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Abstract

The energy of a graph G, denoted by E(G), is defined as the sum of the ab-
solute values of all eigenvalues of G. In this paper, using a Koolen and Moulton
demonstration technique, new lower bounds are obtained for the energy of a graph
G, that depends only the number of vertices, the number of edges, degree sequence
and the spread of adjacency matrix of a graph given.

1 Introduction
Let G = (V,E) be a simple undirected graph with vertex set V = V (G) = {v1, v2, . . . , vn}

and edge set E(G). The order and size of G are n = |V | and m = |E|, respectively. An

independent set in G is a set of vertices, no two of which are adjacent. The size of the

largest coclique (independent set of vertices) of G is denoted by α(G), short for α. Let

vertex degrees d1, d2, . . . , dn and d1, dn be the highest and the lowest degree of the vertices

of G, respectively. A bipartite graph is a graph such that its vertex set can be partitioned

into two sets X and Y (called the partite sets) such that the end vertices of each edge

in G are in distinct sets X and Y . A simple undirected graph in which every pair of

distinct vertices is connected by a unique edge, is the complete graph and is denoted by

Kn. A graph G is regular if there exists a constant k such that each vertex of G has
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degree k, such graphs are also called k-regular. A graph is said to be triangle-free if no
two adjacent vertices are adjacent to a common vertex. For more graph theory notation

and terminology we refer to [22]. The adjacency matrix A(G) of a graph G is defined

by its entries as aij = 1 if vivj ∈ E(G) and 0 otherwise. Let λ1, λ2, . . . , λn denote the

eigenvalues of A(G). The eigenvalue λ1 is called the spectral radius of G. For a matrix A

of order n, the spread, S(A), of A is defined as the diameter of its spectrum, i.e.,

S(A) := maxi,j|λi − λj|,

where the maximum is taken over all pairs of eigenvalues of A. Suppose A is the

adjacency matrix of a simple graph G with n vertices. Since A is a real and sym-

metric matrix, we always assume the eigenvalues of A are ordering decreasing way, ie,

λ1 > λ2 > . . . > λn−1 > λn. Then we can claim that the spread of graph G coincides

with the spread of your adjacency matrix, ie; S(A) = λ1 − λn and S(A) = S(G). When

more than one graphs are under consideration, then we write λi(G) instead of λi.

The energy of a graph G is defined as

E(G) =
n∑

i=1

|λi|.

This concept was introduced by I. Gutman and is intensively studied in chemistry, since

it can be used to approximate the total π-electron energy of a molecule (see, e.g. [10,11]).

In 1971, McClelland [21], discovered the first upper bound for E(G)

E(G) ≤
√
2mn. (1)

Since then, numerous other bounds for E(G) were found (see, e.g. [1, 2, 9, 10, 13–15]

and [12]- [19]). Here we just state some upper bounds for E(G) which were obtained

recently. A fundamental bound for the theory of energy of a graph is due to Koolen and

Moulton [16], they showed that if m > n
2

and G is a graph with n vertices, m edges, then

E(G) ≤ 2m

n
+

√
(n− 1)

(
2m− (

2m

n
)2
)
, (2)

with equality if and only if G is either n
2
K2, Kn or a non-complete connected strongly

regular graph with two non-trivial eigenvalues both with absolute value

√
(2m− (2m

n
)2)

(n− 1)
.
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The same authors showed then that if m > n
2

and G is a bipartite graph with n > 2

vertices, m edges, then

E(G) ≤ 2(
2m

n
) +

√
(n− 1)

(
2m− 2(

2m

n
)2
)
, (3)

with equality if and only if G is either n
2
K2, a complete bipartite graph, or the incidence

graph of a symmetric 2-(ν, k, λ)-design with k = 2m
n

and λ = k(k−1)
ν−1

(n = 2ν).

Yu, et al. [24], proved that if G be a nonempty graph with n vertices, m edges, degree

sequence d1, d2, . . . , dn and 2-degree sequence t1, t2, . . . , tn. Then

E(G) ≤

√∑n
i=1 t

2
i∑n

i=1 d
2
i

+

√
(n− 1)

(
2m−

∑n
i=1 t

2
i∑n

i=1 d
2
i

)
.

Equality holds if and only if one of the following statements holds:

(1) G ∼= n
2
K2,

(2) G ∼= Kn,

(3) G is a non-bipartite connected p-pseudo-regular graph with three distinct eigenvalues

(p,
√

2m−p2

n−1
,−

√
2m−p2

n−1
), where p >

√
2m
n
.

Yu, et al. [24], also proved that if G = (X,Y ) be a nonempty bipartite graph with n > 2

vertices, m edges, degree sequence d1, d2, . . . , dn and 2-degree sequence t1, t2, . . . , tn. Then

E(G) ≤ 2

√∑n
i=1 t

2
i∑n

i=1 d
2
i

+

√
(n− 2)

(
2m− 2

∑n
i=1 t

2
i∑n

i=1 d
2
i

)
.

Equality holds if and only if one of the following statements holds:

(1) G ∼= n
2
K2,

(2) G ∼= Kr1,r2(n− r1 − r2)K1, where r1r2 = m;

(3) G is a connected (px, py)-pseudo-semiregular bipartite graph with four distinct eigen-

values
(
√
pxpy,

√
2m−2pxpy

n−2
,−

√
2m−2pxpy

n−2
,−√

pxpy

)
, where √

pxpy >
√

2m
n

.

Zhou [25], proved that if G is a graph with n vertices, m edges and degree sequence

d1, d2, . . . , dn, then

E(G) ≤
√∑n

i=1 d
2
i

n
+

√
(n− 1)

(
2m−

∑n
i=1 d

2
i

n

)
, (4)

with equality if and only if G is either n
2
K2, a complete bipartite graph, a non-complete

connected strongly regular graph with two non-trivial eigenvalues both with absolute
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value
√

2m−( 2m
n

)2

(n−1)
or nK1. Zhou [25], also showed that if G is a bipartite graph with n > 2

vertices, m edges and degree sequence d1, d2, . . . , dn, then

E(G) ≤ 2

√∑n
i=1 d

2
i

n
+

√
(n− 2)

(
2m− 2

∑n
i=1 d

2
i

n

)
, (5)

with equality if and only if G is either n
2
K2, a complete bipartite graph, the incidence

graph of a symmetric 2− (ν, κ, λ)-design with κ = 2m
n

and λ = κ(κ−1)
ν−1

(n = 2ν).

