.

Let k be a positive integer, and let n1, n2 be two non-negative integers. Let G(k, n1, n2)

and T (k+n1, k+n2) be two connected graphs as shown in Figure 2. The relation between

the energy of G(k, n1, n2) and that of T (k + n1, k + n2) is obtained as follows.

Lemma 6. For any positive integer k, E(G(k, n1, n2)) < E(T (k + n1, k + n2)).
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Proof. Let s = 2k + n1 + n2, then s ≥ 2. Let G1(k, n1, n2) = G(k, n1, n2) ∪ kK1, then

|V (G1(k, n1, n2))| = |V (T (k + n1, k + n2))| = s+ 2. Since

E(G(k, n1, n2)) = E(G1(k, n1, n2)),

then we only need to prove that

E(G1(k, n1, n2)) < E(T (k + n1, k + n2)).

By Lemma 3, we have

φ(T (k+n1, k+n2)) = α(T (k+n1, k+n2)) = xs+2−(s+1)xs+(k2+kn1+kn2+n1n2)x
s−2.

Moreover, by Lemma 2,

φ(G1(k, n1, n2)) = α(G1(k, n1, n2)) +
∑
C

(−2)t(C)α(G1(k, n1, n2)− C)

= α(G1(k, n1, n2))− 2
k∑

j=1

α(G1(k, n1, n2)− uvwj)

− 2
∑

1≤i<j≤k

α(G1(k, n1, n2)− uwivwj)

= xs+2 − (s+ 1)xs + (n1n2 + kn1 + kn2)x
s−2 − 2kα((s− 1)K1)

− k(k − 1)α((s− 2)K1)

= xs+2 − (s+ 1)xs − 2kxs−1 + (n1n2 + kn1 + kn2 − k2 + k)xs−2.

By the Coulson integral formula (1), it can be obtained that

E(T (k + n1, k + n2)) =
1

2π

∫ +∞

−∞

1

x2
ln f(x, s)dx

and

E(G1(k, n1, n2)) =
1

2π

∫ +∞

−∞

1

x2
ln g(x, s)dx,

where

f(x, s) =

(
1 + (s+ 1)x2 + (k2 + kn1 + kn2 + n1n2)x

4

)2

,

g(x, s) =

(
1 + (s+ 1)x2 + (n1n2 + kn1 + kn2 − k2 + k)x4

)2

+ (2kx3)2.

Moreover,

f(x, s)− g(x, s) = (2k2 − k)x4 ·
(
2 + 2(s+ 1)x2 + (2n1n2 + 2kn1 + 2kn2 + k)x4

)
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− 4k2x6 ≥ k2x4 ·
(
2 + 2(s+ 1)x2 + (2n1n2 + 2kn1 + 2kn2 + k)x4

)
− 4k2x6 = k2x4 ·

(
2 + 2(s− 1)x2 + (2n1n2 + 2kn1 + 2kn2 + k)x4

)
≥ 0.

and equality holds if and only if x = 0. Hence, E(G1(k, n1, n2)) < E(T (k + n1, k + n2)),

and thus, E(G(k, n1, n2)) < E(T (k + n1, k + n2)).

A graph H is called an induced subgraph of graph G if H is obtained from G by deleting

some vertices along with all edges incident with them. If H is an induced subgraph of G,

the relation between E(G) and E(H) is given below.

Lemma 7. [6] Let H be an induced subgraph of G. Then E(H) ≤ E(G) with equality

holds if and only if each edge of G is also an edge of H.

Let T1 and G(k, n1, n2) denote the graphs which are shown in Figure 1 and 2, respec-

tively. Remind that the maximum edge degree of T1 is denoted by ∆e. The relation of

the graph energies for T1 and G(k, n1, n2) are given below.

Lemma 8. For any positive integer k and non-negative integers n1 and n2, if 2k+n1+n2 ≤

∆e, then E(G(k, n1, n2)) < E(T1).

