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Abstract

The energy E(G) of a graph G is the sum of the absolute values of all eigenvalues

of the adjacency matrix A(G) of G. For graphs with vertex-disjoint cycles, we

prove that E(G) ≥ 2µ(G) + 3
5c1(G), where µ(G) is the matching number of G and

c1(G) denotes the number of odd cycles in G. This result improves the bound

2µ(G) +
√

5
5 c1(G) obtained by Wong et al. [Lower bounds of graph energy in terms

of matching number. Linear Algebra Appl. 549 (2018) 276-286]. Moreover, we give

a new lower bound
√
41 for the energy of connected graphs, which improves the

result obtained by Zhou et al.

1 Introduction

Graphs considered in this paper are finite and simple. Let G = (V (G), E(G)) be a

simple graph with vertex set V (G) and edge set E(G). The order and the size of G are

denoted by ν(G) and ε(G), respectively. Let ∆(G) denote the maximum degree of G. An

edge set M of G is called a matching if any two edges in M have no common vertices,

moreover, if each vertex of G is incident with exactly one edge of M , then M is called

a perfect matching of G. The matching number of a graph G, denoted by µ(G), is the

number of edges in a maximum matching. For a non-empty subset V ′ ⊆ V (G), let G[V ′]
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denote the induced subgraph of G, which is the subgraph whose vertex set is V ′ and whose

edge set is the set of those edges of G that have both ends in V ′. For an induced subgraph

H = (V (H), E(H)) of G, let G − V (H) denote the induced subgraph whose vertex set

is V (G) \ V (H). For the induced subgraphs H and G − V (H), the edge cut F of G is

a subset of E(G) such that the edge of which has one end in V (H) and the other in

V (G)\V (H). Let G−F denote the spanning subgraph of G with edge set E(G)\F . Let

H1 ⊕H2 denote the symmetric difference of the subgraphs H1 and H2 of G. Obviously,

for the induced subgraphs H and G − V (H) of G, G − F = H ⊕ (G − V (H)). For a

positive integer n, let Pn (resp. Cn; Kn; Kp,q; Kt,l,s) denote the path (resp. the cycle;

the complete graph; a complete bipartite graph; a complete tripartite graph) of order n,

where p + q = t + l + s = n. The rank of a graph G, denoted by r(G), is that of its

adjacency matrix A(G).

The graph energy E(G) of G, proposed by Gutman [11], is the sum of the absolute

values of all the eigenvalues of the adjacency matrix A(G). In the last two decades, some

lower bounds of graph energy have been obtained for graphs with given parameters, such

as the order, size, rank, chromatic number, matching number and so on. Caporossi et

al. [5] proved that E(G) ≥ 2
√
m for all graphs G of size m. Gutman [12] characterized

some n-vertex graphs G with E(G) ≥ n, and Zhou et al. [20] proved that E(G) ≥ n if G is

a Hamilton graph of order n. For all the graphs whose rank is r, Akbari et al. [1] proved

that E(G) ≥ r. For quadrangle-free graphs G with order n and size m, Zhou [19] proved

that E(G) ≥ 2
√

2δ∆
2(δ+∆)−1

√
2mn, where δ and ∆ denote the minimum degree and maximum

degree of G, respectively. For a graph G with vertex cover number τ , Wang and Ma [17]

proved that E(G) ≥ 2τ(G) − 2c(G), where c(G) is the number of odd cycles in G. Das

and Gutman [9] gave a lower bound of graph energy in terms of the order, the size and

the determinant of the adjacency matrix. For more detailed results on graph energy, we

refer the reader to the book [14].

Wong et al. [16] investigated the lower bound of graph energy by matching number and

proved that E(G) ≥ 2µ(G), where µ(G) is the matching number of G. Moreover, Wong

et al. [16] proved that for graphs with pairwise vertex-disjoint cycles, E(G) ≥ 2µ(G) +
√

5
5
c1(G), where c1(G) denotes the number of odd cycles of G. Ashraf [3] pointed out that

the result cannot be improved to E(G) ≥ 2µ(G) + c1(G) by giving a counterexample,

moreover, obtained that E(G) ≥ 2µ(G) + c0(G) for triangle-free graphs, where c0(G)
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denotes the number of odd cycles of G with length at least 5. In Section 2 of this paper,

we prove that if G is a graph whose cycles (if exist) are pairwise vertex-disjoint, then

E(G) ≥ 2µ(G) + 3
5
c1(G), which improve the result of [16].