In this paper, we present new upper bounds for the energy of graphs in terms of several

graph invariants such as the number of vertices, number of edges, maximum degree and

spread of the graph. The demonstration technique used in this paper for boundary the

energy of a graph, in addition to considering the Koolen and Moulton technique, consists

of making the difference between the spectral radius and the lower eigenvalue associated

with a graph appear, that is, intrinsically consider the definition of the spread of the

graph. With this, our results improve those already existing in the literature.

The organization of the paper is as follows. In the Section 2, we give a list of some

previously known results. In Section 3, we present our main results about upper bounds

for the energy of a graph G. We divide the section into five subsections depending on

the kind of graphs under study which are: general graphs, bipartite graphs, connected

graphs, triangle-free graphs, regular graphs. Finally, some computational experiments are

presented.

2 Preliminaries and known results

In this section, we list some previously known results that will be needed in the next

sections. We first state some results on the eigenvalues of a graph.

Lemma 1 [7] Let G be a graph with n > 2 vertices and m edges. Then for 1 6 r 6 n,

we have √
2m(n− 1)

nr
> λr > −

√
2m(r − 1)

n(n− r + 1)
.

Lemma 2 [7] Let G be a triangle-free graph with n > 2 vertices, m edges. Then for

1 6 r 6 n, we have √
2m

t+ t
2
3

> λr > −

√
2m

t+ t
2
3

,

where t = n− r + 1.
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Theorem 3 [7] Let G be a graph with with n vertices, m edges and n+, n− be the number

of positive and negative eigenvalues, respectively. Then for 1 6 r 6 n, we have√
2mn−

r(r + n−)
> λr > −

√
2mn+

(n− r + 1)(n− r + 1 + n+)
.

We next state some results on the spectral radius and the smallest eigenvalue of a graph.

Theorem 4 [23] Let G be a simple graph with n vertices and degree sequence d1 > d2 >

. . . > dn. Then

λ1 >
(d1 + d2)√

2n
.

Theorem 5 [23] Let G be a bipartite graph with n vertices and degree sequence d1 >

d2 > . . . > dn. Then

1) λ1 > 1
2
( (d1+d2)√

2n
+
√
d1),

2) λ1 > 1
2
(ν +

√
d1)

where ν =

√∑n
i=1 d

2
i

n
−

(∑n
i=1

di
n

)2

.

Lemma 6 [6] Let G be a simple connected graph with n vertices, m edges and degree

sequence d1 > d2 > . . . > dn. Then

1) λ1(G) 6
√

2m− (n− 1)dn + (dn − 1)d1,

2) λn(G) > −
√

2m− (n− 1)dn + (dn − 1)d1.

Lemma 7 [3] Let G be a simple connected graph with n vertices, then

λ1 6 n− 1.

Lemma 8 [4] Let G be a simple graph with n vertices, then

λn > −
√

2m(n− 1)

n
.

Lemma 9 [5] A graph G has only one eigenvalue if and only if G is an empty graph. A

graph G has two distinct eigenvalues µ1 > µ2 with multiplicities m1 and m2 if and only

if G is the direct sum of m1 complete graphs of order µ1 + 1. In this case, µ2 = −1 and

m2 = m1µ1.
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Theorem 10 [8] Let G be a graph with n vertices and m edges, then

S(G) 6 2
√
m .

Lemma 11 [20] Let G be a k-regular graph with n vertices, m edges and α independent

set of vertices, then

S(G) >
nk

n− α
.

Lemma 12 [8] Let G be a regular graph, then S(G) 6 n with equality if and only if G

is disconnected.

Lemma 13 [8] Let G be a triangle-free graph with n vertices and m edges, then

S(G) >
2m

n
+
√

d1 .

Lemma 14 [20] Let G be a contains t(t > 1) independent vertices, the average degree

of which is d0, then

S(G) > 2d0

√
t

n− t
.

Theorem 15 [8] Let G be a graph with n vertices and m edges, then

S(G) 6
(1 +

√
2)n

2
.

Theorem 16 [23] Let G be a simple graph with n vertices and degree sequence d1 >

d2 > . . . > dn, then

S(G) >

(
(d1 + d2)√

2n
+
√

d1

)
.

Corollary 17 [20] Let G be a graph with n vertices, independent set of vertices of

cardinality α(G) and the minimum vertex degree δ, then

S(G) > 2δ

√
α(G)

n− α(G)
.

If equality holds, then the graph is a semi-regular bipartite graph.

3 Upper Bounds for the Energy of Graphs
In this section, we present new upper bounds obtain for the energy of graphs. We deal

with general graphs, bipartite graphs, connected graphs, triangle-free graphs and regular

graphs. We divide this section into five subsections depending on the kind of graphs to

studying.
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3.1 Upper bound in general graphs
We begin with the following upper bound in terms of order, size and degree sequence of

a graph.

Theorem 18 Let G be a non-empty graph with n vertices, m edges and degree sequence

d1 > d2 > . . . > dn. Then

E(G) 6 2

√
2m(n− 1)

n
. (6)

Equality holds if and only if G ∼= Kn .

Proof. Let λ1 > λ2 > . . . > λn−1 > λn be the eigenvalues of G. By the Cauchy −

Schwartz inequality,

n∑
i=2

|λi| 6

√√√√(n− 1)
n∑

i=2

λ2
i =

√
(n− 1)(2m− λ2

1) .

Hence

E(G) 6 λ1 +
√

(n− 1)(2m− λ2
1) .

Note that the function F (x) = x +
√

(n− 1)(2m− x2) decreases for
√

1
2n

6 x 6
√
2m.

By Lemma 1, we have λ1 6
√

2m(n−1)
n

. Clearly,
√

2m(n−1)
n

6
√
2m. Thereby,

λ1 6

√
2m(n− 1)

n
6

√
2m .

So F (λ1(G)) 6 F (
√

2m(n−1)
n

), which implies that

E(G) ≤
√

2m(n− 1)

n
+

√
(n− 1)

(
2m−

(√
2m(n− 1)

n

)2)
.

If G ∼= Kn, then it is easy to check that the equality in (6) holds. Conversely, if the

equality in (6) holds, then according to the above argument, we have λ1 =
√

2m(n−1)
n

.