Proof. Since 2k + n1 + n2 ≤ ∆e, then we can construct a tree T2 with diameter 3 and

maximum edge degree ∆e such that T (k + n1, k + n2) is an induced subgraph of T2. By

Lemma 7, we have E(T (k+ n1, k+ n2)) ≤ E(T2). Together with Lemma 4 and Lemma 6,

we have

E(G(k, n1, n2)) < E(T (k + n1, k + n2)) ≤ E(T2) ≤ E(T1)

as desired.

Lemma 9. [7] Let X, Y, Z be real symmetric matrices of order n such that Z = X + Y .

Then E(Z) ≤ E(X) + E(Y ).

3 Upper bounds of graph energy

Let G be a simple graph. In this section, we will give the upper bound of the graph

energy of G in terms of matching number. Let G− e denote the graph obtained from G

by deleting an edge e ∈ E(G) and also its two endpoints.
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Theorem 10. Let G be an n-vertex graph with matching number µ(G) and maximum

edge degree ∆e, then the graph energy E(G) is shown as below:

(i) If ∆e is even, then E(G) ≤ 2µ(G)
√
2∆e + 1.

(ii) If ∆e is odd, then E(G) ≤ µ(G)(
√

a+ 2
√
a+

√
a− 2

√
a) with a = 2(∆e + 1).

Proof. We complete the proof by applying the induction on the matching number µ(G).

Moreover, we only give the proof for the case when ∆e is even. The case for which

∆e is odd can be proved similarly. Assume now that ∆e is even. If µ(G) = 1, then

G ∼= C3 ∪ (n − 3)K1 or G ∼= Sk ∪ (n − k)K1, where 2 ≤ k ≤ n and k is even. If

G ∼= C3 ∪ (n− 3)K1, then ∆e = 2 and

E(G) = 4 < 2
√
5 = 2µ(G)

√
2∆e + 1.

If G ∼= Sk ∪ (n− k)K1 (2 ≤ k ≤ n and k is even), then ∆e = k − 2 and

E(G) = 2
√
k − 1 ≤ 2

√
2k − 3 = 2µ(G)

√
2∆e + 1.

Let µ be an integer such that µ ≥ 2. For any graph H with even maximum edge degree

∆e(H) and matching number µ(H) < µ, suppose that E(H) ≤ 2µ(H)
√

2∆e(H) + 1. For

the graph G with µ(G) = µ, let M be a maximum matching of G and let euv := uv be an

edge of M , where u and v are the endpoints of euv. Then the adjacency matrix A(G) of

G can be rewritten as in which the first two rows and columns are indexed by u and v,

respectively:

A(G) =

 0 1 αt

1 0 βt

α β A(G− euv)

 ,

where α, β are two column vectors, and A(G− euv) is the adjacency matrix of the graph

G− euv. Obviously,

A(G) =

 0 1 αt

1 0 βt

α β 0

+

 0 0 0
0 0 0
0 0 A(G− euv)

 .

Let G0 be a graph whose adjacency matrix is

 0 1 αt

1 0 βt

α β 0

 . Then by Lemma 9,

E(G) ≤ E(G0) + E(G− euv). (2)
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We now give the following two claims about the energy of G0 and G− euv.

Claim 1: E(G0) ≤ 2
√
2∆e + 1.

We complete the proof of Claim 1 according to all the possibilities of G0. If G0
∼=

Sk ∪ (n− k)K1 (k ≥ 2), then ∆e ≥ ∆e(G0) = k − 2 and thus

E(G0) = 2
√
k − 1 ≤ 2

√
2k − 3 ≤ 2

√
2∆e + 1.

If G0
∼= T ∪ (n− k)K1 (k ≥ 4), where T is a k-vertex tree with diameter 3 and maximum

edge degree ∆e(T ) ≤ ∆e, then E(G0) = E(T ) and we can find a tree T0 with diameter 3

and maximum edge degree ∆e such that T is a subgraph of T0. By Lemma 7, we have

E(T ) ≤ E(T0). By Lemma 4, we have

E(G0) = E(T ) ≤ E(T0) ≤ E(T1) = 2
√

2∆e + 1.