For a connected graph G, Wong et al. [16] proved that E(G) ≥ 2
√

5 apart from K1,

K3 and Kp,q with 1 ≤ pq ≤ 4. Later, Zhou et al. [20] improved the bound from 2
√

5 to

6. In this paper, we give a new lower bound
√

41 for the energy of connected graphs in

Section 3, which improves the results obtained in [16,20].

2 Energy and matching number

We now list some preliminary results which will be used in this section.

Lemma 1. [10] If F is an edge cut of a simple graph G, then E(G− F ) ≤ E(G).

Lemma 2. [10] Let H be an induced subgraph of a simple graph G. Then E(H) ≤ E(G)

and equality holds if and only if E(H) = E(G).

Lemma 3. [3] Let G be a graph whose cycles are vertex-disjoint. If G is not a cycle and

any cut edge of G lies on every maximum matching of G, then G has a perfect matching.

Lemma 4. [3] Let G be a graph whose cycles have odd lengths and are vertex-disjoint.

If we remove one edge from each cycle of G to obtain a tree T , then E(G) ≥ E(T ).

Let Ψn denote the class of n-vertex trees which have a perfect matching and whose

vertex degrees do not exceed 3. Gutman [13] conjectured that for any tree T ∈ Ψn,

E(T ) ≥ E(P̂n/2), where P̂n/2 is obtained by adding a pendant edge to each vertex of the

path Pn/2. Zhang and Li confirmed this conjecture in [18]. We now give a new lower

bound for the energy of these trees.

Lemma 5. For any tree T ∈ Ψn, if n /∈ {4, 6, 10, 12, 18, 24}, then E(T ) ≥ n + 3
5
bn

3
c and

equality holds if and only if T = P2.

Proof. Since T has a perfect matching, then the order n of T is even. If n = 2, then

T = P2 and thus E(T ) = E(P2) = 2 = 2 + 3
5
b2

3
c. Assume now that n ≥ 4. Note that

E(T ) ≥ E(P̂n/2) for any tree T ∈ Ψn. Ashraf [2] proved that

E(P̂n/2) =

n/2∑
i=1

2

√
1 + cos2

(
πi

n
2

+ 1

)
> 1.21n− 3.23.
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For n ≥ 323, since 1.21n− 3.23 ≥ 1.2n ≥ n+ 3
5
bn

3
c, thus E(T ) > n+ 3

5
bn

3
c. For n ≤ 322,

with the help of Matlab, we obtain that if n /∈ {4, 6, 10, 12, 18, 24},

E(T ) ≥ E(P̂n/2) =

n/2∑
i=1

2

√
1 + cos2

(
πi

n
2

+ 1

)
> n+

3

5

⌊
n

3

⌋
.

Moreover, we have E(T ) ≥ E(P̂n/2) > n + 3
5
bn

3
c − 3

5
for n = 4, 6, 10, 12, 18, 24. Thus for

any tree T ∈ Ψn, if n /∈ {4, 6, 10, 12, 18, 24}, E(T ) ≥ n + 3
5
bn

3
c and equality holds if and

only if T = P2.

Lemma 6. [3] For any odd cycle C of length n, E(C) ≥ n+ 1.

Lemma 7. Let G be an n-vertex connected graph with a perfect matching and ∆(G) ≤ 3.

If all cycles of G are of odd length and vertex-disjoint, then E(G) ≥ n + 3
5
c1(G) and

equality holds if and only if G = P2, where c1(G) denotes the number of odd cycles in G.

Proof. We can obtain a spanning tree T with a perfect matching by removing one edge

from each cycle of G. It is obvious that ∆(T ) ≤ 3. Since all cycles of G are of odd

length and pairwise vertex-disjoint, thus c1(G) ≤ bn
3
c. If n = 2, then G = P2 and

thus E(G) = E(P2) = 2 = 2 + 3
5
c1(P2) = 2 + 3

5
c1(G). Assume now that n ≥ 4. If

n /∈ {4, 6, 10, 12, 18, 24}, together with Lemma 4 and Lemma 5, we have

E(G) ≥ E(T ) > n+
3

5

⌊
n

3

⌋
≥ n+

3

5
c1(G).