Moreover, |λi| =
√

2m−λ2
1

n−1
(2 6 i 6 n). Since G is a non-empty graph, by Lemma 9, G

has at least two distinct eigenvalues. We consider the following case.

Case 1. The absolute value of all eigenvalues of G are equal.

Then clearly λ1 = |λi| =
√

2m−λ2
1

n−1
, (2 6 i 6 n), since G has at least two distinct eigen-

values. By Lemma 9, |λi| =
√

2m−λ2
1

n−1
= 1(2 6 i 6 n). Hence 2m = n(n − 1) and also,

|λ2| = . . . = |λn| = 1, then applying Lemma 9 again, we obtain that m2 = m1λ1, λ1 =

n − 1, and therefore m1 = m2. Then we obtain that λ1 = n − 1 has multiplicity 1, and

-503-



λi = −1 (2 6 i 6 n) has multiplicity n−1. Therefore G is the direct sum of m1 = n−1

complete graphs of order λ1 + 1 = n. Thereby, G is Kn.

Case 2. The absolute value of all eigenvalues of G are not equal. Then G has two dis-

tinct eigenvalues with different absolute values. By Lemma 9, |λi| = 1(2 6 i 6 n). Since,∑n
i=1 λi = 0 and λ2 = λ3 = . . . = λn = −1, we have, λ1 = n−1. Hence λ1 has multiplicity

1 and λi = −1 has multiplicity n − 1. By Lemma 9, G is the direct sum of a complete

graph of order λ1 + 1 = n. Consequently, G is Kn.

Theorem 19 Let G be a graph with n > 2 vertices, m edges and degree sequence d1 >

d2 > . . . > dn, then

E(G) 6 2
√
m+

√
(n− 2)

[
2m+ 2

(
(
d1 + d2√

2n
)

√
2m(n− 1)

n

)
−

(
(d1 + d2)√

2n
+
√

d1

)2]
.

(7)

Equality holds if and only if G ∼= n
2
K2, (n = 2m).

Proof. Let λ1 > λ2 > . . . > λn−1 > λn be the eigenvalues of G. From Cauchy-Schwarz

inequality, we have that
n∑

i=1

|λi| = |λ1|+ |λn|+
n−1∑
i=2

|λi|

6 λ1 − λn +

√√√√(n− 2)
n−1∑
i=2

λ2
i

= λ1 − λn +

√√√√(n− 2)

( n∑
i=1

λ2
i − λ2

1 − λ2
n

)

= λ1 − λn +

√
(n− 2)

(
2m− λ2

1 − λ2
n

)

= λ1 − λn +

√
(n− 2)

(
2m− (λ1 − λn)2 − 2λ1λn

)
.

Then by Lemma 1, Theorems 4, 10 and 16 we have that

E(G) 6 2
√
m+

√
(n− 2)

[
2m+ 2

(
(
d1 + d2√

2n
)

√
2m(n− 1)

n

)
−

(
(d1 + d2)√

2n
+
√

d1

)2]
.

If G ∼= n
2
K2, then it is easy to check that the equality in (7) holds. Conversely, since G

is a non-empty graph, by Lemma 9, G has at least two distinct eigenvalues. We consider

the following case.
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Case 1. The absolute value of all eigenvalues of G are equal.

Then clearly λ1 = |λi| =
√

2m−λ2
1

n−1
(2 6 i 6 n), since G has at least two distinct

eigenvalues. By Lemma 9, |λi| =
√

2m−λ2
1

n−1
= 1(2 6 i 6 n). Hence 2m = n and also,

λ1 = |λ2| = . . . = |λn| = 1. By applying Lemma 9 again, we obtain that m2 = m1λ1, λ1 =

1, and therefore m1 = m2. Then we obtain that λ1 = 1 has multiplicity n
2
, and λi =

−1 (2 6 i 6 n) has multiplicity n
2
. Thereby G is the direct sum of m1 = n

2
complete

graphs of order λ1 + 1 = 2. Consequently, G is n
2
K2.

Case 2. The absolute value of all eigenvalues of G are not equal. Then G has two

distinct eigenvalues with different absolute values. By Lemma 9, |λi| = 1(2 6 i 6 n).

Since,
∑n

i=1 λi = 0 and λ2 = λ3 = . . . = λn = −1, we have, λ1 = n − 1. Hence λ1 has

multiplicity 1 and λi = −1 has multiplicity n− 1. By Lemma 9, G is the direct sum of a

complete graph of order λ1 + 1 = n. Therefore, G is Kn.

Theorem 20 Let G be a graph with n > 2 vertices, m edges and degree sequence d1 >

d2 > . . . > dn = δ, then

E(G) <
1

2
(1 +

√
2)n+

√
(n− 2)

[
2m+ 2

(
2m(n− 1)

n

)
−

(
4δ2

α(G)

n− α(G)

)]
. (8)

Proof. Let λ1 > λ2 > . . . > λn−1 > λn be the eigenvalues of G. From Cauchy-Schwarz

inequality, we have that

n∑
i=1

|λi| = |λ1|+ |λn|+
n−1∑
i=2

|λi|

6 λ1 − λn +

√√√√(n− 2)
n−1∑
i=2

λ2
i

= λ1 − λn +

√
(n− 2)

(
2m− (λ1 − λn)2 − 2λ1λn

)
.

Then by Lemma 1, Theorem 15 and Corollary 17 we have that

E(G) <
1

2
(1 +

√
2)n+

√
(n− 2)

[
2m+ 2

(
2m(n− 1)

n

)
−

(
4δ2

α(G)

n− α(G)

)]
.
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Theorem 21 Let G be a graph with n > 2 vertices, m edges and degree sequence d1 >

d2 > . . . > dn, then

E(G) 6 2
√
m+

√
(n− 2)

[
2m+ 2

(
2m(n− 1)

n

)
−

(
2δ

√
t

n− t

)2]
. (9)

Equality holds if and only if G ∼= n
2
K2, (n = 2m).

Proof. Let λ1 > λ2 > . . . > λn−1 > λn be the eigenvalues of G. From Cauchy-Schwarz

inequality, we have that

n∑
i=1

|λi| 6 λ1 − λn +

√√√√(n− 2)
n−1∑
i=2

λ2
i

= λ1 − λn +

√
(n− 2)

(
2m− (λ1 − λn)2 − 2λ1λn

)
.