If G0
∼= G(k, n1, n2)∪ (n−n1−n2−k− 2)K1 (k ≥ 1, n1 ≥ 0, n2 ≥ 0, n1+n2+k+2 ≤ n),

since ∆e(G0) = 2k + n1 + n2 ≤ ∆e, by Lemma 8, we have

E(G0) = E(G(k, n1, n2)) < E(T1) = 2
√

2∆e + 1.

Thus, for each possibility of G0 listed above, E(G0) ≤ 2
√
2∆e + 1 if ∆e is even.

Claim 2: E(G− euv) ≤ 2(µ(G)− 1)
√
2∆e + 1.

It is obvious that M − euv is a maximum matching of G − euv and so µ(G − euv) =

µ(G)− 1. Since ∆e(G− euv) ≤ ∆e, by induction, we have

E(G− euv) ≤ 2(µ(G)− 1)
√

2∆e(G− euv) + 1 ≤ 2(µ(G)− 1)
√

2∆e + 1.

By Claim 1 and Claim 2, we have E(G) ≤ 2µ(G)
√
2∆e + 1 if ∆e is even.

Remark 1. Consider the graph G(k, n1, n2) as shown in Figure 2. Then n = n1+n2+k+2

and m = n1+n2+2k+1, where n and m denote the sizes of the vertex set and edge set of

the graph G(k, n1, n2), respectively. If ∆e = n1 + n2 + 2k is even, then E(G(k, n1, n2)) ≤

4
√
2n+ 2k − 3. For n ≥ 16, E(G(k, n1, n2)) ≤ 4

√
2n+ 2k − 3 <

√
2(n+ k − 1)n =

√
2mn, which is the bound obtained in [15].
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4 Extremal graphs
In this section, we will characterize all extremal graphs achieving the upper bounds.

Let G be an extremal graph with maximum edge degree ∆e and matching number µ(G).

As given in Section 3, let M denote a maximum matching of G and let euv := uv be an

edge of M .

Lemma 11. Let d(e′) denote the edge degree of any edge e′ ∈ M , then d(e′) = ∆e.

Proof. If ∆e is even, since G is a graph with E(G) = 2µ(G)
√
2∆e + 1, by the investigation

of the energy of the graph G0 in Claim 1, we have E(G0) = 2
√
2∆e + 1 and moreover,

G0
∼= T1 ∪ (n−∆e − 2)K1 or G0

∼= S2 ∪ (n− 2)K1, ∆e(G0) = ∆e. Thus, d(euv) = ∆e. By

the arbitrariness of the edge euv ∈ M , d(e′) = ∆e for any edge e′ ∈ M . If ∆e is odd, the

result can be proved Similarly.

For the graph G and its maximum matching M , let G−ke denote the graph obtained

by removing k (1 ≤ k ≤ µ(G)) edges together with their endpoints of M from G. Let

µ(G− ke) denote the matching number of the graph G− ke. Similar to the proof of the

Claim 2 in the paper [18], the following result holds.

Lemma 12. For the graph G whose energy attains the upper bound in Theorem 10, the

following results hold:

(i) If ∆e is even, then E(G− ke) = 2µ(G− ke)
√
2∆e + 1.

(ii) If ∆e is odd, then E(G−ke) = µ(G−ke)(
√

a+ 2
√
a+

√
a− 2

√
a) with a = 2(∆e+1).

Proof. Assume first that ∆e is even. Let G be a graph with E(G) = 2µ(G)
√
2∆e + 1 and

let M be its maximum matching. Since E(G) = 2µ(G)
√
2∆e + 1, by the investigation of

Claim 2, for the edge euv := uv of M , we have E(G − euv) = 2(µ(G) − 1)
√
2∆e + 1 and

∆e(G − euv) = ∆e, which holds for any edge of M by the arbitrariness of the choice of

the edge euv. Similar to the discussion of the graph energy of G, it can be obtained that

E(G) = 2
√

2∆e + 1 + E(G− e) = · · · = 2k
√

2∆e + 1 + E(G− ke).