For n = 4, 6, 10, 12, 18, 24, by Lemma 5, E(T ) > n+ 3
5
bn

3
c− 3

5
. By Lemma 4, E(G) ≥ E(T ).

If c1(G) < bn
3
c, then

E(G) ≥ E(T ) > n+
3

5

⌊
n

3

⌋
− 3

5
≥ n+

3

5
c1(G).

Assume now that c1(G) = bn
3
c. If n = 4, then c1(G) = 1 and G is the graph obtained

from a C3 by attaching a pendant vertex to one of its vertices. It is easy to calculate

that E(G) ≈ 4.96 > 4 + 3
5
c1(G). If n = 10, then c1(G) = 3 and we can obtain three C3

after removing three cut edges of G. By Lemma 1, E(G) ≥ 3E(C3) = 12 > 10 + 3
5
c1(G).

If n = 6, 12, 18, 24, then c1(G) = n
3

and removing n−3
3

cut edges of G yields n
3
C3. By

Lemma 1, E(G) ≥ n
3
E(C3) = 4

3
n > n + 3

5
c1(G). Thus, E(G) ≥ n + 3

5
c1(G) and equality

holds if and only if G = P2.

We now give a new lower bound for the energy of graphs whose cycles are pairwise

vertex-disjoint in terms of matching number and the number of its odd cycles.
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Theorem 8. Let G be a graph and let c1(G) denote the number of the odd cycles of G.

If all cycles (if exist) of G are pairwise vertex-disjoint, then E(G) ≥ 2µ(G) + 3
5
c1(G) and

equality holds if and only if G is the disjoint union of some copies of K2, some copies of

C4 and some isolated vertices.

Proof. If c1(G) = 0, the result holds by Theorem 1.2 in [16]. We now prove that E(G) >

2µ(G) + 3
5
c1(G) for c1(G) ≥ 1. Let M be a maximum matching of G. Let k := c1(G).

Then k ≥ 1. Let C1, C2, . . . , Ck denote the odd cycles of G and let C = C1∪C2∪· · ·∪Ck.

Consider the subgraph H of G induced by the edges of M and C. Since M is a maximum

matching of G, then µ(H) = µ(G) and ∆(H) ≤ 3. Let H1 be the resulted graph by

removing any cut edges from H such that the removal does not decrease the matching

number. Then µ(H1) = µ(H) = µ(G) and c1(H1) = c1(H) = c1(G). Moreover, each

connected component of H1 is either a complete graph K2, an odd cycle, or a graph

satisfying Lemma 3. Let H1 = H11∪H12∪H13, where H11 is the union of the components

which are K2, H12 is the union of the odd cycles of H1, and H13 is the union of components

satisfying Lemma 3. Thus, µ(H1) = µ(H11) + µ(H12) + µ(H13) and c1(H1) = c1(H12) +

c1(H13). It is obvious that E(H11) = 2µ(H11). Note that H12 is the union of odd cycles

of H1. Assume that H12 = Ci1 ∪ Ci2 ∪ · · · ∪ Cit , where t = c1(H12). By Lemma 6,

E(H12) = E(Ci1) + E(Ci2) + · · ·+ E(Cit)

≥ (ν(Ci1) + 1) + (ν(Ci2) + 1) + · · ·+ (ν(Cit) + 1)

= (ν(Ci1) + ν(Ci2) + · · ·+ ν(Hit)) + c1(H12)

= 2µ(H12) + 2c1(H12)

≥ 2µ(H12) +
3

5
c1(H12). (2.1)

Obviously, since all cycles of G are vertex-disjoint, the components of H13 also satisfy

Lemma 7, then E(H13) ≥ ν(H13) + 3
5
c1(H13) = 2µ(H13) + 3

5
c1(H13). Since H1 is obtained

from G by removing some cuts, we have

E(G) ≥ E(H1)

= E(H11) + E(H12) + E(H13)

≥ 2µ(H11) + [2µ(H12) +
3

5
c1(H12)] + [2µ(H13) +

3

5
c1(H13)]

= 2[µ(H11) + µ(H12) + µ(H12)] +
3

5
[c1(H12) + c1(H13)]

= 2µ(G) +
3

5
c1(G).
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Figure 1. Connected graphs with rank 4.