Then by Lemmas 1, 14 and Theorem 10 we have that

E(G) 6 2
√
m+

√
(n− 2)

[
2m+ 2

(
2m(n− 1)

n

)
−

(
2δ

√
t

n− t

)2]
.

If G ∼= n
2
K2, then it is easy to check that the equality in (9) holds. Conversely, since G

is a non-empty graph, by Lemma 9, G has at least two distinct eigenvalues. We consider

the following case.

Case 1. The absolute value of all eigenvalues of G are equal.

Then clearly λ1 = |λi| =
√

2m−λ2
1

n−1
(2 6 i 6 n), since G has at least two distinct

eigenvalues. By Lemma 9, |λi| =
√

2m−λ2
1

n−1
= 1(2 6 i 6 n). Hence 2m = n and also,

λ1 = |λ2| = . . . = |λn| = 1. By applying Lemma 9, we obtain that m2 = m1λ1, λ1 = 1,

and therefore m1 = m2. Then we obtain that λ1 = 1 has multiplicity n
2
, and λi =

−1 (2 6 i 6 n) has multiplicity n
2
. Thereby G is the direct sum of m1 = n

2
complete

graphs of order λ1 + 1 = 2. Consequently, G is n
2
K2.

Case 2. The absolute value of all eigenvalues of G are not equal. Then G has two

distinct eigenvalues with different absolute values. By Lemma 9, |λi| = 1(2 6 i 6 n).

Since,
∑n

i=1 λi = 0 and λ2 = λ3 = . . . = λn = −1, we have, λ1 = n − 1. Hence λ1 has

multiplicity 1 and λi = −1 has multiplicity n− 1. By Lemma 9, G is the direct sum of a

complete graph of order λ1 + 1 = n. Therefore, G is Kn.

Theorem 22 Let G be a graph with n > 2 vertices, m edges, degree sequence d1 > d2 >

. . . > dn and n+, n− be the number of positive and negative eigenvalues, respectively.
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Then

E(G) 6 2
√
m+

√
(n− 2)

[
2m+ 2

(
2mn+√

(1 + n+)(1 + n−)

)
−

(
(d1 + d2)√

2n
+
√

d1

)2]
.

(10)

Equality holds if and only if G ∼= n
2
K2, (n = 2m).

Proof. Let λ1 > λ2 > . . . > λn−1 > λn be the eigenvalues of G. From Cauchy-Schwarz

inequality, we have that
n∑

i=1

|λi| 6 λ1 − λn +

√√√√(n− 2)
n−1∑
i=2

λ2
i

= λ1 − λn +

√
(n− 2)

(
2m− (λ1 − λn)2 − 2λ1λn

)
.

Then by Theorems 3, 10 and 16 we have that

E(G) 6 2
√
m+

√
(n− 2)

[
2m+ 2

(
2mn+√

(1 + n+)(1 + n−)

)
−

(
(d1 + d2)√

2n
+
√

d1

)2]
.

If G ∼= n
2
K2, then it is easy to check that the equality in (10) holds. Conversely, since G

is a non-empty graph, by Lemma 9, G has at least two distinct eigenvalues. We consider

the following case.

Case 1. The absolute value of all eigenvalues of G are equal.

Then clearly λ1 = |λi| =
√

2m−λ2
1

n−1
(2 6 i 6 n), since G has at least two distinct

eigenvalues. By Lemma 9, |λi| =
√

2m−λ2
1

n−1
= 1(2 6 i 6 n). Hence 2m = n and also,

λ1 = |λ2| = . . . = |λn| = 1. By applying Lemma 9, we obtain that m2 = m1λ1, λ1 = 1, and

then m1 = m2. So, we obtain that λ1 = 1 has multiplicity n
2
, and λi = −1 (2 6 i 6 n)

has multiplicity n
2
. Thereby G is the direct sum of m1 = n

2
complete graphs of order

λ1 + 1 = 2. Consequently, G is n
2
K2.

Case 2. The absolute value of all eigenvalues of G are not equal. Then G has two

distinct eigenvalues with different absolute values. By Lemma 9, |λi| = 1(2 6 i 6 n).

Since,
∑n

i=1 λi = 0 and λ2 = λ3 = . . . = λn = −1, we have, λ1 = n − 1. Hence λ1 has

multiplicity 1 and λi = −1 has multiplicity n− 1. By Lemma 9, G is the direct sum of a

complete graph of order λ1 + 1 = n. Therefore, G is Kn.

3.2 Upper bounds for bipartite graphs
In this subsection, we present upper bounds for the energy of a bipartite graph. In the

following we give an upper bound is in terms of order, size and degree sequence.
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Theorem 23 Let G be a non-empty bipartite graph with n > 2 vertices, m edges and
degree sequence d1 > d2 > . . . > dn. Then

E(G) ≤ (ν +
√

d1) +

√√√√(n− 2)

(
2m− 1

2

(∑n
i=1 d

2
i

n
−

( n∑
i=1

di
n

)2

+ d1 + 2ν
√

d1

))
(11)

where ν2 =
∑n

i=1 d
2
i

n
−

(∑n
i=1

di
n

)2

.

Equality holds if and only if G ∼= n
2
K2, (n = 2m).

Proof. Let λ1 > λ2 > . . . > λn−1 > λn be the eigenvalues of G. Since G is a bipartite

graph, we have λ1 = −λn. By the Cauchy-Schwartz inequality,

n−1∑
i=2

|λi| 6

√√√√(n− 2)
n−1∑
i=2

λ2
i =

√
(n− 2)(2m− 2λ2

1) .

Hence

E(G) 6 2λ1 +
√

(n− 2)(2m− 2λ2
1) .

It is not diffcult to see that H(x) = 2x +
√

(n− 2)(2m− 2x2) decreases for
√

1
2n

6 x 6
√
2m. By Theorem 5, we have λ1 > 1

2
(ν +

√
d1), equality holds if and only if G is n

2
K2.

Clearly, 1
2
(ν +

√
d1) > 1√

2n
. By Theorem 5, we have

λ1 >
1

2
(ν +

√
d1) >

1√
2n

.

So H(λ1(G)) 6 H(1
2
(ν +

√
d1)), which implies that

E(G) ≤ (ν +
√

d1) +

√
(n− 2)

(
2m− 1

2

(
ν2 + d1 + 2ν

√
d1

))
.