Thus, E(G − ke) = 2(µ(G) − k)
√
2∆e + 1. Since M is a maximum matching of G, then

µ(G− ke) = µ(G)− k Thus, E(G− ke) = 2µ(G− ke)
√
2∆e + 1 , If ∆e is odd, the result

can be proved similarly.

-549-



Let G = G1 ∪G2 ∪ · · · ∪Gq, where Gi(1 ≤ i ≤ q) are the components of G.

Lemma 13. Let Gi be a non-trivial component of G. If ∆e is even, then Gi has a perfect

matching.

Proof. Let MGi
be a maximum matching of Gi. Assume that Gi has no perfect matching,

then there exists a vertex x ∈ V (Gi) such that x is incident with no edge of MGi
. Then

|V (Gi)| ≥ 3. Assume that y is adjacent to x and eyz ∈ MGi
, where eyz denotes the edge

with endpoints y and z. Let R be a connected graph obtained from G by removing all the

edges of M \ {eyz} from G and together with their endpoints. Then µ(R) = 1 and thus

R ∼= C3 = xyz or R ∼= Sk, where k ≥ 3 and x, y, z ∈ V (Sk). If R ∼= C3 = xyz, ∆e ≥ 2, by

Lemma 12, we have

E(C3) = 2µ(C3)
√

2∆e + 1 = 2
√

2∆e + 1 ≥ 2
√
5,

which contradicts with the fact that E(C3) = 4. If R ∼= Sk (k ≥ 3), since ∆e ≥ k − 2,

then by Lemma 12, we have

E(Sk) = 2µ(Sk)
√

2∆e + 1 = 2
√

2∆e + 1 ≥ 2
√
2k − 3,

which contradicts with the fact that E(Sk) = 2
√
k − 1. Thus, if ∆e is even, then Gi has

a perfect matching.

As discussed in the proof of Lemma 13, for the graph G and its maximum matching

M , let eyz be an edge of M , and let R be a connected graph obtained from G by removing

all the edges of M \ {eyz} from G and together with their endpoints.

Lemma 14. If ∆e is odd, then R ∼= P3.

Proof. Since µ(R) = 1, then R ∼= C3 or R ∼= Sk, where k ≥ 2. Note that
√

a+ 2
√
a +√

a− 2
√
a ≥

√
2a with equality holds if and only if a = 4.

If R ∼= C3, then ∆e ≥ 3 > 2 and a = 2(∆e + 1) ≥ 8. By Lemma 12, we have

E(C3) = µ(C3)

(√
a+ 2

√
a+

√
a− 2

√
a

)
>

√
2a ≥ 4,

which contradicts with the fact that E(C3) = 4.

If R ∼= S2, then ∆e ≥ 1 and a = 2(∆e + 1) ≥ 4. By Lemma 12, we have

E(S2) = µ(S2)

(√
a+ 2

√
a+

√
a− 2

√
a

)
≥

√
2a ≥ 2

√
2,
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which contradicts with E(S2) = 2.

If R ∼= Sk (k ≥ 4), then ∆e ≥ k − 2 and a = 2(∆e + 1) ≥ 2(k − 1) ≥ 6. By Lemma

12, it is obvious that

E(Sk) = µ(Sk)

(√
a+ 2

√
a+

√
a− 2

√
a

)
>

√
2a ≥ 2

√
k − 1,

which contradicts with the fact that E(Sk) = 2
√
k − 1. Therefore, if ∆e is odd, then

R ∼= P3.

Figure 3. five possibilities for Hi.

Theorem 15. Let G be an n-vertex graph with matching number µ(G) and maximum

edge degree ∆e.

(i) If ∆e is even, then E(G) = 2µ(G)
√
2∆e + 1 if and only if G ∼= µ(G)P2 ∪ (n −

2µ(G))K1.