If the equality holds, then by (2.1), c1(H12) = 0, and moreover by Lemma 7, c1(H13) =

0, a contradiction to c1(G) = c1(H1) = c1(H12) + c1(H13) ≥ 1. Thus, if c1(G) ≥ 1, then

E(G) > 2µ(G) + 3
5
c1(G). Therefore, E(G) ≥ 2µ(G) + 3

5
c1(G) and equality holds if and

only if c1(G) = 0, that is, G is the disjoint union of some copies of K2, some copies of C4

and some isolated vertices which is obtained in Theorem 1.2 in [16].

3 Energy and rank

Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn}, and let m = (m1,m2, . . . ,

mn) be a vector of positive integers. Denote by G ◦m the graph obtained from G by

replacing each vertex vi of G with mi isolated vertices v1
i , v

2
i , . . . , v

mi
i and joining vsi with

vtj if and only if vi and vj are adjacent in G. {v1
i , v

2
i , . . . , v

mi
i } is the vertices of G ◦m

corresponding to the vertex vi of G, and the graph G◦m is said to be obtained from G by

multiplication of vertices. Graphs with small rank r(r = 2, 3, 4, 5) have been characterized

and completely determined as follows.

Lemma 9. [4] A connected graph G is of rank 2 if and only if it is a complete bipartite

graph, and G is of rank 3 if and only if G is a complete tripartite graph.

Lemma 10. [6] Let G be a connected graph. Then r(G) = 4 if and only if G can be

obtained from K4, P4, P5 or one of the graphs shown in Figure 1 by multiplication of

vertices.

Chang et al. [7] determined all connected graphs G with rank 5. By Theorem 3 in [7],

we can get the following result.

Lemma 11. Let G be a connected graph with rank 5. Then one of the graphs shown in

Figure 2 is an induced subgraph of G.

Figure 2. Induced subgraphs of a connected graph with rank 5.
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Together with Lemma 2 and Lemma 11, we can give a lower bound on the energy of

all connected graphs G with rank 5 as below.

Theorem 12. Let G be a connected graph with rank 5. Then E(G) >
√

41.

Proof. Let H denote any one of the eight graphs shown in Figure 2. It is easy to verify

that E(H) >
√

41. By Lemma 11, G has an induced subgraph as given in Figure 2. Thus,

by Lemma 2, we have E(G) ≥ E(H) >
√

41.

Some lower bounds on the graph energy with respect to the rank of a graph have

obtained as follows.

Lemma 13. [1] If G is a graph of rank r, then E(G) ≥ r. Further, if G is a connected

bipartite graph of rank r, then E(G) ≥
√

(r + 1)2 − 5.

Lemma 14. [16] Let G be a connected graph of rank r. If G has at least one odd cycle,

then E(G) ≥
√
r2 + r − 1. Moreover, if G is not of full rank, then E(G) ≥ r + 1

2
.

Combined Lemma 13 with Lemma 14, we investigate and give a lower bound of the

energy for graphs which are of rank 6.

Theorem 15. Let G be a connected graph of rank 6. Then E(G) >
√

41.

Proof. If G is a connected bipartite graph of rank 6, by Lemma 13, E(G) ≥
√

(6 + 1)2 − 5

=
√

44 >
√

41. Assume now that G has at least one odd cycle. If G is not of full

rank, by Lemma 14, E(G) ≥ 6 + 1
2

= 13
2
>
√

41. If G is of full rank, by Lemma 14,

E(G) ≥
√

62 + 6− 1 =
√

41, moreover, according to the results obtained in [8] about the

connected graphs on six vertices, it is easy to check that E(G) >
√

41. Thus, if G is a

connected graph of rank 6, then E(G) >
√

41.

Zhou et al. [20] proved that E(G) > 6 for any connected graph G with r(G) > 4. We

now improve this bound from 6 to
√

41.

Theorem 16. If G is a connected graph with r(G) > 4, then E(G) >
√

41.

Proof. If r(G) ≥ 7, it follows from Lemma 13 that E(G) ≥ 7 >
√

41. Thus, by Theorem

12 and Theorem 15, E(G) >
√

41 for any connected graph G with r(G) > 4.

By Theorem 16, if G is a connected graph with r(G) > 4, then E(G) >
√

41. Thus,

the graph G with E(G) ≤
√

41 must have rank 2, 3, or 4. In order to characterize the

graph G with E(G) ≤
√

41, we then give the following results.
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Lemma 17. [15] For a graph G of size m, E(G) ≥ 2
√
m and equality holds if and only

if G consists of a complete bipartite graph Kp,q such that pq = m and arbitrarily many

isolated vertices.