If G ∼= n
2
K2 then it is easy to check that the equality in (11) holds. Conversely, if the

equality in (11) holds, then according to the above argument, we have λ1 = −λn =

1√
2n
(d1 + d2). Moreover, |λi| =

√
2m−λ2

1

n−2
(2 6 i 6 n − 1). Since G is a non-empty graph,

by Lemma 9, G has at least two distinct eigenvalues. We consider the following case.

Case 1. The absolute value of all eigenvalues of G are equal.

Note that λ1 = −λn = |λi| =
√

2m−λ2
1

n−2
(2 6 i 6 n − 1). By Lemma 9, λn = −

√
2m−λ2

1

n−2
=

|λi| = −1 (2 6 i 6 n − 1). Hence 2m = n and also, λ1 = |λ2| = . . . = |λn| = 1. By

Lemma 9, m2 = m1λ1, λ1 = 1, and therefore m1 = m2. Then we obtain that λ1 = 1 has

multiplicity n
2
, and λi = −1 (2 6 i 6 n) has multiplicity n

2
. Therefore G is the direct

sum of m1 =
n
2

complete graphs of order λ1 + 1 = 2. Consequently, G is n
2
K2.

-508-



Case 2. The absolute value of all eigenvalues of G are not equal. If two eigenvalues

of G have different absolute values, then by Lemma 9, |λi| = −1(2 6 i 6 n). Noting

that G is a bipartite graph, we have λ1 = −λn, that is a contradiction, since the two

eigenvalues of G have different absolute values. Thus assume that G has three distinct

eigenvalues. Since G is a bipartite graph, we have that λ1 = −λn 6= 0 and
∑n

i=1 λi = 0,

and therefore, λi = 0(2 6 i 6 n− 1). Thus E(G) = 2λ1, and by Lemma 11, we have that

2λ1 > 2
√
m, and so 2λ2

1 > 2m. Notice that 2m =
∑n

i=1 λ
2
i = 2λ2

1. Therefore λ1 =
√
m

and E(G) = 2
√
m. Hence by Lemma 11, G is a complete bipartite graph plus arbitrarily

many isolated vertices. Thus, there exist integers r1 > 1 and r2 > 2 such that G is

Kr1,r2 ∪ (n− r1 − r2)K1.

Theorem 24 Let G be a non-empty bipartite graph with n > 2 vertices, m edges and

degree sequence d1 > d2 > . . . > dn. Then

E(G) ≤
(

1√
2n

(d1+ d2)+
√

d1

)
+

√
(n− 2)

(
2m− 1

2

(
1√
2n

(d1 + d2) +
√

d1

)2)
. (12)

Equality holds if and only G ∼= n
2
K2, (n = 2m).

Proof. Let λ1 > λ2 > . . . > λn−1 > λn be the eigenvalues of G. By the Cauchy −

Schwartz inequality,

n−1∑
i=2

|λi| 6

√√√√(n− 2)
n−1∑
i=2

λ2
i =

√
(n− 2)(2m− 2λ2

1) .

Hence

E(G) 6 2λ1 +
√

(n− 2)(2m− 2λ2
1) .

Note that the function N(x) = 2x+
√

(n− 1)(2m− x2) decreases for 1
2
√
2n

6 x 6
√
2m.

By Theorem 5, we have λ1 > 1
2

(
1√
2n
(d1 + d2) +

√
d1

)
, equality holds if and only if G is

n
2
K2. Clearly, 1

2

(
1√
2n
(d1 + d2) +

√
d1

)
> 1

2
√
2n

. By Theorem 5, we have

λ1 >
1

2

(
1√
2n

(d1 + d2) +
√

d1

)
>

1

2
√
2n

.

So, N(λ1(G)) 6 N

(
1
2

(
1√
2n
(d1 + d2) +

√
d1

))
, which implies

E(G) ≤
(

1√
2n

(d1 + d2) +
√

d1

)
+

√
(n− 2)

(
2m− 1

2

((
1√
2n

(d1 + d2) +
√

d1

))2)
.
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If G ∼= n
2
K2 it is easy to check that the equality in (12) holds. Conversely, if the equality in

(12) holds, according to the above argument, we have λ1 = −λn = 1
2

(
1√
2n
(d1+d2)+

√
d1

)
.

Moreover, |λi| =
√

2m−λ2
1

n−2
(2 6 i 6 n− 1). Since G is a non-empty graph, by Lemma 9, G

has at least two distinct eigenvalues. Suppose that the absolute value of all eigenvalues of

G are not equal. If two eigenvalues of G have different absolute values, then by Lemma

9, |λi| = −1(2 6 i 6 n). Noting that G is a bipartite graph, we have λ1 = −λn, this is a

contradiction. We consider the following case.

Case 1. The absolute value of all eigenvalues of G are equal. Note that λ1 = −λn =

|λi| =
√

2m−λ2
1

n−2
(2 6 i 6 n−1). By Lemma 9, λn = −

√
2m−λ2

1

n−2
= |λi| = −1 (2 6 i 6 n−1).

Hence 2m = n and also, λ1 = |λ2| = . . . = |λn| = 1. By Lemma 9, m2 = m1λ1, λ1 = 1, and

therefore m1 = m2. Then we obtain that λ1 = 1 has multiplicity n
2
, and λi = −1 (2 6

i 6 n) has multiplicity n
2
. Therefore G is the direct sum of m1 = n

2
complete graphs of

order λ1 + 1 = 2. Consequently, G is n
2
K2.

Case 2. The absolute value of all eigenvalues of G are not equal. If two eigenvalues

of G have different absolute values, then by Lemma 9, |λi| = −1(2 6 i 6 n). Noting

that G is a bipartite graph, we have λ1 = −λn, that is a contradiction, since the two

eigenvalues of G have different absolute values. Thus assume that G has three distinct

eigenvalues. Since G is a bipartite graph, we have that λ1 = −λn 6= 0 and
∑n

i=1 λi = 0,

and therefore, λi = 0(2 6 i 6 n− 1). Thus E(G) = 2λ1, and by Lemma 11, we have that

2λ1 > 2
√
m, and so 2λ2

1 > 2m. Notice that 2m =
∑n

i=1 λ
2
i = 2λ2

1. Therefore λ1 =
√
m

and E(G) = 2
√
m. Hence by Lemma 11, G is a complete bipartite graph plus arbitrarily

many isolated vertices. Thus, there exist integers r1 > 1 and r2 > 2 such that G is

Kr1,r2 ∪ (n− r1 − r2)K1.