(ii) If ∆e is odd, then E(G) = µ(G)(
√

a+ 2
√
a+

√
a− 2

√
a) with a = 2(∆e + 1) if and

only if G ∼= µ(G)P3 ∪ (n− 3µ(G))K1.

Proof. (i) Let G be a graph with E(G) = 2µ(G)
√
2∆e + 1, where ∆e is even. By Lemma

13, the order of each nontrivial connected component of G is even. Let Gi be a nontrivial

component of G such that Gi � P2. Then |V (Gi)| ≥ 4 and µ(Gi) ≥ 2. We confirm

that Gi contains a connected induced subgraph Hi such that µ(Hi) = 2. If µ(Gi) = 2,

then let Hi = Gi. If µ(Gi) > 2, after deleting some edges in a maximum matching

of Gi, we can construct a connected induced subgraph Hi of Gi such that µ(Hi) = 2.

Then Hi is isomorphic to P4, G(1, 0, 1), C4, G1 or K4 as shown in Figure 3, where G1

is a graph obtained from a cycle u1u2u3u4 by adding an edge u1u3. The energy of the

graphs shown in Figure 3 are 4.47, 4.96, 4, 5.12 and 6, respectively. For each possibility,

it is easy to verify that E(Hi) < 2µ(Hi)
√
2∆e + 1, which contradicts with Lemma 12.

Therefore, for an n-vertex graph G with ∆e even, if E(G) = 2µ(G)
√
2∆e + 1, then G ∼=

µ(G)P2 ∪ (n− 2µ(G))K1.

If G ∼= µ(G)P2 ∪ (n− 2µ(G))K1, then ∆e = 0 and E(G) = 2µ(G) = 2µ(G)
√
2∆e + 1.

-551-



Thus, for an n-vertex graph G whose maximum edge degree ∆e is even, E(G) =

2µ(G)
√
2∆e + 1 if and only if G ∼= µ(G)P2 ∪ (n− 2µ(G))K1.

(ii) Let G be a graph with E(G) = µ(G)(
√

a+ 2
√
a+

√
a− 2

√
a) where a = 2(∆e+1)

and ∆e is odd. Now let Gi is a connected component of G with µ(Gi) ≥ 2, and let G′
i is a

connected subgraph of Gi with µ(G′
i) = 2 obtained by deleting some edges in a maximum

matching in Gi. Then by Lemma 14, G′
i is C5, T (2, 2), G(1, 1, 1), K2,3 or G2 as shown

in Figure 4, where G2 is a graph obtained from a complete bipartite graph K2,3 whose

vertex set is {u1, u2, v1, v2, v3} by adding a new edge u1u2.

Figure 4. five possibilities for G′
i.

The energy of the graphs shown in Figure 4 are 6.47, 6, 5.84, 4.90 and 6, respectively.

For each possibility, it is easy to verify that E(G′
i) < µ(G′

i)
(√

a+ 2
√
a +

√
a− 2

√
a
)
,

contradicting with Lemma 12. Then for each nontrivial connected component Gi of G,

we have µ(Gi) = 1. It follows from Lemma 14 that each nontrivial connected component

of G is P3. Therefore, for an n-vertex graph G with ∆e odd, if E(G) = µ(G)(
√

a+ 2
√
a+√

a− 2
√
a) with a = 2(∆e + 1), then G ∼= µ(G)P3 ∪ (n− 3µ(G))K1.

If G ∼= µ(G)P3 ∪ (n − 3µ(G))K1, then ∆e = 1, a = 2(∆e + 1) = 4 and E(G) =

2
√
2µ(G) = µ(G)(

√
a+ 2

√
a+

√
a− 2

√
a).

Thus, for an n-vertex graph G whose maximum edge degree ∆e is odd, E(G) =

µ(G)(
√

a+ 2
√
a +

√
a− 2

√
a) with a = 2(∆e + 1) if and only if G ∼= µ(G)P3 ∪ (n −

3µ(G))K1.
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