By Lemma 17, the lower bound of the energy for connected graphs can be characterized

by its order as below.

Corollary 18. Let G be a connected graph of order n. Then E(G) ≥ 2
√
n− 1.

Lemma 19. Let G be a connected graph with E(G) ≤
√

41. Then

(i) ν(G) ≤ 7 if G is not a star;

(ii) ν(G) ≤ 11 if G is a star;

(iii) ε(G) ≤ 10 and equality holds if and only if G = Kp,q with pq = 10.

Proof. (i) In order to prove (i), by Lemma 2, we just need to prove that E(G) >
√

41

for every connected graph of order 8 which is not a star. Let G be a connected graph of

order 8 which is not a star. Then µ(G) ≥ 2. Let M be a maximum matching of G, and

let e := u1u2 be an edge of M . Then for the induced subgraph G− u1 − u2, it is obvious

that µ(G− u1 − u2) ≥ 1. Let H be a component of G− u1 − u2 which contains at least

one edge, and let K := G − V (H). Since G is a connected graph, then K is connected

and G − F = H ⊕ K, where F is the edge cut with respect to H and K. Moreover,

since H is a subgraph with at least one edge and e ∈ K, ν(H) ≥ 2 and ν(K) ≥ 2.

Since ν(G) = ν(H) + ν(K) = 8, without loss of generality, assume that ν(H) = t, where

t = 2, 3, 4. Together with Lemma 1 and Corollary 18, we have

E(G) ≥ E(G− F ) = E(H) + E(K) ≥ 2
√
t− 1 + 2

√
7− t ≥ 2 + 2

√
5 >
√

41,

a contradiction. Hence, ν(G) ≤ 7 if G is not a star and with E(G) ≤
√

41.

Figure 3. Graphs with energy not exceeding
√
41.

(ii) If G is a star of order ν(G), then E(G) = 2
√
ν(G)− 1 ≤

√
41. Thus, ν(G) ≤ 11.

(iii) By Lemma 17, we have 2
√
ε(G) ≤ E(G) ≤

√
41, which implies that ε(G) ≤ 10

and equality holds if and only if G = Kp,q with pq = 10.
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Figure 4. A graph K1
4 obtained from K4 by multiplication of vertices.

Theorem 20. Let G be a connected graph. Then E(G) >
√

41 if and only if G is not in

{K3, K4, P4, P5, K1,1,2, K1,1,3, K1,1,4, Kp,q : 1 ≤ pq ≤ 10}, and not a graph shown in Figure

3.

Proof. Let G be a connected graph with E(G) ≤
√

41. By Lemma 16, r(G) ≤ 4. We now

consider three cases as below.

Case 1. r(G) = 2.

In this case, by Lemma 9, G = Kp,q, where p, q are positive integers. Since E(Kp,q) =

2
√
pq ≤

√
41, then pq ≤ 10.

Case 2. r(G) = 3.

It follows from Lemma 9 that G = Kt,l,s with 1 ≤ t ≤ l ≤ s. By Lemma 19,

ε(Kt,l,s) ≤ 9, and so (t, l, s) ∈ {(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 1, 4), (1, 2, 2)}. Note that

E(K1,2,2) ≈ 6.4722 >
√

41. Then, G is K1,1,1, K1,1,2, K1,1,3 or K1,1,4.

Case 3. r(G) = 4.

By Lemma 10, G is obtained from G′ by multiplication of vertices, where G′ is K4,

P4, P5 or one of the graphs shown in Figure 1. Moreover, by Lemma 19, ν(G) ≤ 7

and ε(G) ≤ 9. By a direct calculation of the graph energy for graphs in Figure 1,

E(D) ≈ 7.1232 >
√

41 and E(E) = 8 >
√

41. By Lemma 3, G′ can not be of type D or

E. Thus, we now consider the following five subcases.

Figure 5. Graphs obtained from P4 by multiplication of vertices.
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Figure 6. Graphs obtained from P5 by multiplication of vertices.

Figure 7. Graphs obtained from A by multiplication of vertices.

Figure 8. Graphs obtained from B by multiplication of vertices.

Figure 9. Graphs obtained from C by multiplication of vertices.