3.3 Upper bound for connected graphs

In the following we consider connected graphs.

Theorem 25 Let G be a connected graph with n > 2 vertices, m edges and degree sequence

d1 > d2 > . . . > dn, then

E(G) 6 2
√
m+

√
(n− 2)

[
2m+ 2(n− 1)

√
2m(n− 1)

n
−

(
(d1 + d2)√

2n
+
√

d1

)2]
. (13)

Equality holds if and only if G ∼= K2, (n = 2m).
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Proof. Let λ1 > λ2 > . . . > λn−1 > λn be the eigenvalues of G. From Cauchy-Schwarz
inequality, we have that

n∑
i=1

|λi| 6 λ1 − λn +

√√√√(n− 2)
n−1∑
i=2

λ2
i

= λ1 − λn +

√
(n− 2)

(
2m− (λ1 − λn)2 − 2λ1λn

)
.

Then by Lemmas 7, 8 and Theorem 10 we have that

E(G) 6 2
√
m+

√
(n− 2)

[
2m+ 2(n− 1)

√
2m(n− 1)

n
−

(
(d1 + d2)√

2n
+
√

d1

)2]
.

If G ∼= K2, then it is easy to check that the equality in (13) holds. Conversely, since G

is a non-empty graph, by Lemma 9, G has at least two distinct eigenvalues. We consider

the following case.

Case 1. The absolute value of all eigenvalues of G are equal.

Then clearly λ1 = |λi| =
√

2m−λ2
1

n−1
(2 6 i 6 n), since G has at least two distinct

eigenvalues. By Lemma 9, |λi| =
√

2m−λ2
1

n−1
= 1(2 6 i 6 n). Hence 2m = n and also,

λ1 = |λ2| = . . . = |λn| = 1. By applying Lemma 9 again, we obtain that m2 = m1λ1, λ1 =

1, and therefore m1 = m2. Then we obtain that λ1 = 1 has multiplicity n
2
, and λi =

−1 (2 6 i 6 n) has multiplicity n
2
. Therefore G is the direct sum of m1 = n

2
complete

graphs of order λ1 + 1 = 2. Thereby, G is n
2
K2. Since G is a connected graph, therefore,

G is K2.

Case 2. The absolute value of all eigenvalues of G are not equal. Then G has two

distinct eigenvalues with different absolute values. By Lemma 9, |λi| = 1(2 6 i 6 n).

Since,
∑n

i=1 λi = 0 and λ2 = λ3 = . . . = λn = −1, we have, λ1 = n − 1. Hence λ1 has

multiplicity 1 and λi = −1 has multiplicity n− 1. By Lemma 9, G is the direct sum of a

complete graph of order λ1 + 1 = n. Consequently, G is Kn(n > 2).

Theorem 26 Let G be a connected graph with n > 2 vertices, m edges and degree sequence

d1 > d2 > . . . > dn, then

E(G) 6 2γ+

√
(n− 2)

[
2m+ 2

(
2m− (n− 1)dn + (dn − 1)d1

)
−

(
(d1 + d2)√

2n
+
√

d1

)2]
.

(14)

where γ =
√

2m− (n− 1)dn + (dn − 1)d1.

Equality holds if and only if G ∼= K2, (n = 2m).

-511-



Proof. Let λ1 > λ2 > . . . > λn−1 > λn be the eigenvalues of G. From Cauchy-Schwarz

inequality, we have that

n∑
i=1

|λi| = |λ1|+ |λn|+
n−1∑
i=2

|λi|

6 λ1 − λn +

√√√√(n− 2)
n−1∑
i=2

λ2
i

= λ1 − λn +

√
(n− 2)

(
2m− (λ1 − λn)2 − 2λ1λn

)
.

Then by Lemma 6 and Theorems 10, 16 we have that

E(G) 6 2γ+

√
(n− 2)

[
2m+ 2

(
2m− (n− 1)dn + (dn − 1)d1

)
−

(
(d1 + d2)√

2n
+
√

d1

)2]
.

If G ∼= K2, then it is easy to check that the equality in (14) holds. Conversely, since G

is a non-empty graph, by Lemma 9, G has at least two distinct eigenvalues. We consider

the following case.

Case 1. The absolute value of all eigenvalues of G are equal.

Then clearly λ1 = |λi| =
√

2m−λ2
1

n−1
(2 6 i 6 n), since G has at least two distinct

eigenvalues. By Lemma 9, |λi| =
√

2m−λ2
1

n−1
= 1(2 6 i 6 n). Hence 2m = n and also,

λ1 = |λ2| = . . . = |λn| = 1. By applying Lemma 9 again, we obtain that m2 = m1λ1, λ1 =

1, and therefore m1 = m2. Then we obtain that λ1 = 1 has multiplicity n
2
, and λi =

−1 (2 6 i 6 n) has multiplicity n
2
. Therefore G is the direct sum of m1 = n

2
complete

graphs of order λ1 + 1 = 2. Thereby, G is n
2
K2. Since G is a connected graph, therefore,

G is K2.

Case 2. The absolute value of all eigenvalues of G are not equal. Then G has two

distinct eigenvalues with different absolute values. By Lemma 9, |λi| = 1(2 6 i 6 n).

Since,
∑n

i=1 λi = 0 and λ2 = λ3 = . . . = λn = −1, we have, λ1 = n − 1. Hence λ1 has

multiplicity 1 and λi = −1 has multiplicity n− 1. By Lemma 9, G is the direct sum of a

complete graph of order λ1 + 1 = n. Consequently, G is Kn(n > 2).

3.4 Upper bound for triangle-free graphs

We next upper bounds is for the energy for triangle-free graphs.
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Theorem 27 Let G be a triangle-free graph with n > 2 vertices, m edges and degree

sequence d1 > d2 > . . . > dn, then

E(G) 6
√
m+

√
2m

n+ n
2
3

+

√
(n− 2)

[
4m−

(
2m

n
+
√

d1

)2]
. (15)

Equality holds if and only if G ∼= n
2
K2, (n = 2m).

Proof. Let λ1 > λ2 > . . . > λn−1 > λn be the eigenvalues of G. From Cauchy-Schwarz

inequality, we have that

n∑
i=1

|λi| 6 λ1 − λn +

√√√√(n− 2)
n−1∑
i=2

λ2
i

= λ1 − λn +

√
(n− 2)

(
2m− (λ1 − λn)2 − 2λ1λn

)
.

Then by Lemmas 2, 13 and Theorem 10 we have that

E(G) 6
√
m+

√
2m

n+ n
2
3

+

√
(n− 2)

[
4m−

(
2m

n
+
√

d1

)2]
.

If G ∼= n
2
K2, then it is easy to check that the equality in (15) holds. Conversely, since G

is a non-empty graph, by Lemma 9, G has at least two distinct eigenvalues. We consider

the following case.

Case 1. The absolute value of all eigenvalues of G are equal.

Then clearly λ1 = |λi| =
√

2m−λ2
1

n−1
(2 6 i 6 n), since G has at least two distinct

eigenvalues. By Lemma 9, |λi| =
√

2m−λ2
1

n−1
= 1(2 6 i 6 n). Hence 2m = n and also,

λ1 = |λ2| = . . . = |λn| = 1. By applying Lemma 9 again, we obtain that m2 = m1λ1, λ1 =

1, and therefore m1 = m2. Then we obtain that λ1 = 1 has multiplicity n
2
, and λi =

−1 (2 6 i 6 n) has multiplicity n
2
. Therefore G is the direct sum of m1 = n

2
complete

graphs of order λ1 + 1 = 2. Consequently, G is n
2
K2.

Case 2. The absolute value of all eigenvalues of G are not equal. Then G has two

distinct eigenvalues with different absolute values. By Lemma 9, |λi| = 1(2 6 i 6 n).

Since,
∑n

i=1 λi = 0 and λ2 = λ3 = . . . = λn = −1, we have, λ1 = n − 1. Hence λ1 has

multiplicity 1 and λi = −1 has multiplicity n− 1. By Lemma 9, G is the direct sum of a

complete graph of order λ1 + 1 = n. Thereby, G is Kn.

Theorem 28 Let G be a triangle-free graph with n > 2 vertices, m edges and degree
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sequence d1 > d2 > . . . > dn, then

E(G) 6
√
m+

√
2m

n+ n
2
3

+

√
(n− 2)

[
4m−

(
1√
2n

(d1 + d2)

)2]
. (16)

Equality holds if and only if G ∼= n
2
K2, (n = 2m).

Proof. Let λ1 > λ2 > . . . > λn−1 > λn be the eigenvalues of G. From Cauchy-Schwarz

inequality, we have that

n∑
i=1

|λi| 6 λ1 − λn +

√√√√(n− 2)
n−1∑
i=2

λ2
i

= λ1 − λn +

√
(n− 2)

(
2m− (λ1 − λn)2 − 2λ1λn

)
.

Then by Lemma 2 and Theorems 10, 4; we have that

E(G) 6
√
m+

√
2m

n+ n
2
3

+

√
(n− 2)

[
4m−

(
1√
2n

(d1 + d2)

)2]
.

If G ∼= n
2
K2, then it is easy to check that the equality in (16) holds. Conversely,

since G is a non-empty graph, by Lemma 9, G has at least two distinct eigenvalues. We

consider the following case.

Case 1. The absolute value of all eigenvalues of G are equal.

Then clearly λ1 = |λi| =
√

2m−λ2
1

n−1
(2 6 i 6 n), since G has at least two distinct

eigenvalues. By Lemma 9, |λi| =
√

2m−λ2
1

n−1
= 1(2 6 i 6 n). Hence 2m = n and also,

λ1 = |λ2| = . . . = |λn| = 1. By applying Lemma 9, we obtain that m2 = m1λ1, λ1 = 1,

and therefore m1 = m2. Then we obtain that λ1 = 1 has multiplicity n
2
, and λi =

−1 (2 6 i 6 n) has multiplicity n
2
. Therefore G is the direct sum of m1 = n

2
complete

graphs of order λ1 + 1 = 2. Thereby, G is n
2
K2.

Case 2. The absolute value of all eigenvalues of G are not equal. Then G has two

distinct eigenvalues with different absolute values. By Lemma 9, |λi| = 1(2 6 i 6 n).

Since,
∑n

i=1 λi = 0 and λ2 = λ3 = . . . = λn = −1, we have, λ1 = n − 1. Hence λ1 has

multiplicity 1 and λi = −1 has multiplicity n− 1. By Lemma 9, G is the direct sum of a

complete graph of order λ1 + 1 = n. Consequently, G is Kn.

3.5 Upper bound for regular graphs
In this subsection, we present upper bounds for the energy of a regular graph. In the

following result, we give an upper bounds in terms of order, size and degree sequence.
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Theorem 29 Let G be a regular graph with n > 2 vertices, m edges and degree sequence

d1 > d2 > . . . > dn, then

E(G) 6 n+

√
(n− 2)

[
2m+ 2

(
2m(n− 1)

n

)
−

(
(d1 + d2)√

2n
+
√

d1

)2]
. (17)

Equality holds if and only if G ∼= n
2
K2, (n = 2m).

Proof. Let λ1 > λ2 > . . . > λn−1 > λn be the eigenvalues of G. From Cauchy-Schwarz

inequality, we have that

n∑
i=1

|λi| 6 λ1 − λn +

√√√√(n− 2)
n−1∑
i=2

λ2
i

= λ1 − λn +

√
(n− 2)

(
2m− (λ1 − λn)2 − 2λ1λn

)
.

Then by Lemmas 1, 12 and Theorem 16 we have that

E(G) 6 n+

√
(n− 2)

[
2m+ 2

(
2m(n− 1)

n

)
−

(
(d1 + d2)√

2n
+
√

d1

)2]
.

If G ∼= n
2
K2, then it is easy to check that the equality in (17) holds. Conversely, since G

is a non-empty graph, by Lemma 9, G has at least two distinct eigenvalues. We consider

the following case.

Case 1. The absolute value of all eigenvalues of G are equal.