If G′ = K4, then G is possibly the graph K4 or K1
4 which is shown in Figure 4. Since

E(K1
4) ≈ 7.2916 >

√
41, then G = K4.

If G′ = P4, G is P4 or one of the following graphs shown in Figure 5. It is easy to

verify that only graphs on the first row and the first graph on the second row have energy

not exceeding
√

41. G is P4 or possibly one of the first six graphs shown in Figure 5.

If G′ = P5, then G is P5 or one of the following graphs shown in Figure 6. Denote

by P 1
5 the first graph shown in Figure 6. It is easy to calculate that the graphs shown in

Figure 6 other than P 1
5 all have an energy exceeding

√
41. Then if G is obtained from P5

by multiplication of vertices, then G is either P5 or P 1
5 .

If G′ is the graph A shown in Figure 1, then G is possibly the graph A or one of the

following graphs shown in Figure 7. One can easily check that only the first four graphs

in Figure 7 have an energy not exceeding
√

41. Hence, if G′ is the graph A, then G is

either the graph A or one of the first four graphs shown in Figure 7.
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If G′ is the graph B shown in Figure 1, then G is possibly the graph B or one of the

following graphs shown in Figure 8. One can easily check that all the graphs in Figure 8

have an energy exceeding
√

41. Hence, if G′ is the graph B, then G = B.

If G′ is the graph C shown in Figure 1, then G is possibly C or one of the graphs

shown in Figure 9. It is easy to check that the energy of the graphs shown in Figure 9

are all exceed
√

41. Thus, G = C.

Therefore, if G is a connected graph, then E(G) >
√

41 if and only if G is not in

{K3, K4, P4, P5, K1,1,2, K1,1,3, K1,1,4, Kp,q : 1 ≤ pq ≤ 10}, and not a graph shown in Figure

3.

Acknowledgments : This work was supported by the National Natural Science Foundation

of China (Grant Nos. 11871206,61773020). The authors would like to express their sincere

gratitude to all the referees for their careful reading and insightful suggestions.

References

[1] S. Akbari, E. Ghorbani, S. Zare, Some relations between rank, chromatic number

and energy of graphs, Discr. Math. 309 (2009) 601–605.

[2] F. Ashraf, On energy of trees with perfect matching, MATCH Commun. Math. Com-

put. Chem. 82 (2019) 439–442.

[3] F. Ashraf, Energy, matching number and odd cycles of graphs, Lin. Algebra Appl.

577 (2019) 159–167.

[4] B. Cheng, B. Liu, On the nullity of graphs, El. J. Lin. Algebra 16 (2007) 60–67.
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[8] D. Cvetković, M. Petrić, A table of connected graphs on six vertices, Discr. Math.

50 (1984) 37–49.

-529-



[9] K. C. Das, I. Gutman, Bounds for graph energy, Hacettepe J. Math. Stat. 45 (2016)

695–703.

[10] J. Day, W. So, Graph energy change due to edge deletion, Lin. Algebra Appl. 428

(2008) 2070–2078.

[11] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz Graz. 103

(1978) 1–22.

[12] I. Gutman, On graphs whose energy exceeds the number of vertices, Lin. Algebra

Appl. 429 (2008) 2670–2677.

[13] I. Gutman, Acyclic conjugated molecules, trees and their energies, J. Math. Chem.

1 (1987) 123–143.

[14] X. Li, Y. Shi, I. Gutman, Graph Energy , Springer, New York, 2012.

[15] B. McClelland, Properties of the latent roots of a matrix: the estimation of π-electron

energies, J. Chem. Phys. 54 (1971) 640–643.

[16] D. Wong, X. Wang, R. Chu, Lower bounds of graph energy in terms of matching

number, Lin. Algebra Appl. 549 (2018) 276–286.

[17] L. Wang, X. Ma, Bounds of graph energy in terms of vertex cover number, Lin.

Algebra Appl. 517 (2017) 207–216.

[18] F. Zhang, H. Li, On acyclic conjugated molecules with minimal energies, Discr. Appl.

Math. 92 (1999) 71–84.

[19] B. Zhou, Lower bounds for the energy of quadrangle–free graphs, MATCH Commun.

Math. Comput. Chem. 55 (2006) 91–94.

[20] Q. Zhou, D. Wong, D. Q. Sun, A lower bound for graph energy, Lin. Multilin. Algebra,

in press.

-530-