Then clearly λ1 = |λi| =
√

2m−λ2
1

n−1
(2 6 i 6 n), since G has at least two distinct

eigenvalues. By Lemma 9, |λi| =
√

2m−λ2
1

n−1
= 1(2 6 i 6 n). Hence 2m = n and also,

λ1 = |λ2| = . . . = |λn| = 1. By applying Lemma 9 again, we obtain that m2 = m1λ1, λ1 =

1, and therefore m1 = m2. Then we obtain that λ1 = 1 has multiplicity n
2
, and λi =

−1 (2 6 i 6 n) has multiplicity n
2
. Therefore G is the direct sum of m1 = n

2
complete

graphs of order λ1 + 1 = 2. Consequently, G is n
2
K2.

Case 2. The absolute value of all eigenvalues of G are not equal. Then G has two

distinct eigenvalues with different absolute values. By Lemma 9, |λi| = 1(2 6 i 6 n).

Since,
∑n

i=1 λi = 0 and λ2 = λ3 = . . . = λn = −1, we have, λ1 = n − 1. Hence λ1 has

multiplicity 1 and λi = −1 has multiplicity n− 1. By Lemma 9, G is the direct sum of a

complete graph of order λ1 + 1 = n. Thereby, G is Kn.
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Theorem 30 Let G be a k- regular graph with n > 2 vertices, m edges, a coclique of
order α and degree sequence d1 > d2 > . . . > dn, then

E(G) 6 n+

√
(n− 2)

[
2m+ 2

(
2m(n− 1)

n

)
−

(
nk

n− α

)2]
. (18)

Equality holds if and only if G ∼= n
2
K2, (n = 2m).

Proof. Let λ1 > λ2 > . . . > λn−1 > λn be the eigenvalues of G. From Cauchy-Schwarz

inequality, we have that
n∑

i=1

|λi| = |λ1|+ |λn|+
n−1∑
i=2

|λi|

6 λ1 − λn +

√√√√(n− 2)
n−1∑
i=2

λ2
i

= λ1 − λn +

√
(n− 2)

(
2m− (λ1 − λn)2 − 2λ1λn

)
.

Then by Lemmas 1, 12, 11 we have that

E(G) 6 n+

√
(n− 2)

[
2m+ 2

(
2m(n− 1)

n

)
−

(
nk

n− α

)2]
.

If G ∼= n
2
K2, then it is easy to check that the equality in (18) holds. Conversely, since G

is a non-empty graph, by Lemma 9, G has at least two distinct eigenvalues. We consider

the following cases.

Case 1. The absolute value of all eigenvalues of G are equal.

Then clearly λ1 = |λi| =
√

2m−λ2
1

n−1
(2 6 i 6 n), since G has at least two distinct

eigenvalues. By Lemma 9, |λi| =
√

2m−λ2
1

n−1
= 1(2 6 i 6 n). Hence 2m = n and also,

λ1 = |λ2| = . . . = |λn| = 1. By applying Lemma 9, we obtain that m2 = m1λ1, λ1 = 1,

and therefore m1 = m2. Then we obtain that λ1 = 1 has multiplicity n
2
, and λi =

−1 (2 6 i 6 n) has multiplicity n
2
. Therefore G is the direct sum of m1 = n

2
complete

graphs of order λ1 + 1 = 2. Consequently, G is n
2
K2.

Case 2. The absolute value of all eigenvalues of G are not equal. Then G has two

distinct eigenvalues with different absolute values. By Lemma 9, |λi| = 1(2 6 i 6 n).

Since,
∑n

i=1 λi = 0 and λ2 = λ3 = . . . = λn = −1, we have, λ1 = n − 1. Hence λ1 has

multiplicity 1 and λi = −1 has multiplicity n− 1. By Lemma 9, G is the direct sum of a

complete graph of order λ1 + 1 = n. Consequently, G is Kn.
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4 Comparing bounds and conclusions

In this section, we present some computational experiments to compare our new upper

bounds to previously published upper bounds for certainly connected graphs. We compare

the results obtained in Theorem 18 (Th.18), Theorem 19 (Th.19), Theorem 23 (Th.23),

Theorem 24 (Th.24), Theorem 27 (Th.27) with the results obtained by McClelland (1),

Koolen and Moulton (2) and (3), Zhou (4) and (5) with the original energy value for each

given graph.

Graph (G) E(G) (1) (2) (4) Th.18 Th.19 (3) (5) Th.23 Th.24 Th.27
K8 14.0000 21.1660 14.0000 14.0000 14.0000 30.6673
K2,3 4. 8990 7.7460 7.3960 7.3485 6.1968 10.5965 6.1856 4.8990 6.7689 7.7329 8.2384
K4,3 6. 9282 12.9615 12.0000 11.9494 9.0711 18.3272 8.5714 6.9282 11.2285 12.9561 14.5903
S4 3. 4641 4.8990 4.8541 4.7321 4.2426 5.5140 5.1213 3.4641 4.4352 4.5958 4.4542
S5 4.0000 6.3246 6.2648 6.0000 5.0596 7.0865 6.5941 4.0000 5.4978 5.7636 6.0247
S6 4. 4821 7.7460 7.6759 7.2361 5.7735 8.5972 8.0474 4.4821 6.4142 6.8850 7.6404
C5 6. 4895 7.0711 6.8990 6.8990 6.6569 9.9433 6.8284 6.4895 6.6618 7.0647 8.3624
C6 8.0000 8.4853 8.3246 8.3246 7.3246 12.0274 8.4721 8.0000 8.4695 8.4682 10.6119
C7 9.0000 9.8995 9.7460 9.7460 9.9282 14.0208 10.0000 9.4772 9.8784 9.8713 12.8315
P4 4. 4821 4.8990 4.8541 4.8215 4.5426 6.4221 5.1213 4.5765 4.4960 4.8987 5.3399
P5 5. 4689 6.3246 6.2648 6.2340 5.5596 8.6530 6.5941 6.0299 5.8030 6.3158 7.5593
P6 7.0000 7.7460 7.6759 7.6481 7.7735 10.7333 8.0474 7.4641 7.1666 7.7209 9.7562
P7 8. 0611 9.1652 9.0877 9.0627 9.4143 12.7195 9.4895 8.8908 8.5413 9.1242 11.9404

• In almost all of our test cases, the upper bound in Th.18 and Th.23 were better

than existing bounds.

• For bipartite graphs, the upper bound given by Th.23 is better than existing bounds

for bipartite graph.
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